Fixed compiling with newest idf again

This commit is contained in:
2022-01-11 13:52:54 +01:00
parent 6c49028af8
commit 40409a3e4f
2 changed files with 27 additions and 21 deletions

View File

@ -21,6 +21,7 @@
#include "soc/io_mux_reg.h" #include "soc/io_mux_reg.h"
#include "soc/gpio_struct.h" #include "soc/gpio_struct.h"
#include "soc/rtc_io_reg.h" #include "soc/rtc_io_reg.h"
#include "soc/rtc_io_periph.h"
#include "esp_system.h" #include "esp_system.h"
#ifdef ESP_IDF_VERSION_MAJOR // IDF 4+ #ifdef ESP_IDF_VERSION_MAJOR // IDF 4+

View File

@ -21,8 +21,10 @@
#include "esp8266-compat.h" #include "esp8266-compat.h"
#include "soc/gpio_reg.h" #include "soc/gpio_reg.h"
#include "soc/rmt_struct.h" #include "soc/rmt_struct.h"
#include "driver/periph_ctrl.h" #include "esp_private/periph_ctrl.h"
#include "esp_intr_alloc.h" #include "esp_intr_alloc.h"
#include "hal/rmt_ll.h"
#include "driver/rmt.h"
/** /**
* Internal macros * Internal macros
@ -291,7 +293,7 @@ bool rmtWrite(rmt_obj_t* rmt, rmt_data_t* data, size_t size)
RMT.conf_ch[channel].conf1.mem_wr_rst = 0; RMT.conf_ch[channel].conf1.mem_wr_rst = 0;
// set the tx end mark // set the tx end mark
RMTMEM.chan[channel].data32[MAX_DATA_PER_ITTERATION].val = 0; RMTMEM.chan[channel].data32[MAX_DATA_PER_ITTERATION] = 0;
// clear and enable both Tx completed and half tx event // clear and enable both Tx completed and half tx event
RMT.int_clr.val = _INT_TX_END(channel); RMT.int_clr.val = _INT_TX_END(channel);
@ -324,7 +326,7 @@ bool rmtReadData(rmt_obj_t* rmt, uint32_t* data, size_t size)
} }
size_t i; size_t i;
volatile uint32_t* rmt_mem_ptr = &(RMTMEM.chan[channel].data32[0].val); volatile uint32_t* rmt_mem_ptr = &(RMTMEM.chan[channel].data32[0]);
for (i=0; i<size; i++) { for (i=0; i<size; i++) {
data[i] = *rmt_mem_ptr++; data[i] = *rmt_mem_ptr++;
} }
@ -608,12 +610,12 @@ bool _rmtSendOnce(rmt_obj_t* rmt, rmt_data_t* data, size_t size, bool continuous
RMT.apb_conf.fifo_mask = 1; RMT.apb_conf.fifo_mask = 1;
if (data && size>0) { if (data && size>0) {
size_t i; size_t i;
volatile uint32_t* rmt_mem_ptr = &(RMTMEM.chan[channel].data32[0].val); volatile uint32_t* rmt_mem_ptr = &(RMTMEM.chan[channel].data32[0]);
for (i = 0; i < size; i++) { for (i = 0; i < size; i++) {
*rmt_mem_ptr++ = data[i].val; *rmt_mem_ptr++ = data[i].val;
} }
// tx end mark // tx end mark
RMTMEM.chan[channel].data32[size].val = 0; RMTMEM.chan[channel].data32[size] = 0;
} }
RMT_MUTEX_LOCK(channel); RMT_MUTEX_LOCK(channel);
@ -686,7 +688,7 @@ static void ARDUINO_ISR_ATTR _rmt_isr(void* arg)
} }
uint32_t *data_received = data; uint32_t *data_received = data;
for (i = 0; i < g_rmt_objects[ch].data_size; i++ ) { for (i = 0; i < g_rmt_objects[ch].data_size; i++ ) {
*data++ = RMTMEM.chan[ch].data32[i].val; *data++ = RMTMEM.chan[ch].data32[i];
} }
if (g_rmt_objects[ch].cb) { if (g_rmt_objects[ch].cb) {
// actually received data ptr // actually received data ptr
@ -765,16 +767,16 @@ static void ARDUINO_ISR_ATTR _rmt_tx_mem_second(uint8_t ch)
// will the remaining data occupy the entire halfbuffer // will the remaining data occupy the entire halfbuffer
if (remaining_size > half_tx_nr) { if (remaining_size > half_tx_nr) {
for (i = 0; i < half_tx_nr; i++) { for (i = 0; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[half_tx_nr+i].val = data[i]; RMTMEM.chan[ch].data32[half_tx_nr+i] = data[i];
} }
g_rmt_objects[ch].data_size -= half_tx_nr; g_rmt_objects[ch].data_size -= half_tx_nr;
g_rmt_objects[ch].data_ptr += half_tx_nr; g_rmt_objects[ch].data_ptr += half_tx_nr;
} else { } else {
for (i = 0; i < half_tx_nr; i++) { for (i = 0; i < half_tx_nr; i++) {
if (i < remaining_size) { if (i < remaining_size) {
