/* * This file is part of the hoverboard-firmware-hack project. * * Copyright (C) 2017-2018 Rene Hopf * Copyright (C) 2017-2018 Nico Stute * Copyright (C) 2017-2018 Niklas Fauth * Copyright (C) 2019-2020 Emanuel FERU * Copyright (C) 2019-2020 Daniel Brunner * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include "stm32f1xx_hal.h" #include "defines.h" #include "config.h" #include "bobbycar-common.h" #if FEATURE_SERIAL_CONTROL || FEATURE_SERIAL_FEEDBACK #include "bobbycar-serial.h" #endif #ifdef FEATURE_CAN #include "bobbycar-can.h" #endif extern "C" { #include "BLDC_controller.h" extern const P rtP_Left; // default settings defined in BLDC_controller_data.c } namespace bobbycar { namespace controller { namespace { const P &defaultP{rtP_Left}; TIM_HandleTypeDef htim_right; TIM_HandleTypeDef htim_left; ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; #ifdef HUART2 UART_HandleTypeDef huart2; #endif #ifdef HUART3 UART_HandleTypeDef huart3; #endif #ifdef HUART2 DMA_HandleTypeDef hdma_usart2_rx; DMA_HandleTypeDef hdma_usart2_tx; #endif #ifdef HUART3 DMA_HandleTypeDef hdma_usart3_rx; DMA_HandleTypeDef hdma_usart3_tx; #endif volatile struct { uint16_t dcr; uint16_t dcl; uint16_t rl1; uint16_t rl2; uint16_t rr1; uint16_t rr2; uint16_t batt1; uint16_t l_tx2; uint16_t temp; uint16_t l_rx2; } adc_buffer; #ifdef FEATURE_CAN CAN_HandleTypeDef CanHandle; /* Definition for CANx clock resources */ #define CANx CAN1 #define CANx_CLK_ENABLE() __HAL_RCC_CAN1_CLK_ENABLE() #define CANx_GPIO_CLK_ENABLE() __HAL_RCC_GPIOB_CLK_ENABLE() #define CANx_FORCE_RESET() __HAL_RCC_CAN1_FORCE_RESET() #define CANx_RELEASE_RESET() __HAL_RCC_CAN1_RELEASE_RESET() /* Definition for CANx Pins */ #define CANx_TX_PIN GPIO_PIN_9 #define CANx_TX_GPIO_PORT GPIOB #define CANx_RX_PIN GPIO_PIN_8 #define CANx_RX_GPIO_PORT GPIOB /* Definition for CANx AFIO Remap */ #define CANx_AFIO_REMAP_CLK_ENABLE() __HAL_RCC_AFIO_CLK_ENABLE() #define CANx_AFIO_REMAP_RX_TX_PIN() __HAL_AFIO_REMAP_CAN1_2() /* Definition for CAN's NVIC */ #define CANx_RX_IRQn USB_LP_CAN1_RX0_IRQn #define CANx_RX_IRQHandler USB_LP_CAN1_RX0_IRQHandler #define CANx_TX_IRQn USB_HP_CAN1_TX_IRQn #define CANx_TX_IRQHandler USB_HP_CAN1_TX_IRQHandler constexpr bool doDelayWithCanPoll = false; #endif #ifdef LOG_TO_SERIAL char logBuffer[512]; #endif constexpr bool isBackBoard = #ifdef IS_BACK true #else false #endif ; template void myPrintf(const char (&format)[formatLength], Targs ... args) { #ifdef LOG_TO_SERIAL #ifdef HUART2 #define UART_DMA_CHANNEL DMA1_Channel7 #endif #ifdef HUART3 #define UART_DMA_CHANNEL DMA1_Channel2 #endif while (UART_DMA_CHANNEL->CNDTR != 0); char processedFormat[formatLength+2]; std::copy(std::begin(format), std::end(format), std::begin(processedFormat)); processedFormat[formatLength-1] = '\r'; processedFormat[formatLength] = '\n'; processedFormat[formatLength+1] = '\0'; const auto size = std::snprintf(logBuffer, sizeof(logBuffer), processedFormat, args ...); if (size < 0) return; UART_DMA_CHANNEL->CCR &= ~DMA_CCR_EN; UART_DMA_CHANNEL->CNDTR = size; UART_DMA_CHANNEL->CMAR = uint64_t(logBuffer); UART_DMA_CHANNEL->CCR |= DMA_CCR_EN; #endif } // ############################################################################### std::atomic timeout; #ifdef MOTOR_TEST int pwm = 0; int8_t dir = 1; #endif #ifdef FEATURE_SERIAL_CONTROL int16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command protocol::serial::Command command; protocol::serial::Feedback feedback; #endif #ifdef FEATURE_CAN std::atomic timeoutCntLeft = 0; std::atomic timeoutCntRight = 0; #endif uint32_t main_loop_counter; int16_t batVoltage = (400 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE; int16_t board_temp_deg_c; struct { RT_MODEL rtM; /* Real-time model */ P rtP; /* Block parameters (auto storage) */ DW rtDW; /* Observable states */ ExtU rtU; /* External inputs */ ExtY rtY; /* External outputs */ std::atomic enable{true}; std::atomic iDcMax{7}; std::atomic chops{}; uint8_t hallBits() const { return (rtU.b_hallA ? 0 : 1) | (rtU.b_hallB ? 0 : 2) | (rtU.b_hallC ? 0 : 4); } } left, right; struct { uint8_t freq = 0; uint8_t pattern = 0; uint32_t timer = 0; } buzzer; void SystemClock_Config(); #ifdef HUART2 void UART2_Init(); #endif #ifdef HUART3 void UART3_Init(); #endif #ifdef FEATURE_CAN void CAN_Init(); #endif void MX_GPIO_Init(); void MX_TIM_Init(); void MX_ADC1_Init(); void MX_ADC2_Init(); #ifdef FEATURE_BUTTON void poweroff(); #endif #ifdef MOTOR_TEST void doMotorTest(); #endif #ifdef FEATURE_SERIAL_CONTROL void parseCommand(); #endif #ifdef FEATURE_SERIAL_FEEDBACK void sendFeedback(); #endif #ifdef FEATURE_CAN void parseCanCommand(); void applyIncomingCanMessage(); void sendCanFeedback(); #endif #ifdef FEATURE_BUTTON void handleButton(); #endif void updateSensors(); void applyDefaultSettings(); } // namespace } // namespace controller } // namespace bobbycar int main() { using namespace bobbycar::controller; HAL_Init(); __HAL_RCC_AFIO_CLK_ENABLE(); HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); /* System interrupt init*/ /* MemoryManagement_IRQn interrupt configuration */ HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0); /* BusFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0); /* UsageFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0); /* SVCall_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0); /* DebugMonitor_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0); /* PendSV_IRQn interrupt configuration */ HAL_NVIC_SetPriority(PendSV_IRQn, 0, 0); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); SystemClock_Config(); __HAL_RCC_DMA1_CLK_DISABLE(); MX_GPIO_Init(); MX_TIM_Init(); MX_ADC1_Init(); MX_ADC2_Init(); HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_SET); HAL_ADC_Start(&hadc1); HAL_ADC_Start(&hadc2); { constexpr auto doit = [](auto &motor){ motor.rtP = defaultP; motor.rtP.b_angleMeasEna = false; motor.rtP.b_diagEna = DIAG_ENA; motor.rtP.b_fieldWeakEna = FIELD_WEAK_ENA; motor.rtP.r_fieldWeakHi = FIELD_WEAK_HI << 4; motor.rtP.r_fieldWeakLo = FIELD_WEAK_LO << 4; motor.rtM.defaultParam = &motor.rtP; motor.rtM.dwork = &motor.rtDW; motor.rtM.inputs = &motor.rtU; motor.rtM.outputs = &motor.rtY; }; doit(left); doit(right); enum { CurrentMeasAB, CurrentMeasBC, CurrentMeasAC }; #ifndef FEATURE_BETTER_FOC_CONFIG #ifdef PETERS_PLATINE left.rtP.z_selPhaCurMeasABC = CurrentMeasBC; #else left.rtP.z_selPhaCurMeasABC = CurrentMeasAB; #endif right.rtP.z_selPhaCurMeasABC = CurrentMeasBC; #else #ifdef LEFT_PHASE_MEAS_AB left.rtP.z_selPhaCurMeasABC = CurrentMeasAB; #elif LEFT_PHASE_MEAS_BC left.rtP.z_selPhaCurMeasABC = CurrentMeasBC; #else left.rtP.z_selPhaCurMeasABC = CurrentMeasAC; #endif #ifdef RIGHT_PHASE_MEAS_AB right.rtP.z_selPhaCurMeasABC = CurrentMeasAB; #elif RIGHT_PHASE_MEAS_BC right.rtP.z_selPhaCurMeasABC = CurrentMeasBC; #else right.rtP.z_selPhaCurMeasABC = CurrentMeasAC; #endif #endif } applyDefaultSettings(); /* Initialize BLDC controllers */ BLDC_controller_initialize(&left.rtM); BLDC_controller_initialize(&right.rtM); for (int i = 8; i >= 0; i--) { buzzer.freq = (uint8_t)i; HAL_Delay(50); } buzzer.freq = 0; #ifdef HUART2 UART2_Init(); #endif #ifdef HUART3 UART3_Init(); #endif #ifdef FEATURE_CAN CAN_Init(); #endif #ifdef FEATURE_SERIAL_CONTROL #ifdef HUART2 HAL_UART_Receive_DMA(&huart2, (uint8_t *)&command, sizeof(command)); #endif #ifdef HUART3 HAL_UART_Receive_DMA(&huart3, (uint8_t *)&command, sizeof(command)); #endif #endif while (true) { #ifdef FEATURE_CAN if constexpr (doDelayWithCanPoll) { constexpr auto DELAY_WITH_CAN_POLL = [](uint32_t Delay){ uint32_t tickstart = HAL_GetTick(); uint32_t wait = Delay; /* Add a freq to guarantee minimum wait */ if (wait < HAL_MAX_DELAY) { wait += (uint32_t)(uwTickFreq); } while ((HAL_GetTick() - tickstart) < wait) { applyIncomingCanMessage(); } }; DELAY_WITH_CAN_POLL(5); //delay in ms } else #endif HAL_Delay(5); //delay in ms updateSensors(); #ifdef MOTOR_TEST doMotorTest(); #endif #ifdef FEATURE_SERIAL_CONTROL parseCommand(); #endif #ifdef FEATURE_SERIAL_FEEDBACK sendFeedback(); #endif #ifdef FEATURE_CAN parseCanCommand(); sendCanFeedback(); #endif #ifdef FEATURE_BUTTON handleButton(); #endif main_loop_counter++; } } namespace bobbycar { namespace controller { namespace { void updateBuzzer() { buzzer.timer++; if (buzzer.freq != 0 && (buzzer.timer / 1000) % (buzzer.pattern + 1) == 0) { if (buzzer.timer % buzzer.freq == 0) { HAL_GPIO_TogglePin(BUZZER_PORT, BUZZER_PIN); } } else { HAL_GPIO_WritePin(BUZZER_PORT, BUZZER_PIN, GPIO_PIN_RESET); } } void updateMotors() { DMA1->IFCR = DMA_IFCR_CTCIF1; static uint16_t offsetcount{}; static int16_t offsetrl1{2000}; static int16_t offsetrl2{2000}; static int16_t offsetrr1{2000}; static int16_t offsetrr2{2000}; static int16_t offsetdcl{2000}; static int16_t offsetdcr{2000}; if (offsetcount < 2000) // calibrate ADC offsets { offsetcount++; offsetrl1 = (adc_buffer.rl1 + offsetrl1) / 2; offsetrl2 = (adc_buffer.rl2 + offsetrl2) / 2; offsetrr1 = (adc_buffer.rr1 + offsetrr1) / 2; offsetrr2 = (adc_buffer.rr2 + offsetrr2) / 2; offsetdcl = (adc_buffer.dcl + offsetdcl) / 2; offsetdcr = (adc_buffer.dcr + offsetdcr) / 2; return; } // Get Left motor currents #ifdef PETERS_PLATINE int16_t curL_phaB = (int16_t)(offsetrl1 - adc_buffer.rl1)*2; int16_t curL_phaA = (int16_t)(offsetrl2 - adc_buffer.rl2)*2; #else int16_t curL_phaA = (int16_t)(offsetrl1 - adc_buffer.rl1); int16_t curL_phaB = (int16_t)(offsetrl2 - adc_buffer.rl2); #endif int16_t curL_DC = (int16_t)(offsetdcl - adc_buffer.dcl); // Get Right motor currents #ifdef PETERS_PLATINE int16_t curR_phaB = (int16_t)(offsetrr1 - adc_buffer.rr1)*2; int16_t curR_phaC = (int16_t)(offsetrr2 - adc_buffer.rr2)*2; #else int16_t curR_phaB = (int16_t)(offsetrr1 - adc_buffer.rr1); int16_t curR_phaC = (int16_t)(offsetrr2 - adc_buffer.rr2); #endif int16_t curR_DC = (int16_t)(offsetdcr - adc_buffer.dcr); const bool chopL = std::abs(curL_DC) > (left.iDcMax.load() * AMPERE2BIT_CONV); if (chopL) left.chops++; const bool chopR = std::abs(curR_DC) > (right.iDcMax.load() * AMPERE2BIT_CONV); if (chopR) right.chops++; const uint32_t timeoutVal = ++timeout; const bool leftEnable = left.enable.load(); const bool rightEnable = right.enable.load(); // Disable PWM when current limit is reached (current chopping) // This is the Level 2 of current protection. The Level 1 should kick in first given by I_MOT_MAX if (chopL || timeoutVal > 500 || !leftEnable) LEFT_TIM->BDTR &= ~TIM_BDTR_MOE; else LEFT_TIM->BDTR |= TIM_BDTR_MOE; if (chopR || timeoutVal > 500 || !rightEnable) RIGHT_TIM->BDTR &= ~TIM_BDTR_MOE; else RIGHT_TIM->BDTR |= TIM_BDTR_MOE; // ############################### MOTOR CONTROL ############################### static boolean_T OverrunFlag = false; /* Check for overrun */ if (OverrunFlag) return; OverrunFlag = true; constexpr int32_t pwm_res = 64000000 / 2 / PWM_FREQ; // = 2000 constexpr int32_t pwm_margin = 100; /* This margin allows to always have a window in the PWM signal for proper Phase currents measurement */ /* Make sure to stop BOTH motors in case of an error */ constexpr bool ignoreOtherMotor = #ifdef FEATURE_IGNORE_OTHER_MOTOR true #else false #endif ; const bool enableLFin = leftEnable && left.rtY.z_errCode == 0 && (right.rtY.z_errCode == 0 || ignoreOtherMotor); const bool enableRFin = rightEnable && (left.rtY.z_errCode == 0 || ignoreOtherMotor) && right.rtY.z_errCode == 0; // ========================= LEFT MOTOR ============================ // Get hall sensors values #ifdef FEATURE_INVERT_HALL bool hall_ul = (LEFT_HALL_U_PORT->IDR & LEFT_HALL_U_PIN); bool hall_vl = (LEFT_HALL_V_PORT->IDR & LEFT_HALL_V_PIN); bool hall_wl = (LEFT_HALL_W_PORT->IDR & LEFT_HALL_W_PIN); #else bool hall_ul = !(LEFT_HALL_U_PORT->IDR & LEFT_HALL_U_PIN); bool hall_vl = !(LEFT_HALL_V_PORT->IDR & LEFT_HALL_V_PIN); bool hall_wl = !(LEFT_HALL_W_PORT->IDR & LEFT_HALL_W_PIN); #endif /* Set motor inputs here */ left.rtU.b_motEna = enableLFin; left.rtU.b_hallA = hall_ul; left.rtU.b_hallB = hall_vl; left.rtU.b_hallC = hall_wl; left.rtU.i_phaAB = curL_phaA; left.rtU.i_phaBC = curL_phaB; left.rtU.i_DCLink = curL_DC; /* Step the controller */ BLDC_controller_step(&left.rtM); /* Get motor outputs here */ int ul = left.rtY.DC_phaA; int vl = left.rtY.DC_phaB; int wl = left.rtY.DC_phaC; /* Apply commands */ LEFT_TIM->LEFT_TIM_U = (uint16_t)std::clamp(ul + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); LEFT_TIM->LEFT_TIM_V = (uint16_t)std::clamp(vl + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); LEFT_TIM->LEFT_TIM_W = (uint16_t)std::clamp(wl + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); // ================================================================= // ========================= RIGHT MOTOR =========================== // Get hall sensors values #ifdef FEATURE_INVERT_HALL bool hall_ur = (RIGHT_HALL_U_PORT->IDR & RIGHT_HALL_U_PIN); bool hall_vr = (RIGHT_HALL_V_PORT->IDR & RIGHT_HALL_V_PIN); bool hall_wr = (RIGHT_HALL_W_PORT->IDR & RIGHT_HALL_W_PIN); #else bool hall_ur = !(RIGHT_HALL_U_PORT->IDR & RIGHT_HALL_U_PIN); bool hall_vr = !(RIGHT_HALL_V_PORT->IDR & RIGHT_HALL_V_PIN); bool hall_wr = !