Update IDF to a8916daeb (#2992)

This commit is contained in:
Me No Dev
2019-07-17 10:09:43 +03:00
committed by GitHub
parent 3376ea1bd5
commit 9e32cec9a2
100 changed files with 797 additions and 239 deletions

View File

@ -1,20 +1,19 @@
#pragma once
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
typedef float fptp_t;
typedef uint8_t uc_t;
typedef enum
{
DL_C_IMPL = 0,
DL_XTENSA_IMPL = 1
} dl_conv_mode;
typedef enum
{
INPUT_UINT8 = 0,
INPUT_FLOAT = 1,
} dl_op_type;
DL_SUCCESS = 0,
DL_FAIL = 1,
} dl_error_type;
typedef enum
{
@ -53,9 +52,7 @@ typedef struct
int stride_x;
int stride_y;
dl_padding_type padding;
dl_conv_mode mode;
dl_op_type type;
} dl_matrix3d_conv_config_t;
} dl_matrix3d_mobilenet_config_t;
/*
* @brief Allocate a 3D matrix with float items, the access sequence is NHWC
@ -93,7 +90,6 @@ void dl_matrix3d_free(dl_matrix3d_t *m);
*/
void dl_matrix3du_free(dl_matrix3du_t *m);
/*
* @brief Dot product with a vector and matrix
*
@ -101,24 +97,7 @@ void dl_matrix3du_free(dl_matrix3du_t *m);
* @param in input vector
* @param f filter matrix
*/
void dl_matrix3d_dot_product(dl_matrix3d_t *out, dl_matrix3d_t *in, dl_matrix3d_t *f);
/**
* @brief Do a relu (Rectifier Linear Unit) operation, update the input matrix3d
*
* @param in Floating point input matrix3d
* @param clip If value is higher than this, it will be clipped to this value
*/
void dl_matrix3d_relu(dl_matrix3d_t *m, fptp_t clip);
/**
* @brief Do a leaky relu (Rectifier Linear Unit) operation, update the input matrix3d
*
* @param in Floating point input matrix3d
* @param clip If value is higher than this, it will be clipped to this value
* @param alpha If value is less than zero, it will be updated by multiplying this factor
*/
void dl_matrix3d_leaky_relu(dl_matrix3d_t *m, fptp_t clip, fptp_t alpha);
void dl_matrix3dff_dot_product(dl_matrix3d_t *out, dl_matrix3d_t *in, dl_matrix3d_t *f);
/**
* @brief Do a softmax operation on a matrix3d
@ -127,18 +106,6 @@ void dl_matrix3d_leaky_relu(dl_matrix3d_t *m, fptp_t clip, fptp_t alpha);
*/
void dl_matrix3d_softmax(dl_matrix3d_t *m);
/**
* @brief Do a general fully connected layer pass, dimension is (number, width, height, channel)
*
* @param in Input matrix3d, size is (1, w, 1, 1)
* @param filter Weights of the neurons, size is (1, w, h, 1)
* @param bias Bias for the fc layer, size is (1, 1, 1, h)
* @return The result of fc layer, size is (1, 1, 1, h)
*/
dl_matrix3d_t *dl_matrix3d_fc(dl_matrix3d_t *in,
dl_matrix3d_t *filter,
dl_matrix3d_t *bias);
/**
* @brief Copy a range of float items from an existing matrix to a preallocated matrix
*
@ -173,9 +140,6 @@ void dl_matrix3du_slice_copy(dl_matrix3du_t *dst,
int w,
int h);
void dl_matrix3d_conv_1x1 (dl_matrix3d_t *out, dl_matrix3d_t *in, dl_matrix3d_t *f);
/**
* @brief Do a general CNN layer pass, dimension is (number, width, height, channel)
*
@ -197,11 +161,6 @@ dl_matrix3d_t *dl_matrix3d_conv(dl_matrix3d_t *in,
int padding,
int mode);
void dl_matrix3d_conv_3x3_normal (dl_matrix3d_t *out,
dl_matrix3d_t *in,
dl_matrix3d_t *f,
int step_x,
int step_y);
/**
* @brief Do a general CNN layer pass, dimension is (number, width, height, channel)
*
@ -215,57 +174,6 @@ void dl_matrix3d_conv_3x3_normal (dl_matrix3d_t *out,
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
* @return The result of CNN layer
*/
dl_matrix3d_t *dl_matrix3du_conv(dl_matrix3du_t *in,
dl_matrix3d_t *filter,
dl_matrix3d_t *bias,
int stride_x,
int stride_y,
int padding,
int mode);
/**
* @brief Do a depthwise CNN layer pass, dimension is (number, width, height, channel)
*
* @param in Input matrix3d
* @param filter Weights of the neurons
* @param stride_x The step length of the convolution window in x(width) direction
* @param stride_y The step length of the convolution window in y(height) direction
* @param padding One of VALID or SAME
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
* @return The result of depthwise CNN layer
