IDF release/v4.4 6a7d83af19

* Update toolchain to 2021r2 (#5828)
* Update C3 libs to support only ECO3 and newer
This commit is contained in:
Me No Dev
2021-11-04 14:22:34 +02:00
committed by GitHub
parent caa8d07aaf
commit 418ac74be0
319 changed files with 5807 additions and 221 deletions

View File

@ -673,5 +673,5 @@
#define CONFIG_ULP_COPROC_RESERVE_MEM CONFIG_ESP32_ULP_COPROC_RESERVE_MEM
#define CONFIG_WARN_WRITE_STRINGS CONFIG_COMPILER_WARN_WRITE_STRINGS
#define CONFIG_WIFI_LWIP_ALLOCATION_FROM_SPIRAM_FIRST CONFIG_SPIRAM_TRY_ALLOCATE_WIFI_LWIP
#define CONFIG_ARDUINO_IDF_COMMIT "2720d45e71"
#define CONFIG_ARDUINO_IDF_COMMIT "6a7d83af19"
#define CONFIG_ARDUINO_IDF_BRANCH "release/v4.4"

View File

@ -0,0 +1,208 @@
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ekf_h_
#define _ekf_h_
#include <stdint.h>
#include <stdbool.h>
#include <math.h>
#include <stdint.h>
#include <mat.h>
class ekf {
public:
// x - amount of states in EKF. x[n] = F*x[n-1] + G*u + W. Size of matrix F
// w - amount of control measurements and noise inputs. Size of matrix G
ekf(int x, int w);
virtual ~ekf();
virtual void Process(float *u, float dt);
virtual void Init() = 0;
// x[n] = F*x[n-1] + G*u + W
int NUMX; // number of states, X is the state vector (size of F matrix)
int NUMW; // size of G matrix
// System state vector
dspm::Mat &X;
// linearized system matrices
dspm::Mat &F;
dspm::Mat &G;
// covariance matrix and state vector
dspm::Mat &P;
// input noise and measurement noise variances
dspm::Mat &Q;
/**
* Runge-Kutta state update method.
* The method calculates derivatives of input vector x and control measurements u
* Re
* @param[in] x: state vector
* @param[in] u: control measurement
* @param[in] dt: time interval from last update in seconds
*/
void RungeKutta(dspm::Mat &x, float *u, float dt);
// System Dependent methods:
/**
* Derivative of state vector X
* Re
* @param[in] x: state vector
* @param[in] u: control measurement
* @return
* - derivative of input vector x and u
*/
virtual dspm::Mat StateXdot(dspm::Mat &x, float *u) = 0;
/**
* Calculation of system state matrices F and G
* @param[in] x: state vector
* @param[in] u: control measurement
*/
virtual void LinearizeFG(dspm::Mat &x, float *u) = 0;
//
// System independent methods
/**
* Calculates covariance prediction matrux P.
* Update matrix P
* @param[in] dt: time interval from last update
*/
virtual void CovariancePrediction(float dt);
/**
* Update of current state by measured values.
* Optimized method for non correlated values
* Calculate Kalman gain and update matrix P and vector X.
* @param[in] H: derivative matrix
* @param[in] measured: array of measured values
* @param[in] expected: array of expected values
* @param[in] R: measurement noise covariance values
*/
virtual void Update(dspm::Mat &H, float *measured, float *expected, float *R);
/**
* Update of current state by measured values.
* This method just as a reference for research purpose.
* Not used in real calculations.
* @param[in] H: derivative matrix
* @param[in] measured: array of measured values
* @param[in] expected: array of expected values
* @param[in] R: measurement noise covariance values
*/
virtual void UpdateRef(dspm::Mat &H, float *measured, float *expected, float *R);
float *HP;
float *Km;
public:
// Additional universal helper methods
/**
* Convert quaternion to rotation matrix.
* @param[in] q: quaternion
*
* @return
* - rotation matrix 3x3
*/
static dspm::Mat quat2rotm(float q[4]);
/**
* Convert rotation matrix to quaternion.
* @param[in] R: rotation matrix
*
* @return
* - quaternion 4x1
*/
static dspm::Mat rotm2quat(dspm::Mat &R);
/**
* Convert quaternion to Euler angels.
* @param[in] R: quaternion
*
* @return
* - Euler angels 3x1
*/
static dspm::Mat quat2eul(const float q[4]);
/**
* Convert Euler angels to rotation matrix.
* @param[in] xyz: Euler angels
*
* @return
* - rotation matrix 3x3
*/
static dspm::Mat eul2rotm(float xyz[3]);
/**
* Convert rotation matrix to Euler angels.
* @param[in] rotm: rotation matrix
*
* @return
* - Euler angels 3x1
*/
static dspm::Mat rotm2eul(dspm::Mat &rotm);
/**
* Df/dq: Derivative of vector by quaternion.
* @param[in] vector: input vector
* @param[in] quat: quaternion
*
* @return
* - Derivative matrix 3x4
*/
static dspm::Mat dFdq(dspm::Mat &vector, dspm::Mat &quat);
/**
* Df/dq: Derivative of vector by inverted quaternion.
* @param[in] vector: input vector
* @param[in] quat: quaternion
*
* @return
* - Derivative matrix 3x4
*/
static dspm::Mat dFdq_inv(dspm::Mat &vector, dspm::Mat &quat);
/**
* Make skew-symmetric matrix of vector.
* @param[in] w: source vector
*
* @return
* - skew-symmetric matrix 4x4
*/
static dspm::Mat SkewSym4x4(float *w);
// q product
// Rl = [q(1) - q(2) - q(3) - q(4); ...
// q(2) q(1) - q(4) q(3); ...
// q(3) q(4) q(1) - q(2); ...
// q(4) - q(3) q(2) q(1); ...
/**
* Make right quaternion-product matrices.
* @param[in] q: source quaternion
*
* @return
* - right quaternion-product matrix 4x4
*/
static dspm::Mat qProduct(float *q);
};
#endif // _ekf_h_