(RIGHT_HALL_W_PORT->IDR & RIGHT_HALL_W_PIN); #endif /* Set motor inputs here */ right.rtU.b_motEna = enableRFin; right.rtU.b_hallA = hall_ur; right.rtU.b_hallB = hall_vr; right.rtU.b_hallC = hall_wr; right.rtU.i_phaAB = curR_phaB; right.rtU.i_phaBC = curR_phaC; right.rtU.i_DCLink = curR_DC; /* Step the controller */ BLDC_controller_step(&right.rtM); /* Get motor outputs here */ int ur = right.rtY.DC_phaA; int vr = right.rtY.DC_phaB; int wr = right.rtY.DC_phaC; /* Apply commands */ RIGHT_TIM->RIGHT_TIM_U = (uint16_t)std::clamp(ur + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); RIGHT_TIM->RIGHT_TIM_V = (uint16_t)std::clamp(vr + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); RIGHT_TIM->RIGHT_TIM_W = (uint16_t)std::clamp(wr + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); // ================================================================= /* Indicate task complete */ OverrunFlag = false; } // =========================================================== /** System Clock Configuration */ void SystemClock_Config() { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInit; /**Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 16; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; HAL_RCC_OscConfig(&RCC_OscInitStruct); /**Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; // PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8; // 8 MHz PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV4; // 16 MHz HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000); /**Configure the Systick */ HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); } #ifdef HUART2 void UART2_Init() { /* The code below is commented out - otwerwise Serial Receive does not work */ // #ifdef CONTROL_SERIAL_USART2 // /* DMA1_Channel6_IRQn interrupt configuration */ // HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 6); // HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn); // /* DMA1_Channel7_IRQn interrupt configuration */ // HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 7); // HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn); // #endif // Disable serial interrupt - it is not needed HAL_NVIC_DisableIRQ(DMA1_Channel6_IRQn); // Rx Channel HAL_NVIC_DisableIRQ(DMA1_Channel7_IRQn); // Tx Channel __HAL_RCC_DMA1_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_USART2_CLK_ENABLE(); huart2.Instance = USART2; huart2.Init.BaudRate = USART2_BAUD; huart2.Init.WordLength = USART2_WORDLENGTH; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.Mode = UART_MODE_TX_RX; HAL_UART_Init(&huart2); USART2->CR3 |= USART_CR3_DMAT; // | USART_CR3_DMAR | USART_CR3_OVRDIS; GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Pull = GPIO_PULLUP; //GPIO_NOPULL; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; //GPIO_MODE_AF_PP; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* Peripheral DMA init*/ hdma_usart2_rx.Instance = DMA1_Channel6; hdma_usart2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_usart2_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart2_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart2_rx.Init.Mode = DMA_CIRCULAR; //DMA_NORMAL; hdma_usart2_rx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_usart2_rx); __HAL_LINKDMA(&huart2, hdmarx, hdma_usart2_rx); hdma_usart2_tx.Instance = DMA1_Channel7; hdma_usart2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_usart2_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart2_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart2_tx.Init.Mode = DMA_NORMAL; hdma_usart2_tx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_usart2_tx); __HAL_LINKDMA(&huart2, hdmatx, hdma_usart2_tx); DMA1_Channel7->CPAR = uint64_t(&(USART2->DR)); DMA1_Channel7->CNDTR = 0; DMA1->IFCR = DMA_IFCR_CTCIF7 | DMA_IFCR_CHTIF7 | DMA_IFCR_CGIF7; } #endif #ifdef HUART3 void UART3_Init() { /* The code below is commented out - otwerwise Serial Receive does not work */ // #ifdef CONTROL_SERIAL_USART3 // /* DMA1_Channel3_IRQn interrupt configuration */ // HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 5, 3); // HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn); // /* DMA1_Channel2_IRQn interrupt configuration */ // HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 5, 2); // HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn); // #endif // Disable serial interrupt - it is not needed HAL_NVIC_DisableIRQ(DMA1_Channel3_IRQn); // Rx Channel HAL_NVIC_DisableIRQ(DMA1_Channel2_IRQn); // Tx Channel __HAL_RCC_DMA1_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_USART3_CLK_ENABLE(); huart3.Instance = USART3; huart3.Init.BaudRate = USART3_BAUD; huart3.Init.WordLength = USART3_WORDLENGTH; huart3.Init.StopBits = UART_STOPBITS_1; huart3.Init.Parity = UART_PARITY_NONE; huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart3.Init.OverSampling = UART_OVERSAMPLING_16; huart3.Init.Mode = UART_MODE_TX_RX; HAL_UART_Init(&huart3); USART3->CR3 |= USART_CR3_DMAT; // | USART_CR3_DMAR | USART_CR3_OVRDIS; GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Pin = GPIO_PIN_10; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* Peripheral DMA init*/ hdma_usart3_rx.Instance = DMA1_Channel3; hdma_usart3_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_usart3_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart3_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart3_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart3_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart3_rx.Init.Mode = DMA_CIRCULAR; //DMA_NORMAL; hdma_usart3_rx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_usart3_rx); __HAL_LINKDMA(&huart3, hdmarx, hdma_usart3_rx); hdma_usart3_tx.Instance = DMA1_Channel2; hdma_usart3_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_usart3_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart3_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart3_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart3_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart3_tx.Init.Mode = DMA_NORMAL; hdma_usart3_tx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_usart3_tx); __HAL_LINKDMA(&huart3, hdmatx, hdma_usart3_tx); DMA1_Channel2->CPAR = (uint32_t) & (USART3->DR); DMA1_Channel2->CNDTR = 0; DMA1->IFCR = DMA_IFCR_CTCIF2 | DMA_IFCR_CHTIF2 | DMA_IFCR_CGIF2; } #endif #ifdef FEATURE_CAN void CAN_MspInit(CAN_HandleTypeDef *hcan); void CAN_MspDeInit(CAN_HandleTypeDef *hcan); void CAN_MspDeInit(CAN_HandleTypeDef *hcan); void CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *CanHandle); void CAN_TxMailboxCompleteCallback(CAN_HandleTypeDef *hcan); void CAN_Init() { myPrintf("CAN_Init() called"); /* Configure the CAN peripheral */ CanHandle.Instance = CANx; CanHandle.MspInitCallback = CAN_MspInit; CanHandle.MspDeInitCallback = CAN_MspDeInit; CanHandle.Init.TimeTriggeredMode = DISABLE; CanHandle.Init.AutoBusOff = ENABLE; CanHandle.Init.AutoWakeUp = DISABLE; CanHandle.Init.AutoRetransmission = ENABLE; CanHandle.Init.ReceiveFifoLocked = DISABLE; CanHandle.Init.TransmitFifoPriority = DISABLE; CanHandle.Init.Mode = CAN_MODE_NORMAL; CanHandle.Init.SyncJumpWidth = CAN_SJW_1TQ; CanHandle.Init.TimeSeg1 = CAN_BS1_3TQ; CanHandle.Init.TimeSeg2 = CAN_BS2_4TQ; CanHandle.Init.Prescaler = 16; if (const auto result = HAL_CAN_Init(&CanHandle); result == HAL_OK) myPrintf("HAL_CAN_Init() succeeded"); else { myPrintf("HAL_CAN_Init() failed with %i", result); while (true); } { /* Configure the CAN Filter */ CAN_FilterTypeDef sFilterConfig; sFilterConfig.FilterBank = 0; sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK; sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT; // // TTRR.....FL