*/
dl_matrix3d_t *dl_matrix3d_depthwise_conv(dl_matrix3d_t *in,
dl_matrix3d_t *filter,
int stride_x,
int stride_y,
int padding,
int mode);
void dl_matrix3d_depthwise_conv_3x3_normal(dl_matrix3d_t *out,
dl_matrix3d_t *in,
dl_matrix3d_t *f,
int step_x,
int step_y);
/**
* @brief Do a mobilenet block forward, dimension is (number, width, height, channel)
*
* @param in Input matrix3d
* @param filter Weights of the neurons
* @param stride_x The step length of the convolution window in x(width) direction
* @param stride_y The step length of the convolution window in y(height) direction
* @param padding One of VALID or SAME
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
* @return The result of depthwise CNN layer
*/
dl_matrix3d_t *dl_matrix3d_mobilenet(void *in,
dl_matrix3d_t *dilate,
dl_matrix3d_t *depthwise,
dl_matrix3d_t *compress,
dl_matrix3d_t *bias,
dl_matrix3d_t *prelu,
dl_matrix3d_conv_config_t *config);
/**
* @brief Do a global average pooling layer pass, dimension is (number, width, height, channel)
@ -297,13 +205,6 @@ void dl_matrix3d_batch_normalize(dl_matrix3d_t *m,
*/
dl_matrix3d_t *dl_matrix3d_add(dl_matrix3d_t *in_1, dl_matrix3d_t *in_2);
/**
* @brief Do a standard relu operation, update the input matrix3d
*
* @param m Floating point input matrix3d
*/
void dl_matrix3d_relu_std(dl_matrix3d_t *m);
/**
* @brief Concatenate the channels of two matrix3ds into a new matrix3d
*
@ -372,7 +273,7 @@ dl_matrix3d_t *dl_matrix3d_concat_8(dl_matrix3d_t *in_1,
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
* @return The result of a mobilefacenet block
*/
dl_matrix3d_t *dl_matrix3d_mobilefaceblock(void *in,
dl_matrix3d_t *dl_matrix3d_mobilefaceblock(dl_matrix3d_t *in,
dl_matrix3d_t *pw,
dl_matrix3d_t *pw_bn_scale,
dl_matrix3d_t *pw_bn_offset,
@ -410,7 +311,7 @@ dl_matrix3d_t *dl_matrix3d_mobilefaceblock(void *in,
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
* @return The result of a mobilefacenet block
*/
dl_matrix3d_t *dl_matrix3d_mobilefaceblock_split(void *in,
dl_matrix3d_t *dl_matrix3d_mobilefaceblock_split(dl_matrix3d_t *in,
dl_matrix3d_t *pw_1,
dl_matrix3d_t *pw_2,
dl_matrix3d_t *pw_bn_scale,
@ -427,23 +328,200 @@ dl_matrix3d_t *dl_matrix3d_mobilefaceblock_split(void *in,
int padding,
int mode,
int shortcut);
/**
* @brief Print the matrix3d items
*
* @param m dl_matrix3d_t to be printed
* @param message name of matrix
*/
void dl_matrix3d_print(dl_matrix3d_t *m, char *message);
/**
* @brief Print the matrix3du items
*
* @param m dl_matrix3du_t to be printed
* @param message name of matrix
*/
void dl_matrix3du_print(dl_matrix3du_t *m, char *message);
void dl_matrix3d_init_bias (dl_matrix3d_t *out, dl_matrix3d_t *bias);
void dl_matrix3d_init_bias(dl_matrix3d_t *out, dl_matrix3d_t *bias);
void dl_matrix3d_multiply(dl_matrix3d_t *out, dl_matrix3d_t *in1, dl_matrix3d_t *in2);
//
// Activation
//
/**
* @brief Do a standard relu operation, update the input matrix3d
*
* @param m Floating point input matrix3d
*/
void dl_matrix3d_relu(dl_matrix3d_t *m);
/**
* @brief Do a relu (Rectifier Linear Unit) operation, update the input matrix3d
*
* @param in Floating point input matrix3d
* @param clip If value is higher than this, it will be clipped to this value
*/
void dl_matrix3d_relu_clip(dl_matrix3d_t *m, fptp_t clip);
/**
* @brief Do a Prelu (Rectifier Linear Unit) operation, update the input matrix3d
*
* @param in Floating point input matrix3d
* @param alpha If value is less than zero, it will be updated by multiplying this factor
*/
void dl_matrix3d_p_relu(dl_matrix3d_t *in, dl_matrix3d_t *alpha);
/**
* @brief Do a leaky relu (Rectifier Linear Unit) operation, update the input matrix3d
*
* @param in Floating point input matrix3d
* @param alpha If value is less than zero, it will be updated by multiplying this factor
*/
void dl_matrix3d_leaky_relu(dl_matrix3d_t *m, fptp_t alpha);
//
// Conv 1x1
//
void dl_matrix3dff_conv_1x1(dl_matrix3d_t *out,