View File

@ -0,0 +1,83 @@
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ekf_imu13states_H_
#define _ekf_imu13states_H_
#include "ekf.h"
/**
* @brief This class is used to process and calculate attitude from imu sensors.
*
* The class use state vector with 13 follows values
* X[0..3] - attitude quaternion
* X[4..6] - gyroscope bias error, rad/sec
* X[7..9] - magnetometer vector value - magn_ampl
* X[10..12] - magnetometer offset value - magn_offset
*
* where, reference magnetometer value = magn_ampl*rotation_matrix' + magn_offset
*/
class ekf_imu13states: public ekf {
public:
ekf_imu13states();
virtual ~ekf_imu13states();
virtual void Init();
// Method calculates Xdot values depends on U
// U - gyroscope values in radian per seconds (rad/sec)
virtual dspm::Mat StateXdot(dspm::Mat &x, float *u);
virtual void LinearizeFG(dspm::Mat &x, float *u);
// Methods for tests only.
void Test();
void TestFull(bool enable_att);
// Initial reference valies magnetometer and accelerometer
dspm::Mat mag0;
dspm::Mat accel0;
int NUMU; // number of control measurements
/**
* Update part of system state by reference measurements accelerometer and magnetometer.
* Only attitude and gyro bias will be updated.
* This method should be used as main method after calibration.
*
* @param[in] accel_data: accelerometer measurement vector XYZ in g, where 1 g ~ 9.81 m/s^2
* @param[in] magn_data: magnetometer measurement vector XYZ
* @param[in] R: measurement noise covariance values for diagonal covariance matrix. Then smaller value, then more you trust them.
*/
void UpdateRefMeasurement(float *accel_data, float *magn_data, float R[6]);
/**
* Update full system state by reference measurements accelerometer and magnetometer.
* This method should be used at calibration phase.
*
* @param[in] accel_data: accelerometer measurement vector XYZ in g, where 1 g ~ 9.81 m/s^2
* @param[in] magn_data: magnetometer measurement vector XYZ
* @param[in] R: measurement noise covariance values for diagonal covariance matrix. Then smaller value, then more you trust them.
*/
void UpdateRefMeasurementMagn(float *accel_data, float *magn_data, float R[6]);
/**
* Update system state by reference measurements accelerometer, magnetometer and attitude quaternion.
* This method could be used when system on constant state or in initialization phase.
* @param[in] accel_data: accelerometer measurement vector XYZ in g, where 1 g ~ 9.81 m/s^2
* @param[in] magn_data: magnetometer measurement vector XYZ
* @param[in] attitude: attitude quaternion
* @param[in] R: measurement noise covariance values for diagonal covariance matrix. Then smaller value, then more you trust them.
*/
void UpdateRefMeasurement(float *accel_data, float *magn_data, float *attitude, float R[10]);
};
#endif // _ekf_imu13states_H_

