Changes needed to compile again with new idf

This commit is contained in:
2022-03-17 14:45:21 +01:00
parent 0bfbfd527d
commit a1fa8dc1eb

View File

@ -26,6 +26,9 @@
#include "hal/rmt_ll.h" #include "hal/rmt_ll.h"
#include "driver/rmt.h" #include "driver/rmt.h"
// RMTMEM address is declared in <target>.peripherals.ld
extern rmt_mem_t RMTMEM;
/** /**
* Internal macros * Internal macros
*/ */
@ -293,11 +296,7 @@ bool rmtWrite(rmt_obj_t* rmt, rmt_data_t* data, size_t size)
RMT.conf_ch[channel].conf1.mem_wr_rst = 0; RMT.conf_ch[channel].conf1.mem_wr_rst = 0;
// set the tx end mark // set the tx end mark
RMTMEM.chan[channel].data32[MAX_DATA_PER_ITTERATION] RMTMEM.chan[channel].data32[MAX_DATA_PER_ITTERATION].val = 0;
#ifdef OLD_IDF
.val
#endif
= 0;
// clear and enable both Tx completed and half tx event // clear and enable both Tx completed and half tx event
RMT.int_clr.val = _INT_TX_END(channel); RMT.int_clr.val = _INT_TX_END(channel);
@ -619,11 +618,7 @@ bool _rmtSendOnce(rmt_obj_t* rmt, rmt_data_t* data, size_t size, bool continuous
*rmt_mem_ptr++ = data[i].val; *rmt_mem_ptr++ = data[i].val;
} }
// tx end mark // tx end mark
RMTMEM.chan[channel].data32[size] RMTMEM.chan[channel].data32[size].val = 0;
#ifdef OLD_IDF
.val
#endif
= 0;
} }
RMT_MUTEX_LOCK(channel); RMT_MUTEX_LOCK(channel);
@ -696,11 +691,7 @@ static void ARDUINO_ISR_ATTR _rmt_isr(void* arg)
} }
uint32_t *data_received = data; uint32_t *data_received = data;
for (i = 0; i < g_rmt_objects[ch].data_size; i++ ) { for (i = 0; i < g_rmt_objects[ch].data_size; i++ ) {
*data++ = RMTMEM.chan[ch].data32[i] *data++ = RMTMEM.chan[ch].data32[i].val;
#ifdef OLD_IDF
.val
#endif
;
} }
if (g_rmt_objects[ch].cb) { if (g_rmt_objects[ch].cb) {
// actually received data ptr // actually received data ptr
@ -779,28 +770,16 @@ static void ARDUINO_ISR_ATTR _rmt_tx_mem_second(uint8_t ch)
// will the remaining data occupy the entire halfbuffer // will the remaining data occupy the entire halfbuffer
if (remaining_size > half_tx_nr) { if (remaining_size > half_tx_nr) {
for (i = 0; i < half_tx_nr; i++) { for (i = 0; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[half_tx_nr+i] RMTMEM.chan[ch].data32[half_tx_nr+i].val = data[i];
#ifdef OLD_IDF
.val
#endif
= data[i];
} }
g_rmt_objects[ch].data_size -= half_tx_nr; g_rmt_objects[ch].data_size -= half_tx_nr;
g_rmt_objects[ch].data_ptr += half_tx_nr; g_rmt_objects[ch].data_ptr += half_tx_nr;
} else { } else {
for (i = 0; i < half_tx_nr; i++) { for (i = 0; i < half_tx_nr; i++) {
if (i < remaining_size) { if (i < remaining_size) {
RMTMEM.chan[ch].data32[half_tx_nr+i] RMTMEM.chan[ch].data32[half_tx_nr+i].val = data[i];
#ifdef OLD_IDF
.val
#endif
= data[i];
} else { } else {
RMTMEM.chan[ch].data32[half_tx_nr+i] RMTMEM.chan[ch].data32[half_tx_nr+i].val = 0x000F000F;
#ifdef OLD_IDF
.val
#endif
= 0x000F000F;
} }
} }
g_rmt_objects[ch].data_ptr = NULL; g_rmt_objects[ch].data_ptr = NULL;