RMTMEM.chan[ch].data32[half_tx_nr+i].val = data[i]; RMTMEM.chan[ch].data32[half_tx_nr+i] = data[i];
} else { } else {
RMTMEM.chan[ch].data32[half_tx_nr+i].val = 0x000F000F; RMTMEM.chan[ch].data32[half_tx_nr+i] = 0x000F000F;
} }
} }
g_rmt_objects[ch].data_ptr = NULL; g_rmt_objects[ch].data_ptr = NULL;
@ -783,9 +785,9 @@ static void ARDUINO_ISR_ATTR _rmt_tx_mem_second(uint8_t ch)
} else if ((!(g_rmt_objects[ch].tx_state & E_LAST_DATA)) && } else if ((!(g_rmt_objects[ch].tx_state & E_LAST_DATA)) &&
(!(g_rmt_objects[ch].tx_state & E_END_TRANS))) { (!(g_rmt_objects[ch].tx_state & E_END_TRANS))) {
for (i = 0; i < half_tx_nr; i++) { for (i = 0; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[half_tx_nr+i].val = 0x000F000F; RMTMEM.chan[ch].data32[half_tx_nr+i] = 0x000F000F;
} }
RMTMEM.chan[ch].data32[half_tx_nr+i].val = 0; RMTMEM.chan[ch].data32[half_tx_nr+i] = 0;
g_rmt_objects[ch].tx_state |= E_LAST_DATA; g_rmt_objects[ch].tx_state |= E_LAST_DATA;
RMT.conf_ch[ch].conf1.tx_conti_mode = 0; RMT.conf_ch[ch].conf1.tx_conti_mode = 0;
} else { } else {
@ -813,9 +815,9 @@ static void ARDUINO_ISR_ATTR _rmt_tx_mem_first(uint8_t ch)
// will the remaining data occupy the entire halfbuffer // will the remaining data occupy the entire halfbuffer
if (remaining_size > half_tx_nr) { if (remaining_size > half_tx_nr) {
RMTMEM.chan[ch].data32[0].val = data[0] - 1; RMTMEM.chan[ch].data32[0] = data[0] - 1;
for (i = 1; i < half_tx_nr; i++) { for (i = 1; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[i].val = data[i]; RMTMEM.chan[ch].data32[i] = data[i];
} }
g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF; g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF;
// turn off the treshold interrupt // turn off the treshold interrupt
@ -824,12 +826,12 @@ static void ARDUINO_ISR_ATTR _rmt_tx_mem_first(uint8_t ch)
g_rmt_objects[ch].data_size -= half_tx_nr; g_rmt_objects[ch].data_size -= half_tx_nr;
g_rmt_objects[ch].data_ptr += half_tx_nr; g_rmt_objects[ch].data_ptr += half_tx_nr;
} else { } else {
RMTMEM.chan[ch].data32[0].val = data[0] - 1; RMTMEM.chan[ch].data32[0] = data[0] - 1;
for (i = 1; i < half_tx_nr; i++) { for (i = 1; i < half_tx_nr; i++) {
if (i < remaining_size) { if (i < remaining_size) {
RMTMEM.chan[ch].data32[i].val = data[i]; RMTMEM.chan[ch].data32[i] = data[i];
} else { } else {
RMTMEM.chan[ch].data32[i].val = 0x000F000F; RMTMEM.chan[ch].data32[i] = 0x000F000F;
} }
} }
@ -838,9 +840,9 @@ static void ARDUINO_ISR_ATTR _rmt_tx_mem_first(uint8_t ch)
} }
} else { } else {
for (i = 0; i < half_tx_nr; i++) { for (i = 0; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[i].val = 0x000F000F; RMTMEM.chan[ch].data32[i] = 0x000F000F;
} }
RMTMEM.chan[ch].data32[i].val = 0; RMTMEM.chan[ch].data32[i] = 0;
g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF; g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF;
RMT.tx_lim_ch[ch].limit = 0; RMT.tx_lim_ch[ch].limit = 0;
@ -854,12 +856,15 @@ static int ARDUINO_ISR_ATTR _rmt_get_mem_len(uint8_t channel)
{ {
int block_num = RMT.conf_ch[channel].conf0.mem_size; int block_num = RMT.conf_ch[channel].conf0.mem_size;
int item_block_len = block_num * 64; int item_block_len = block_num * 64;
volatile rmt_item32_t* data = RMTMEM.chan[channel].data32; volatile uint32_t* data = RMTMEM.chan[channel].data32;
int idx; int idx;
for(idx = 0; idx < item_block_len; idx++) { for(idx = 0; idx < item_block_len; idx++) {
if(data[idx].duration0 == 0) { rmt_item32_t helper;
helper.val = data[idx];
if(helper.duration0 == 0) {
return idx; return idx;
} else if(data[idx].duration1 == 0) { } else if(helper.duration1 == 0) {
return idx + 1; return idx + 1;
} }
} }