View File

@ -52,6 +52,27 @@ public:
* @param[in] src: source matrix
*/
Mat(const Mat &src);
/**
* Make copy of matrix.
* @param[in] src: source matrix
* @param[in] row_pos: start row position of destination matrix
* @param[in] col_pos: start col position of destination matrix
*/
void Copy(const Mat &src, int row_pos, int col_pos);
/**
* Make copy of matrix.
* @param[in] row_start: start row position of source matrix to copy
* @param[in] row_size: size of wor elements of source matrix to copy
* @param[in] col_start: start col position of source matrix to copy
* @param[in] col_size: size of wor elements of source matrix to copy
*
* @return
* - result matrix size row_size x col_size
*/
Mat Get(int row_start, int row_size, int col_start, int col_size);
/**
* Copy operator
*
@ -356,10 +377,18 @@ public:
int length; /*!< Total amount of data in data array*/
static float abs_tol; /*!< Max acceptable absolute tolerance*/
/**
* Find determinant
* @param[in] n: element number in first row
*
* @return
* - determinant value
*/
float det(int n);
private:
Mat cofactor(int row, int col, int n);
float det(int n);
Mat adjoint();
Mat cofactor(int row, int col, int n);
Mat adjoint();
void allocate(); // Allocate buffer
Mat expHelper(const Mat &m, int num);

View File

@ -91,9 +91,10 @@ namespace dl
typedef enum
{
CONSTANT,
EDGE,
REFLECT,
SYMMETRIC,
PADDING_EMPTY,
PADDING_CONSTANT,
PADDING_EDGE,
PADDING_REFLECT,
PADDING_SYMMETRIC,
} padding_mode_t;
} // namespace dl

View File

@ -72,7 +72,7 @@ namespace dl
{
this->output = new Tensor<feature_t>;
}
this->output->set_exponent(this->output_exponent);
this->output->set_exponent(input0.exponent);
this->output->set_shape(this->output_shape);
this->output->free_element();
}