sFilterConfig.FilterIdHigh = 0b00000000000; sFilterConfig.FilterIdLow = 0b00000000000; sFilterConfig.FilterMaskIdHigh = 0b00000000000; sFilterConfig.FilterMaskIdLow = 0b11110000010; // 0b0000.....0. sFilterConfig.FilterFIFOAssignment = CAN_RX_FIFO0; sFilterConfig.FilterActivation = CAN_FILTER_ENABLE; sFilterConfig.SlaveStartFilterBank = 14; if (const auto result = HAL_CAN_ConfigFilter(&CanHandle, &sFilterConfig); result == HAL_OK) myPrintf("HAL_CAN_ConfigFilter() succeeded"); else { myPrintf("HAL_CAN_ConfigFilter() failed with %i", result); while (true); } } if (const auto result = HAL_CAN_RegisterCallback(&CanHandle, HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID, CAN_RxFifo0MsgPendingCallback); result == HAL_OK) myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID succeeded"); else { myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID failed with %i", result); while (true); } if (false) { if (const auto result = HAL_CAN_RegisterCallback(&CanHandle, HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID, CAN_TxMailboxCompleteCallback); result == HAL_OK) myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID succeeded"); else { myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID failed with %i", result); while (true); } if (const auto result = HAL_CAN_RegisterCallback(&CanHandle, HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID, CAN_TxMailboxCompleteCallback); result == HAL_OK) myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID succeeded"); else { myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID failed with %i", result); while (true); } if (const auto result = HAL_CAN_RegisterCallback(&CanHandle, HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID, CAN_TxMailboxCompleteCallback); result == HAL_OK) myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID succeeded"); else { myPrintf("HAL_CAN_RegisterCallback() HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID failed with %i", result); while (true); } } /* Start the CAN peripheral */ if (const auto result = HAL_CAN_Start(&CanHandle); result == HAL_OK) myPrintf("HAL_CAN_Start() succeeded"); else { myPrintf("HAL_CAN_Start() failed with %i", result); while (true); } /* Activate CAN RX notification */ if (const auto result = HAL_CAN_ActivateNotification(&CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING); result == HAL_OK) myPrintf("HAL_CAN_ActivateNotification() CAN_IT_RX_FIFO0_MSG_PENDING succeeded"); else { myPrintf("HAL_CAN_ActivateNotification() CAN_IT_RX_FIFO0_MSG_PENDING failed with %i", result); while (true); } if (false) { /* Activate CAN TX notification */ if (const auto result = HAL_CAN_ActivateNotification(&CanHandle, CAN_IT_TX_MAILBOX_EMPTY); result == HAL_OK) myPrintf("HAL_CAN_ActivateNotification() CAN_IT_TX_MAILBOX_EMPTY succeeded"); else { myPrintf("HAL_CAN_ActivateNotification() CAN_IT_TX_MAILBOX_EMPTY failed with %i", result); while (true); } } } void CAN_MspInit(CAN_HandleTypeDef *hcan) { myPrintf("CAN_MspInit() called"); GPIO_InitTypeDef GPIO_InitStruct; /*##-1- Enable peripherals and GPIO Clocks #################################*/ /* CAN1 Periph clock enable */ CANx_CLK_ENABLE(); /* Enable GPIO clock ****************************************/ CANx_GPIO_CLK_ENABLE(); /* Enable AFIO clock and Remap CAN PINs to PB8 and PB9*******/ CANx_AFIO_REMAP_CLK_ENABLE(); CANx_AFIO_REMAP_RX_TX_PIN(); /*##-2- Configure peripheral GPIO ##########################################*/ /* CAN1 TX GPIO pin configuration */ GPIO_InitStruct.Pin = CANx_TX_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(CANx_TX_GPIO_PORT, &GPIO_InitStruct); /* CAN1 RX GPIO pin configuration */ GPIO_InitStruct.Pin = CANx_RX_PIN; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(CANx_RX_GPIO_PORT, &GPIO_InitStruct); /*##-3- Configure the NVIC #################################################*/ /* NVIC configuration for CAN1 Reception complete interrupt */ HAL_NVIC_SetPriority(CANx_RX_IRQn, 1, 0); HAL_NVIC_EnableIRQ(CANx_RX_IRQn); HAL_NVIC_SetPriority(CANx_TX_IRQn, 1, 0); HAL_NVIC_EnableIRQ(CANx_TX_IRQn); } void CAN_MspDeInit(CAN_HandleTypeDef *hcan) { myPrintf("CAN_MspDeInit() called"); /*##-1- Reset peripherals ##################################################*/ CANx_FORCE_RESET(); CANx_RELEASE_RESET(); /*##-2- Disable peripherals and GPIO Clocks ################################*/ /* De-initialize the CAN1 TX GPIO pin */ HAL_GPIO_DeInit(CANx_TX_GPIO_PORT, CANx_TX_PIN); /* De-initialize the CAN1 RX GPIO pin */ HAL_GPIO_DeInit(CANx_RX_GPIO_PORT, CANx_RX_PIN); /*##-4- Disable the NVIC for CAN reception #################################*/ HAL_NVIC_DisableIRQ(CANx_RX_IRQn); } void CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *CanHandle) { //myPrintf("CAN_RxFifo0MsgPendingCallback() called"); applyIncomingCanMessage(); } void CAN_TxMailboxCompleteCallback(CAN_HandleTypeDef *hcan) { myPrintf("CAN_TxMailboxCompleteCallback() called"); // slightly yucky, but we don't want to block inside the IRQ handler //if (HAL_CAN_GetTxMailboxesFreeLevel(hcan) >= 2) //{ // can_feedc0de_poll(); //} } #endif void MX_GPIO_Init() { GPIO_InitTypeDef GPIO_InitStruct; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = LEFT_HALL_U_PIN; HAL_GPIO_Init(LEFT_HALL_U_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_HALL_V_PIN; HAL_GPIO_Init(LEFT_HALL_V_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_HALL_W_PIN; HAL_GPIO_Init(LEFT_HALL_W_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_HALL_U_PIN; HAL_GPIO_Init(RIGHT_HALL_U_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_HALL_V_PIN; HAL_GPIO_Init(RIGHT_HALL_V_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_HALL_W_PIN; HAL_GPIO_Init(RIGHT_HALL_W_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = CHARGER_PIN; HAL_GPIO_Init(CHARGER_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = BUTTON_PIN; HAL_GPIO_Init(BUTTON_PORT, &GPIO_InitStruct); GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pin = LED_PIN; HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = BUZZER_PIN; HAL_GPIO_Init(BUZZER_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = OFF_PIN; HAL_GPIO_Init(OFF_PORT, &GPIO_InitStruct); GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pin = LEFT_DC_CUR_PIN; HAL_GPIO_Init(LEFT_DC_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_U_CUR_PIN; HAL_GPIO_Init(LEFT_U_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_V_CUR_PIN; HAL_GPIO_Init(LEFT_V_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_DC_CUR_PIN; HAL_GPIO_Init(RIGHT_DC_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_U_CUR_PIN; HAL_GPIO_Init(RIGHT_U_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_V_CUR_PIN; HAL_GPIO_Init(RIGHT_V_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = DCLINK_PIN; HAL_GPIO_Init(DCLINK_PORT, &GPIO_InitStruct); //Analog in GPIO_InitStruct.Pin = GPIO_PIN_3; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_2; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pin = LEFT_TIM_UH_PIN; HAL_GPIO_Init(LEFT_TIM_UH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_VH_PIN; HAL_GPIO_Init(LEFT_TIM_VH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_WH_PIN; HAL_GPIO_Init(LEFT_TIM_WH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_UL_PIN; HAL_GPIO_Init(LEFT_TIM_UL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_VL_PIN; HAL_GPIO_Init(LEFT_TIM_VL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_WL_PIN; HAL_GPIO_Init(LEFT_TIM_WL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_UH_PIN; HAL_GPIO_Init(RIGHT_TIM_UH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_VH_PIN; HAL_GPIO_Init(RIGHT_TIM_VH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_WH_PIN; HAL_GPIO_Init(RIGHT_TIM_WH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_UL_PIN; HAL_GPIO_Init(RIGHT_TIM_UL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_VL_PIN; HAL_GPIO_Init(RIGHT_TIM_VL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_WL_PIN; HAL_GPIO_Init(RIGHT_TIM_WL_PORT, &GPIO_InitStruct); } void MX_TIM_Init() { __HAL_RCC_TIM1_CLK_ENABLE(); __HAL_RCC_TIM8_CLK_ENABLE(); TIM_MasterConfigTypeDef sMasterConfig; TIM_OC_InitTypeDef sConfigOC; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig; TIM_SlaveConfigTypeDef sTimConfig; htim_right.Instance = RIGHT_TIM; htim_right.Init.Prescaler = 0; htim_right.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1; htim_right.Init.Period = 64000000 / 2 / PWM_FREQ; htim_right.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim_right.Init.RepetitionCounter = 0; htim_right.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; HAL_TIM_PWM_Init(&htim_right); sMasterConfig.MasterOutputTrigger = TIM_TRGO_ENABLE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(&htim_right, &sMasterConfig); sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; #ifdef PETERS_PLATINE sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; #else sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW; #endif sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; #ifdef PETERS_PLATINE sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; #else sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET; #endif HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_1); HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_2); HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_3); sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = DEAD_TIME; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; HAL_TIMEx_ConfigBreakDeadTime(&htim_right, &sBreakDeadTimeConfig); htim_left.Instance = LEFT_TIM; htim_left.Init.Prescaler = 0; htim_left.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1; htim_left.Init.Period = 64000000 / 2 / PWM_FREQ; htim_left.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim_left.Init.RepetitionCounter = 0; htim_left.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; HAL_TIM_PWM_Init(&htim_left); sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE; HAL_TIMEx_MasterConfigSynchronization(&htim_left, &sMasterConfig); sTimConfig.InputTrigger = TIM_TS_ITR0; sTimConfig.SlaveMode = TIM_SLAVEMODE_GATED; HAL_TIM_SlaveConfigSynchro(&htim_left, &sTimConfig); // Start counting >0 to effectively offset timers by the time it takes for one ADC conversion to complete. // This method allows that the Phase currents ADC measurements are properly aligned with LOW-FET ON region for both motors LEFT_TIM->CNT = ADC_TOTAL_CONV_TIME; sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; #ifdef PETERS_PLATINE sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; #else sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW; #endif sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; #ifdef PETERS_PLATINE sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; #else sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET; #endif HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_1); HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_2); HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_3); sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = DEAD_TIME; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; HAL_TIMEx_ConfigBreakDeadTime(&htim_left, &sBreakDeadTimeConfig); LEFT_TIM->BDTR &= ~TIM_BDTR_MOE; RIGHT_TIM->BDTR &= ~TIM_BDTR_MOE; HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_3); HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_1); HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_2); HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_3); HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_3); HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_1); HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_2); HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_3); htim_left.Instance->RCR = 1; __HAL_TIM_ENABLE(&htim_right); } void MX_ADC1_Init() { ADC_MultiModeTypeDef multimode; ADC_ChannelConfTypeDef sConfig; __HAL_RCC_ADC1_CLK_ENABLE(); hadc1.Instance = ADC1; hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T8_TRGO; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 5; HAL_ADC_Init(&hadc1); /**Enable or disable the remapping of ADC1_ETRGREG: * ADC1 External Event regular conversion is connected to TIM8 TRG0 */ __HAL_AFIO_REMAP_ADC1_ETRGREG_ENABLE(); /**Configure the ADC multi-mode */ multimode.Mode = ADC_DUALMODE_REGSIMULT; HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode); sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.Channel = ADC_CHANNEL_11; // pc1 left cur -> right sConfig.Rank = 1; HAL_ADC_ConfigChannel(&hadc1, &sConfig); // sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5; sConfig.Channel = ADC_CHANNEL_0; // pa0 right a -> left sConfig.Rank = 2; HAL_ADC_ConfigChannel(&hadc1, &sConfig); sConfig.Channel = ADC_CHANNEL_14; // pc4 left b -> right sConfig.Rank = 3; HAL_ADC_ConfigChannel(&hadc1, &sConfig); sConfig.Channel = ADC_CHANNEL_12; // pc2 vbat sConfig.Rank = 4; HAL_ADC_ConfigChannel(&hadc1, &sConfig); //temperature requires at least 17.1uS sampling time sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5; sConfig.Channel = ADC_CHANNEL_TEMPSENSOR; // internal temp sConfig.Rank = 5; HAL_ADC_ConfigChannel(&hadc1, &sConfig); hadc1.Instance->CR2 |= ADC_CR2_DMA | ADC_CR2_TSVREFE; __HAL_ADC_ENABLE(&hadc1); __HAL_RCC_DMA1_CLK_ENABLE(); DMA1_Channel1->CCR = 0; DMA1_Channel1->CNDTR = 5; DMA1_Channel1->CPAR = uint64_t(&(ADC1->DR)); DMA1_Channel1->CMAR = uint64_t(&adc_buffer); DMA1_Channel1->CCR = DMA_CCR_MSIZE_1 | DMA_CCR_PSIZE_1 | DMA_CCR_MINC | DMA_CCR_CIRC | DMA_CCR_TCIE; DMA1_Channel1->CCR |= DMA_CCR_EN; HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); } /* ADC2 init function */ void MX_ADC2_Init() { ADC_ChannelConfTypeDef sConfig; __HAL_RCC_ADC2_CLK_ENABLE(); // HAL_ADC_DeInit(&hadc2); // hadc2.Instance->CR2 = 