dl_matrix3d_t *in,
dl_matrix3d_t *filter);
void dl_matrix3dff_conv_1x1_with_bias(dl_matrix3d_t *out,
dl_matrix3d_t *in,
dl_matrix3d_t *filter,
dl_matrix3d_t *bias);
void dl_matrix3duf_conv_1x1(dl_matrix3d_t *out,
dl_matrix3du_t *in,
dl_matrix3d_t *filter);
void dl_matrix3duf_conv_1x1_with_bias(dl_matrix3d_t *out,
dl_matrix3du_t *in,
dl_matrix3d_t *filter,
dl_matrix3d_t *bias);
//
// Conv 3x3
//
void dl_matrix3dff_conv_3x3_op(dl_matrix3d_t *out,
dl_matrix3d_t *in,
dl_matrix3d_t *f,
int step_x,
int step_y);
dl_matrix3d_t *dl_matrix3dff_conv_3x3(dl_matrix3d_t *in,
dl_matrix3d_t *filter,
dl_matrix3d_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding);
//
// Conv Common
//
dl_matrix3d_t *dl_matrix3duf_conv_common(dl_matrix3du_t *in,
dl_matrix3d_t *filter,
dl_matrix3d_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding);
//
// Depthwise 3x3
//
dl_matrix3d_t *dl_matrix3dff_depthwise_conv_3x3(dl_matrix3d_t *in,
dl_matrix3d_t *filter,
int stride_x,
int stride_y,
int padding);
dl_matrix3d_t *dl_matrix3duf_depthwise_conv_3x3(dl_matrix3du_t *in,
dl_matrix3d_t *filter,
int stride_x,
int stride_y,
int padding);
void dl_matrix3dff_depthwise_conv_3x3_op(dl_matrix3d_t *out,
dl_matrix3d_t *in,
dl_matrix3d_t *f,
int step_x,
int step_y);
//
// Depthwise Common
//
/**
* @brief Do a depthwise CNN layer pass, dimension is (number, width, height, channel)
*
* @param in Input matrix3d
* @param filter Weights of the neurons
* @param stride_x The step length of the convolution window in x(width) direction
* @param stride_y The step length of the convolution window in y(height) direction
* @param padding One of VALID or SAME
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
* @return The result of depthwise CNN layer
*/
dl_matrix3d_t *dl_matrix3dff_depthwise_conv_common(dl_matrix3d_t *in,
dl_matrix3d_t *filter,
int stride_x,
int stride_y,
dl_padding_type padding);
//
// FC
//
/**
* @brief Do a general fully connected layer pass, dimension is (number, width, height, channel)
*
* @param in Input matrix3d, size is (1, w, 1, 1)
* @param filter Weights of the neurons, size is (1, w, h, 1)
* @param bias Bias for the fc layer, size is (1, 1, 1, h)
* @return The result of fc layer, size is (1, 1, 1, h)
*/
void dl_matrix3dff_fc(dl_matrix3d_t *out,
dl_matrix3d_t *in,
dl_matrix3d_t *filter);
void dl_matrix3dff_fc_with_bias(dl_matrix3d_t *out,
dl_matrix3d_t *in,
dl_matrix3d_t *filter,
dl_matrix3d_t *bias);
//
// Mobilenet
//
/**
* @brief Do a mobilenet block forward, dimension is (number, width, height, channel)
*
* @param in Input matrix3d
* @param filter Weights of the neurons
* @param stride_x The step length of the convolution window in x(width) direction
* @param stride_y The step length of the convolution window in y(height) direction
* @param padding One of VALID or SAME
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
* @return The result of depthwise CNN layer
*/
dl_matrix3d_t *dl_matrix3dff_mobilenet(dl_matrix3d_t *in,
dl_matrix3d_t *dilate_filter,
dl_matrix3d_t *dilate_prelu,
dl_matrix3d_t *depthwise_filter,
dl_matrix3d_t *depthwise_prelu,
dl_matrix3d_t *compress_filter,
dl_matrix3d_t *bias,
dl_matrix3d_mobilenet_config_t config);
/**
* @brief Do a mobilenet block forward, dimension is (number, width, height, channel)
*
* @param in Input matrix3du
* @param filter Weights of the neurons
* @param stride_x The step length of the convolution window in x(width) direction
* @param stride_y The step length of the convolution window in y(height) direction
* @param padding One of VALID or SAME
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
* @return The result of depthwise CNN layer
*/
dl_matrix3d_t *dl_matrix3duf_mobilenet(dl_matrix3du_t *in,
dl_matrix3d_t *dilate_filter,
dl_matrix3d_t *dilate_prelu,
dl_matrix3d_t *depthwise_filter,
dl_matrix3d_t *depthwise_prelu,
dl_matrix3d_t *compress_filter,
dl_matrix3d_t *bias,
dl_matrix3d_mobilenet_config_t config);