View File

@ -0,0 +1,169 @@
#pragma once
#include "dl_nn_pad.hpp"
#include "dl_layer_base.hpp"
namespace dl
{
namespace layer
{
/**
* @brief Pad.
*
* @tparam feature_t supports int16_t and int8_t,
* - int16_t: stands for operation in int16_t quantize
* - int8_t: stands for operation in int8_t quantize
*/
template <typename feature_t>
class Pad : public Layer
{
private:
std::vector<int> paddings;
std::vector<feature_t> constant_values;
padding_mode_t mode;
Tensor<feature_t> *output; /*<! output ptr of Pad >*/
std::vector<int> output_shape; /*<! output shape of Pad >*/
public:
Pad(std::vector<int> paddings,
std::vector<feature_t> constant_values = {0},
padding_mode_t mode = PADDING_CONSTANT,
const char *name = "Pad") : Layer(name),
paddings(paddings),
constant_values(constant_values),
mode(mode)
{
this->output = new Tensor<feature_t>;
}
/**
* @brief Destroy the Pad object.
*
*/
~Pad()
{
if (this->output != NULL)
{
delete this->output;
}
}
/**
* @brief Update output padding and input padding.
*
* @param input as an input
* @param print_shape whether to print the output shape.
*/
void build(Tensor<feature_t> &input, bool print_shape = false)
{
assert(this->paddings.size() > 0);
int input_dims = input.shape.size();
int padding_dims = input_dims * 2;
if (this->paddings.size() == 1)
{
std::vector<int> _paddings(padding_dims, 0);
for (int i = 0; i < padding_dims; ++i)
{
_paddings[i] = this->paddings[0];
}
this->paddings = _paddings;
}
else if (this->paddings.size() == 2)
{
std::vector<int> _paddings(padding_dims, 0);
for (int i = 0; i < input_dims; ++i)
{
_paddings[2 * i] = this->paddings[0];
_paddings[2 * i + 1] = this->paddings[1];
}
this->paddings = _paddings;
}
else
{
assert(this->paddings.size() == padding_dims);
}
if (this->mode == PADDING_CONSTANT)
{
if (this->constant_values.size() == 1)
{
std::vector<feature_t> _constant_values(padding_dims, 0);
for (int i = 0; i < padding_dims; ++i)
{
_constant_values[i] = this->constant_values[0];
}
this->constant_values = _constant_values;
}
else if (this->constant_values.size() == 2)
{
std::vector<feature_t> _constant_values(padding_dims, 0);
for (int i = 0; i < input_dims; ++i)
{
_constant_values[2 * i] = this->constant_values[0];
_constant_values[2 * i + 1] = this->constant_values[1];
}
this->constant_values = _constant_values;
}
else
{
assert(constant_values.size() == padding_dims);
}
}
this->output_shape = input.shape;
for (int i = 0; i < input_dims; ++i)
{
this->output_shape[i] += (this->paddings[2 * i] + this->paddings[2 * i + 1]);
}
this->output->set_shape(this->output_shape);
this->output->set_exponent(input.exponent);
this->output->free_element();
if (print_shape)
{
std::cout << this->name << " | ";
this->output->print_shape();
}
}
/**
* @brief Get the output
*
* @return Tensor<feature_t>& Pad result
*/
Tensor<feature_t> &get_output()
{
return *this->output;
}
/**
* @brief Call Pad operation
*
* @param input as an input.
* @param autoload_enable one of true or false,
* - true: load input and output from PSRAM to CACHE automatically
* - false: do not
* @param assign_core not effective yet
* @return Pad result
*/
Tensor<feature_t> &call(Tensor<feature_t> &input, const std::vector<int> &assign_core = CONFIG_DEFAULT_ASSIGN_CORE)
{
DL_LOG_LAYER_LATENCY_INIT();
DL_LOG_LAYER_LATENCY_START();
if (this->output->shape != this->output_shape)
{
this->output->set_shape(this->output_shape);
}
this->output->malloc_element();
this->output->set_exponent(input.exponent);
DL_LOG_LAYER_LATENCY_END(this->name, "apply");
DL_LOG_LAYER_LATENCY_START();
nn::pad(*this->output, input, this->paddings, this->constant_values, this->mode, assign_core);
DL_LOG_LAYER_LATENCY_END(this->name, "pad");
return *this->output;
}
};
} // namespace layer
} // namespace dl

View File

@ -0,0 +1,120 @@
#pragma once
#include "dl_constant.hpp"
#include "dl_variable.hpp"
#include "dl_nn.hpp"
namespace dl
{
namespace nn
{
/**
* @brief pad(input)
*
* @tparam feature_t
* @param output as an output
* @param input as an input
* @param paddings number of values padded to the edges of each dim
* @param constant_values used in PADDING_CONSTANT, the values to set the padded values for each dim
* @param mode One of the following: PADDING_EMPTY, PADDING_CONSTANT, PADDING_EDGE, PADDING_REFLECT, PADDING_SYMMETRIC
* @param assign_core not effective yet
*/
template <typename feature_t>
void pad(Tensor<feature_t> &output,
Tensor<feature_t> &input,
std::vector<int> paddings,
std::vector<feature_t> constant_values,
padding_mode_t mode,
const std::vector<int> &assign_core = CONFIG_DEFAULT_ASSIGN_CORE);
/**
* @brief
*
* @tparam feature_t
* @param input as an input
* @param paddings number of values padded to the edges of each dim
* @param constant_values used in PADDING_CONSTANT, the values to set the padded values for each dim
* @param mode One of the following: PADDING_EMPTY, PADDING_CONSTANT, PADDING_EDGE, PADDING_REFLECT, PADDING_SYMMETRIC
* @param assign_core not effective yet
* @return Tensor<feature_t> the padded Tensor
*/
template <typename feature_t>
Tensor<feature_t> pad(Tensor<feature_t> &input,
std::vector<int> paddings,
std::vector<feature_t> constant_values,
padding_mode_t mode,
const std::vector<int> &assign_core = CONFIG_DEFAULT_ASSIGN_CORE)
{
DL_LOG_NN_LATENCY_INIT();
DL_LOG_NN_LATENCY_START();
assert(paddings.size() > 0);
int input_dims = input.shape.size();
int padding_dims = input_dims * 2;
std::vector<int> _paddings(padding_dims, 0);
if (paddings.size() == 1)
{
for (int i = 0; i < padding_dims; ++i)
{
_paddings[i] = paddings[0];
}
}
else if (paddings.size() == 2)
{
for (int i = 0; i < input_dims; ++i)
{
_paddings[2 * i] = paddings[0];
_paddings[2 * i + 1] = paddings[1];
}
}
else
{
assert(paddings.size() == padding_dims);
_paddings = paddings;
}
std::vector<feature_t> _constant_values(padding_dims, 0);
if (mode == PADDING_CONSTANT)
{
if (constant_values.size() == 1)
{
for (int i = 0; i < padding_dims; ++i)
{
_constant_values[i] = constant_values[0];
}
}
else if (constant_values.size() == 2)
{
for (int i = 0; i < input_dims; ++i)
{
_constant_values[2 * i] = constant_values[0];
_constant_values[2 * i + 1] = constant_values[1];
}
}
else
{
assert(constant_values.size() == padding_dims);
_constant_values = constant_values;
}
}
std::vector<int> output_shape = input.shape;
for (int i = 0; i < input_dims; ++i)
{
output_shape[i] += (_paddings[2 * i] + _paddings[2 * i + 1]);
}
Tensor<feature_t> output;
output.set_exponent(input.exponent).set_shape(output_shape).malloc_element();
DL_LOG_NN_LATENCY_END("apply");
DL_LOG_NN_LATENCY_START();
pad(output, input, _paddings, _constant_values, mode, assign_core);
DL_LOG_NN_LATENCY_END("pad");
return output;
}
} // namespace nn
} // namespace dl