0; /**Common config */ hadc2.Instance = ADC2; hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.NbrOfConversion = 5; HAL_ADC_Init(&hadc2); sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.Channel = ADC_CHANNEL_10; // pc0 right cur -> left sConfig.Rank = 1; HAL_ADC_ConfigChannel(&hadc2, &sConfig); // sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5; sConfig.Channel = ADC_CHANNEL_13; // pc3 right b -> left sConfig.Rank = 2; HAL_ADC_ConfigChannel(&hadc2, &sConfig); sConfig.Channel = ADC_CHANNEL_15; // pc5 left c -> right sConfig.Rank = 3; HAL_ADC_ConfigChannel(&hadc2, &sConfig); sConfig.Channel = ADC_CHANNEL_2; // pa2 uart-l-tx sConfig.Rank = 4; HAL_ADC_ConfigChannel(&hadc2, &sConfig); sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5; sConfig.Channel = ADC_CHANNEL_3; // pa3 uart-l-rx sConfig.Rank = 5; HAL_ADC_ConfigChannel(&hadc2, &sConfig); hadc2.Instance->CR2 |= ADC_CR2_DMA; __HAL_ADC_ENABLE(&hadc2); } #ifdef FEATURE_BUTTON void poweroff() { // if (abs(speed) < 20) { // wait for the speed to drop, then shut down -> this is commented out for SAFETY reasons buzzer.pattern = 0; left.enable = false; right.enable = 0; for (int i = 0; i < 8; i++) { buzzer.freq = (uint8_t)i; HAL_Delay(50); } HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_RESET); for (int i = 0; i < 5; i++) HAL_Delay(1000); // } } #endif [[maybe_unused]] void communicationTimeout() { applyDefaultSettings(); buzzer.freq = 24; buzzer.pattern = 1; HAL_GPIO_WritePin(LED_PORT, LED_PIN, GPIO_PIN_RESET); } #ifdef MOTOR_TEST void doMotorTest() { using namespace protocol; timeout = 0; // prove, that the controlling code is still running left.enable = true; left.rtU.r_inpTgt = pwm; left.rtP.z_ctrlTypSel = uint8_t(ControlType::FieldOrientedControl); left.rtU.z_ctrlModReq = uint8_t(ControlMode::Voltage); left.rtP.i_max = (2 * AMPERE2BIT_CONV) << 4; left.iDcMax = 8; left.rtP.n_max = 1000 << 4; left.rtP.id_fieldWeakMax = (0 * AMPERE2BIT_CONV) << 4; left.rtP.a_phaAdvMax = 40 << 4; right.enable = true; right.rtU.r_inpTgt = -pwm; right.rtP.z_ctrlTypSel = uint8_t(ControlType::FieldOrientedControl); right.rtU.z_ctrlModReq = uint8_t(ControlMode::Voltage); right.rtP.i_max = (2 * AMPERE2BIT_CONV) << 4; right.iDcMax = 8; right.rtP.n_max = 1000 << 4; right.rtP.id_fieldWeakMax = (0 * AMPERE2BIT_CONV) << 4; right.rtP.a_phaAdvMax = 40 << 4; constexpr auto pwmMax = 400; pwm += dir; if (pwm > pwmMax) { pwm = pwmMax; dir = -1; } else if (pwm < -pwmMax) { pwm = -pwmMax; dir = 1; } if(left.rtY.z_errCode != 0 || right.rtY.z_errCode != 0) { if(left.rtY.z_errCode == 0 && right.rtY.z_errCode != 0) { //rechts buzzer.freq = 1; buzzer.pattern = 1; } if(right.rtY.z_errCode == 0 && left.rtY.z_errCode != 0) { //links buzzer.freq = 3; buzzer.pattern = 3; } if(right.rtY.z_errCode != 0 && left.rtY.z_errCode != 0) { //beide buzzer.freq = 5; buzzer.pattern = 5; } } else { buzzer.freq = 0; buzzer.pattern = 0; } } #endif #ifdef FEATURE_SERIAL_CONTROL void parseCommand() { using namespace protocol::serial; timeout = 0; // proove, that the controlling code is still running for (int i = 0; i < 1; i++) { if (command.start != Command::VALID_HEADER) continue; uint16_t checksum = calculateChecksum(command); if (command.checksum != checksum) continue; left.iDcMax = command.left.iDcMax; left.rtP.z_ctrlTypSel = uint8_t(command.left.ctrlTyp); left.rtP.i_max = (int16_t(command.left.iMotMax) * AMPERE2BIT_CONV) << 4; left.rtP.n_max = command.left.nMotMax << 4; left.rtP.id_fieldWeakMax = (int16_t(command.left.fieldWeakMax) * AMPERE2BIT_CONV) << 4; left.rtP.a_phaAdvMax = command.left.phaseAdvMax << 4; left.rtU.z_ctrlModReq = uint8_t(command.left.ctrlMod); left.rtU.r_inpTgt = command.left.pwm; right.iDcMax = command.right.iDcMax; right.rtP.z_ctrlTypSel = uint8_t(command.right.ctrlTyp); right.rtP.i_max = (int16_t(command.right.iMotMax) * AMPERE2BIT_CONV) << 4; // fixdt(1,16,4) right.rtP.n_max = command.right.nMotMax << 4; // fixdt(1,16,4) right.rtP.id_fieldWeakMax = (int16_t(command.right.fieldWeakMax) * AMPERE2BIT_CONV) << 4; // fixdt(1,16,4) right.rtP.a_phaAdvMax = command.right.phaseAdvMax << 4; // fixdt(1,16,4) right.rtU.z_ctrlModReq = uint8_t(command.right.ctrlMod); right.rtU.r_inpTgt = command.right.pwm; buzzer.freq = command.buzzer.freq; buzzer.pattern = command.buzzer.pattern; #ifdef FEATURE_BUTTON if (command.poweroff) poweroff(); #endif HAL_GPIO_WritePin(LED_PORT, LED_PIN, command.led ? GPIO_PIN_RESET : GPIO_PIN_SET); command.start = Command::INVALID_HEADER; // Change the Start Frame for timeout detection in the next cycle timeoutCntSerial = 0; // Reset the timeout counter return; } if (timeoutCntSerial++ >= 100) // Timeout qualification { timeoutCntSerial = 100; // Limit timout counter value communicationTimeout(); // Check periodically the received Start Frame. Try to re-sync by reseting the DMA if (main_loop_counter % 25 == 0) { #ifdef HUART2 HAL_UART_DMAStop(&huart2); HAL_UART_Receive_DMA(&huart2, (uint8_t *)&command, sizeof(command)); #endif #ifdef HUART3 HAL_UART_DMAStop(&huart3); HAL_UART_Receive_DMA(&huart3, (uint8_t *)&command, sizeof(command)); #endif } } } #endif #ifdef FEATURE_SERIAL_FEEDBACK void sendFeedback() { using namespace protocol::serial; #ifdef HUART2 #define UART_DMA_CHANNEL DMA1_Channel7 #endif #ifdef HUART3 #define UART_DMA_CHANNEL DMA1_Channel2 #endif if (UART_DMA_CHANNEL->CNDTR != 0) return; feedback.start = Feedback::VALID_HEADER; feedback.left.angle = left.rtY.a_elecAngle; feedback.right.angle = right.rtY.a_elecAngle; feedback.left.speed = left.rtY.n_mot; feedback.right.speed = right.rtY.n_mot; feedback.left.error = left.rtY.z_errCode; feedback.right.error = right.rtY.z_errCode; feedback.left.dcLink = left.rtU.i_DCLink; feedback.right.dcLink = right.rtU.i_DCLink; feedback.left.dcPhaA = left.rtY.DC_phaA; feedback.right.dcPhaA = right.rtY.DC_phaA; feedback.left.dcPhaB = left.rtY.DC_phaB; feedback.right.dcPhaB = right.rtY.DC_phaB; feedback.left.dcPhaC = left.rtY.DC_phaC; feedback.right.dcPhaC = right.rtY.DC_phaC; feedback.left.chops = left.chops.exchange(0); feedback.right.chops = right.chops.exchange(0); feedback.left.hallA = left.rtU.b_hallA; feedback.left.hallB = left.rtU.b_hallB; feedback.left.hallC = left.rtU.b_hallC; feedback.right.hallA = right.rtU.b_hallA; feedback.right.hallB = right.rtU.b_hallB; feedback.right.hallC = right.rtU.b_hallC; feedback.batVoltage = batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC; feedback.boardTemp = board_temp_deg_c; feedback.timeoutCntSerial = timeoutCntSerial; feedback.checksum = calculateChecksum(feedback); UART_DMA_CHANNEL->CCR &= ~DMA_CCR_EN; UART_DMA_CHANNEL->CNDTR = sizeof(feedback); UART_DMA_CHANNEL->CMAR = uint64_t(&feedback); UART_DMA_CHANNEL->CCR |= DMA_CCR_EN; } #endif #ifdef FEATURE_CAN void parseCanCommand() { timeout = 0; // proove, that the controlling code is still running const auto l = ++timeoutCntLeft; const auto r = ++timeoutCntRight; if (l >= 