@ -809,17 +788,9 @@ static void ARDUINO_ISR_ATTR _rmt_tx_mem_second(uint8_t ch)
} else if ((!(g_rmt_objects[ch].tx_state & E_LAST_DATA)) && } else if ((!(g_rmt_objects[ch].tx_state & E_LAST_DATA)) &&
(!(g_rmt_objects[ch].tx_state & E_END_TRANS))) { (!(g_rmt_objects[ch].tx_state & E_END_TRANS))) {
for (i = 0; i < half_tx_nr; i++) { for (i = 0; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[half_tx_nr+i] RMTMEM.chan[ch].data32[half_tx_nr+i].val = 0x000F000F;
#ifdef OLD_IDF
.val
#endif
= 0x000F000F;
} }
RMTMEM.chan[ch].data32[half_tx_nr+i] RMTMEM.chan[ch].data32[half_tx_nr+i].val = 0;
#ifdef OLD_IDF
.val
#endif
= 0;
g_rmt_objects[ch].tx_state |= E_LAST_DATA; g_rmt_objects[ch].tx_state |= E_LAST_DATA;
RMT.conf_ch[ch].conf1.tx_conti_mode = 0; RMT.conf_ch[ch].conf1.tx_conti_mode = 0;
} else { } else {
@ -847,17 +818,9 @@ static void ARDUINO_ISR_ATTR _rmt_tx_mem_first(uint8_t ch)
// will the remaining data occupy the entire halfbuffer // will the remaining data occupy the entire halfbuffer
if (remaining_size > half_tx_nr) { if (remaining_size > half_tx_nr) {
RMTMEM.chan[ch].data32[0] RMTMEM.chan[ch].data32[0].val = data[0] - 1;
#ifdef OLD_IDF
.val
#endif
= data[0] - 1;
for (i = 1; i < half_tx_nr; i++) { for (i = 1; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[i] RMTMEM.chan[ch].data32[i].val = data[i];
#ifdef OLD_IDF
.val
#endif
= data[i];
} }
g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF; g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF;
// turn off the treshold interrupt // turn off the treshold interrupt
@ -866,24 +829,12 @@ static void ARDUINO_ISR_ATTR _rmt_tx_mem_first(uint8_t ch)
g_rmt_objects[ch].data_size -= half_tx_nr; g_rmt_objects[ch].data_size -= half_tx_nr;
g_rmt_objects[ch].data_ptr += half_tx_nr; g_rmt_objects[ch].data_ptr += half_tx_nr;
} else { } else {
RMTMEM.chan[ch].data32[0] RMTMEM.chan[ch].data32[0].val = data[0] - 1;
#ifdef OLD_IDF
.val
#endif
= data[0] - 1;
for (i = 1; i < half_tx_nr; i++) { for (i = 1; i < half_tx_nr; i++) {
if (i < remaining_size) { if (i < remaining_size) {
RMTMEM.chan[ch].data32[i] RMTMEM.chan[ch].data32[i].val = data[i];
#ifdef OLD_IDF
.val
#endif
= data[i];
} else { } else {
RMTMEM.chan[ch].data32[i] RMTMEM.chan[ch].data32[i].val = 0x000F000F;
#ifdef OLD_IDF
.val
#endif
= 0x000F000F;
} }
} }
@ -892,17 +843,9 @@ static void ARDUINO_ISR_ATTR _rmt_tx_mem_first(uint8_t ch)
} }
} else { } else {
for (i = 0; i < half_tx_nr; i++) { for (i = 0; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[i] RMTMEM.chan[ch].data32[i].val = 0x000F000F;
#ifdef OLD_IDF
.val
#endif
= 0x000F000F;
} }
RMTMEM.chan[ch].data32[i] RMTMEM.chan[ch].data32[i].val = 0;
#ifdef OLD_IDF
.val
#endif
= 0;
g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF; g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF;
RMT.tx_lim_ch[ch].limit = 0; RMT.tx_lim_ch[ch].limit = 0;