View File

@ -71,7 +71,7 @@ namespace dl
}
/**
* @brief
* @brief copy the element of the input Tensor.
*
* @param input an input Tensor
* @param deep one of true or false
@ -258,6 +258,56 @@ namespace dl
return this->element[index];
}
/**
* @brief Set the all the element to value.
*
* @param value target value
* @return Tensor<T>& self
*/
Tensor<T> &set_value(T value);
/**
* @brief Set the the element to value
*
* @param value target value, it will be broadcast automatically.
* @return Tensor<T>& self
*/
Tensor<T> &set_value(Tensor<T> &value);
/**
* @brief Set the sliced element to value
*
* @param axis_index_range range of slices
* @param value target value
* @return Tensor<T>& self
*/
Tensor<T> &set_value(std::vector<int> axis_index_range, T value);
/**
* @brief Set the sliced element to value
*
* @param axis_index_range range of slices
* @param value target value, it will be broadcast automatically.
* @return Tensor<T>& self
*/
Tensor<T> &set_value(std::vector<int> axis_index_range, Tensor<T> &value);
/**
* @brief Extracts a slice from the Tensor.
*
* @param axis_index_range range of slices
* @return Tensor<T> output
*/
Tensor<T> slice(std::vector<int> axis_index_range);
/**
* @brief Reverses specific dims of the tensor.
*
* @param axis The dims to be reversed
* @return Tensor<T>&
*/
Tensor<T> &reverse(std::vector<int> axis);
/**
* @brief Get the size of Tensor.
*
@ -491,5 +541,16 @@ namespace dl
return *this;
}
}
static Tensor<T> arange(int size)
{
Tensor<T> output;
output.set_auto_free(true).set_exponent(0).set_shape({size}).malloc_element();
for (int i = 0; i < size; ++i)
{
output.element[i] = i;
}
return output;
}
};
} // namespace dl

View File

@ -85,6 +85,13 @@ uint8_t phy_dig_reg_backup(bool backup_en, uint32_t *mem_addr);
void phy_freq_mem_backup(bool backup_en, uint32_t *mem);
#endif
#if CONFIG_ESP_PHY_ENABLE_USB
/**
* @brief Enable or disable USB when phy init.
*/
void phy_bbpll_en_usb(bool en);
#endif
#ifdef __cplusplus
}
#endif

View File

@ -4,8 +4,7 @@
* SPDX-License-Identifier: Apache-2.0
*/
// Allow for this warning suppression only in IDF_CI_BUILD
#if !defined(ESP_OPENSSL_SUPPRESS_LEGACY_WARNING) || !defined(IDF_CI_BUILD)
#if !defined(ESP_OPENSSL_SUPPRESS_LEGACY_WARNING)
#warning "OpenSSL component will be removed from ESP-IDF in v5.0, please use esp_tls instead"
#endif