99 || r >= 99) { if (l > 100) timeoutCntLeft = 100; if (r > 100) timeoutCntRight = 100; communicationTimeout(); } } void applyIncomingCanMessage() { CAN_RxHeaderTypeDef header; uint8_t buf[8]; if (const auto result = HAL_CAN_GetRxMessage(&CanHandle, CAN_RX_FIFO0, &header, buf); result != HAL_OK) { myPrintf("HAL_CAN_GetRxMessage() failed with %i", result); //while (true); return; } switch (header.StdId) { using namespace protocol::can; case MotorController::Command::Enable: left .enable = *((bool *)buf); break; case MotorController ::Command::Enable: right.enable = *((bool *)buf); break; case MotorController::Command::InpTgt: left. rtU.r_inpTgt = *((int16_t*)buf); timeoutCntLeft = 0; break; case MotorController ::Command::InpTgt: right.rtU.r_inpTgt = *((int16_t*)buf); timeoutCntRight = 0; break; case MotorController::Command::CtrlTyp: left .rtP.z_ctrlTypSel = *((uint8_t*)buf); break; case MotorController ::Command::CtrlTyp: right.rtP.z_ctrlTypSel = *((uint8_t*)buf); break; case MotorController::Command::CtrlMod: left .rtU.z_ctrlModReq = *((uint8_t*)buf); break; case MotorController ::Command::CtrlMod: right.rtU.z_ctrlModReq = *((uint8_t*)buf); break; case MotorController::Command::IMotMax: left .rtP.i_max = (int16_t(*((uint8_t*)buf)) * AMPERE2BIT_CONV) << 4; break; case MotorController ::Command::IMotMax: right.rtP.i_max = (int16_t(*((uint8_t*)buf)) * AMPERE2BIT_CONV) << 4; break; case MotorController::Command::IDcMax: left .iDcMax = *((uint8_t*)buf); break; case MotorController ::Command::IDcMax: right.iDcMax = *((uint8_t*)buf); break; case MotorController::Command::NMotMax: left .rtP.n_max = *((uint16_t*)buf) << 4; break; case MotorController ::Command::NMotMax: right.rtP.n_max = *((uint16_t*)buf) << 4; break; case MotorController::Command::FieldWeakMax: left .rtP.id_fieldWeakMax = (int16_t(*((uint8_t*)buf)) * AMPERE2BIT_CONV) << 4; break; case MotorController ::Command::FieldWeakMax: right.rtP.id_fieldWeakMax = (int16_t(*((uint8_t*)buf)) * AMPERE2BIT_CONV) << 4; break; case MotorController::Command::PhaseAdvMax: left .rtP.a_phaAdvMax = ((uint16_t)*((uint8_t*)buf)) << 4; break; case MotorController ::Command::PhaseAdvMax: right.rtP.a_phaAdvMax = ((uint16_t)*((uint8_t*)buf)) << 4; break; case MotorController::Command::CruiseCtrlEna: left .rtP.b_cruiseCtrlEna = *((bool*)buf); break; case MotorController ::Command::CruiseCtrlEna: right.rtP.b_cruiseCtrlEna = *((bool*)buf); break; case MotorController::Command::CruiseMotTgt: left .rtP.n_cruiseMotTgt = *((int16_T*)buf); break; case MotorController ::Command::CruiseMotTgt: right.rtP.n_cruiseMotTgt = *((int16_T*)buf); break; case MotorController::Command::BuzzerFreq: case MotorController ::Command::BuzzerFreq: buzzer.freq = *((uint8_t*)buf); break; case MotorController::Command::BuzzerPattern: case MotorController ::Command::BuzzerPattern: buzzer.pattern = *((uint8_t*)buf); break; case MotorController::Command::Led: case MotorController ::Command::Led: HAL_GPIO_WritePin(LED_PORT, LED_PIN, *((bool*)buf) ? GPIO_PIN_SET : GPIO_PIN_RESET); break; case MotorController::Command::Poweroff: case MotorController::Command::Poweroff: #ifdef FEATURE_BUTTON if (*((bool*)buf)) poweroff(); #endif break; default: #ifndef CAN_LOG_UNKNOWN_ADDR if constexpr (false) #endif myPrintf("UNKNOWN %c%c %c%c %c%c%c%c%c %c%c %s", header.StdId&1024?'1':'0', header.StdId&512?'1':'0', header.StdId&256?'1':'0', header.StdId&128?'1':'0', header.StdId&64?'1':'0', header.StdId&32?'1':'0', header.StdId&16?'1':'0', header.StdId&8?'1':'0', header.StdId&4?'1':'0', header.StdId&2?'1':'0', header.StdId&1?'1':'0', bobbycarCanIdDesc(header.StdId) ); if constexpr (false) myPrintf("UNKNOWN StdId=%x %u ExtId=%x %u IDE=%x %u RTR=%x %u DLC=%x %u Timestamp=%x %u FilterMatchIndex=%x %u", header.StdId, header.StdId, header.ExtId, header.ExtId, header.IDE, header.IDE, header.RTR, header.RTR, header.DLC, header.DLC, header.Timestamp, header.Timestamp, header.FilterMatchIndex, header.FilterMatchIndex ); } } template void send(uint32_t addr, T value) { CAN_TxHeaderTypeDef header; header.StdId = addr; header.ExtId = 0x01; header.RTR = CAN_RTR_DATA; header.IDE = CAN_ID_STD; header.DLC = sizeof(value); header.TransmitGlobalTime = DISABLE; uint8_t buf[8] {0}; std::memcpy(buf, &value, sizeof(value)); static uint32_t TxMailbox; if (const auto result = HAL_CAN_AddTxMessage(&CanHandle, &header, buf, &TxMailbox); result != HAL_OK) { myPrintf("HAL_CAN_AddTxMessage() failed with %i", result); //while (true); } } void sendCanFeedback() { const auto free = HAL_CAN_GetTxMailboxesFreeLevel(&CanHandle); if (!free) return; static uint8_t whichToSend{}; using namespace protocol::can; constexpr void(*arr[])() = { [](){ send(MotorController::Feedback::DcLink, left. rtU.i_DCLink); }, [](){ send(MotorController:: Feedback::DcLink, right.rtU.i_DCLink); }, [](){ send(MotorController::Feedback::Speed, left. rtY.n_mot); }, [](){ send(MotorController:: Feedback::Speed, right.rtY.n_mot); }, [](){ send(MotorController::Feedback::Error, left. rtY.z_errCode); }, [](){ send(MotorController:: Feedback::Error, right.rtY.z_errCode); }, [](){ send(MotorController::Feedback::Angle, left. rtY.a_elecAngle); }, [](){ send(MotorController:: Feedback::Angle, right.rtY.a_elecAngle); }, // [](){ send(MotorController::Feedback::DcPhaA, left. rtY.DC_phaA); }, // [](){ send(MotorController:: Feedback::DcPhaA, right.rtY.DC_phaA); }, // [](){ send(MotorController::Feedback::DcPhaB, left. rtY.DC_phaB); }, // [](){ send(MotorController:: Feedback::DcPhaB, right.rtY.DC_phaB); }, // [](){ send(MotorController::Feedback::DcPhaC, left. rtY.DC_phaC); }, // [](){ send(MotorController:: Feedback::DcPhaC, right.rtY.DC_phaC); }, [](){ send(MotorController::Feedback::Chops, left. chops.exchange(0)); }, [](){ send(MotorController:: Feedback::Chops, right.chops.exchange(0)); }, [](){ send(MotorController::Feedback::Hall, left.hallBits()); }, [](){ send(MotorController:: Feedback::Hall, right.hallBits()); }, [](){ send(MotorController::Feedback::Voltage, batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC); }, [](){ send(MotorController:: Feedback::Voltage, batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC); }, [](){ send(MotorController::Feedback::Temp, board_temp_deg_c); }, [](){ send(MotorController:: Feedback::Temp, board_temp_deg_c); }, [](){ send(MotorController::Feedback::Id, left. rtY.id); }, [](){ send(MotorController:: Feedback::Id, right.rtY.id); }, [](){ send(MotorController::Feedback::Iq, left. rtY.iq); }, [](){ send(MotorController:: Feedback::Iq, right.rtY.iq); whichToSend = 0; }, }; arr[whichToSend++](); } #endif #ifdef FEATURE_BUTTON void handleButton() { if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { left.enable = false; right.enable = false; while (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {} // wait until button is released if(__HAL_RCC_GET_FLAG(RCC_FLAG_SFTRST)) { // do not power off after software reset (from a programmer/debugger) __HAL_RCC_CLEAR_RESET_FLAGS(); // clear reset flags } else { poweroff(); // release power-latch } } } #endif void updateSensors() { /* Low pass filter fixed-point 32 bits: fixdt(1,32,20) * Max: 2047.9375 * Min: -2048 * Res: 0.0625 * * Inputs: u = int16 * Outputs: y = fixdt(1,32,20) * Parameters: coef = fixdt(0,16,16) = [0,65535U] * * Example: * If coef = 0.8 (in floating point), then coef = 0.8 * 2^16 = 52429 (in fixed-point) * filtLowPass16(u, 52429, &y); * yint = (int16_t)(y >> 20); // the integer output is the fixed-point ouput shifted by 20 bits */ constexpr auto filtLowPass32 = [](int16_t u, uint16_t coef, int32_t &y) { int tmp = (int16_t)(u << 4) - (y >> 16); tmp = std::clamp(tmp, -32768, 32767); // Overflow protection y = coef * tmp + y; }; // Fixed-point filter output initialized with current ADC converted to fixed-point static int32_t board_temp_adcFixdt{} /*= adc_buffer.temp << 20*/; filtLowPass32(adc_buffer.temp, TEMP_FILT_COEF, board_temp_adcFixdt); int16_t board_temp_adcFilt = (int16_t)(board_temp_adcFixdt >> 20); // convert fixed-point to integer board_temp_deg_c = (TEMP_CAL_HIGH_DEG_C - TEMP_CAL_LOW_DEG_C) * (board_temp_adcFilt - TEMP_CAL_LOW_ADC) / (TEMP_CAL_HIGH_ADC - TEMP_CAL_LOW_ADC) + TEMP_CAL_LOW_DEG_C; // Fixed-point filter output initialized at 400 V*100/cell = 4 V/cell converted to fixed-point static int32_t batVoltageFixdt = (400 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE << 20; filtLowPass32(adc_buffer.batt1, BAT_FILT_COEF, batVoltageFixdt); batVoltage = (int16_t)(batVoltageFixdt >> 20); // convert fixed-point to integer } void applyDefaultSettings() { using namespace protocol; constexpr auto doIt = [](auto &motor){ motor.enable = true; motor.rtU.r_inpTgt = 0; motor.rtP.z_ctrlTypSel = uint8_t(ControlType::FieldOrientedControl); motor.rtU.z_ctrlModReq = uint8_t(ControlMode::OpenMode); motor.rtP.i_max = (5 * AMPERE2BIT_CONV) << 4; motor.iDcMax = 7; motor.rtP.n_max = 1000 << 4; motor.rtP.id_fieldWeakMax = (1 * AMPERE2BIT_CONV) << 4; motor.rtP.a_phaAdvMax = 40 << 4; motor.rtP.b_cruiseCtrlEna = false; motor.rtP.n_cruiseMotTgt = 0; }; doIt(left); doIt(right); } } // namespace } // namespace controller } // namespace bobbycar /******************************************************************************/ /* Cortex-M3 Processor Interruption and Exception Handlers */ /******************************************************************************/ /** * @brief This function handles Non maskable interrupt. */ extern "C" void NMI_Handler() { /* USER CODE BEGIN NonMaskableInt_IRQn 0 */ /* USER CODE END NonMaskableInt_IRQn 0 */ /* USER CODE BEGIN NonMaskableInt_IRQn 1 */ /* USER CODE END NonMaskableInt_IRQn 1 */ } /** * @brief This function handles Hard fault interrupt. */ extern "C" void HardFault_Handler() { /* USER CODE BEGIN HardFault_IRQn 0 */ /* USER CODE END HardFault_IRQn 0 */ while (true); /* USER CODE BEGIN HardFault_IRQn 1 */ /* USER CODE END HardFault_IRQn 1 */ } /** * @brief This function handles Memory management fault. */ extern "C" void MemManage_Handler() { /* USER CODE BEGIN MemoryManagement_IRQn 0 */ /* USER CODE END MemoryManagement_IRQn 0 */ while (true); /* USER CODE BEGIN MemoryManagement_IRQn 1 */ /* USER CODE END MemoryManagement_IRQn 1 */ } /** * @brief This function handles Prefetch fault, memory access fault. */ extern "C" void BusFault_Handler() { /* USER CODE BEGIN BusFault_IRQn 0 */ /* USER CODE END BusFault_IRQn 0 */ while (true); /* USER CODE BEGIN BusFault_IRQn 1 */ /* USER CODE END BusFault_IRQn 1 */ } /** * @brief This function handles Undefined instruction or illegal state. */ extern "C" void UsageFault_Handler() { /* USER CODE BEGIN UsageFault_IRQn 0 */ /* USER CODE END UsageFault_IRQn 0 */ while (true); /* USER CODE BEGIN UsageFault_IRQn 1 */ /* USER CODE END UsageFault_IRQn 1 */ } /** * @brief This function handles System service call via SWI instruction. */ extern "C" void SVC_Handler() { /* USER CODE BEGIN SVCall_IRQn 0 */ /* USER CODE END SVCall_IRQn 0 */ /* USER CODE BEGIN SVCall_IRQn 1 */ /* USER CODE END SVCall_IRQn 1 */ } /** * @brief This function handles Debug monitor. */ extern "C" void DebugMon_Handler() { /* USER CODE BEGIN DebugMonitor_IRQn 0 */ /* USER CODE END DebugMonitor_IRQn 0 */ /* USER CODE BEGIN DebugMonitor_IRQn 1 */ /* USER CODE END DebugMonitor_IRQn 1 */ } /** * @brief This function handles Pendable request for system service. */ extern "C" void PendSV_Handler() { /* USER CODE BEGIN PendSV_IRQn 0 */ /* USER CODE END PendSV_IRQn 0 */ /* USER CODE BEGIN PendSV_IRQn 1 */ /* USER CODE END PendSV_IRQn 1 */ } extern "C" void SysTick_Handler() { /* USER CODE BEGIN SysTick_IRQn 0 */ /* USER CODE END SysTick_IRQn 0 */ HAL_IncTick(); HAL_SYSTICK_IRQHandler(); /* USER CODE BEGIN SysTick_IRQn 1 */ /* USER CODE END SysTick_IRQn 1 */ } // ================================= // DMA interrupt frequency =~ 16 kHz // ================================= extern "C" void DMA1_Channel1_IRQHandler() { /* USER CODE BEGIN DMA1_Channel1_IRQn 0 */ /* USER CODE END DMA1_Channel1_IRQn 0 */ using namespace bobbycar::controller; updateMotors(); updateBuzzer(); /* USER CODE BEGIN DMA1_Channel1_IRQn 1 */ /* USER CODE END DMA1_Channel1_IRQn 1 */ } #ifdef HUART2 extern "C" void DMA1_Channel6_IRQHandler() { /* USER CODE BEGIN DMA1_Channel4_IRQn 0 */ /* USER CODE END DMA1_Channel4_IRQn 0 */ using namespace bobbycar::controller; HAL_DMA_IRQHandler(&hdma_usart2_rx); /* USER CODE BEGIN DMA1_Channel4_IRQn 1 */ /* USER CODE END DMA1_Channel4_IRQn 1 */ } /** * @brief This function handles DMA1 channel5 global interrupt. */ extern "C" void DMA1_Channel7_IRQHandler() { /* USER CODE BEGIN DMA1_Channel5_IRQn 0 */ /* USER CODE END DMA1_Channel5_IRQn 0 */ using namespace bobbycar::controller; HAL_DMA_IRQHandler(&hdma_usart2_tx); /* USER CODE BEGIN DMA1_Channel5_IRQn 1 */ /* USER CODE END DMA1_Channel5_IRQn 1 */ } #endif #ifdef HUART3 /** * @brief This function handles DMA1 channel2 global interrupt. */ extern "C" void DMA1_Channel2_IRQHandler() { /* USER CODE BEGIN DMA1_Channel2_IRQn 0 */ /* USER CODE END DMA1_Channel2_IRQn 0 */ using namespace bobbycar::controller; HAL_DMA_IRQHandler(&hdma_usart3_tx); /* USER CODE BEGIN DMA1_Channel2_IRQn 1 */ /* USER CODE END DMA1_Channel2_IRQn 1 */ } /** * @brief This function handles DMA1 channel3 global interrupt. */ extern "C" void DMA1_Channel3_IRQHandler() { /* USER CODE BEGIN DMA1_Channel3_IRQn 0 */ /* USER CODE END DMA1_Channel3_IRQn 0 */ using namespace bobbycar::controller; HAL_DMA_IRQHandler(&hdma_usart3_rx); /* USER CODE BEGIN DMA1_Channel3_IRQn 1 */ /* USER CODE END DMA1_Channel3_IRQn 1 */ } #endif #ifdef FEATURE_CAN extern "C" void CANx_RX_IRQHandler(void) { using namespace bobbycar::controller; HAL_CAN_IRQHandler(&CanHandle); } extern "C" void CANx_TX_IRQHandler(void) { using namespace bobbycar::controller; HAL_CAN_IRQHandler(&CanHandle); } #endif