/* * This file is part of the hoverboard-firmware-hack project. * * Copyright (C) 2017-2018 Rene Hopf * Copyright (C) 2017-2018 Nico Stute * Copyright (C) 2017-2018 Niklas Fauth * Copyright (C) 2019-2020 Emanuel FERU * Copyright (C) 2019-2020 Daniel Brunner * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "stm32f1xx_hal.h" #include "defines.h" #include "config.h" #include "protocol.h" extern "C" { #include "BLDC_controller.h" extern const P rtP_Left; // default settings defined in BLDC_controller_data.c } namespace { TIM_HandleTypeDef htim_right; TIM_HandleTypeDef htim_left; ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; UART_HandleTypeDef huart2; //UART_HandleTypeDef huart3; DMA_HandleTypeDef hdma_usart2_rx; DMA_HandleTypeDef hdma_usart2_tx; //DMA_HandleTypeDef hdma_usart3_rx; //DMA_HandleTypeDef hdma_usart3_tx; volatile struct { uint16_t dcr; uint16_t dcl; uint16_t rl1; uint16_t rl2; uint16_t rr1; uint16_t rr2; uint16_t batt1; uint16_t l_tx2; uint16_t temp; uint16_t l_rx2; } adc_buffer; // ############################################################################### volatile uint32_t timeout; int16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command uint32_t main_loop_counter; uint16_t offsetcount = 0; int16_t offsetrl1 = 2000; int16_t offsetrl2 = 2000; int16_t offsetrr1 = 2000; int16_t offsetrr2 = 2000; int16_t offsetdcl = 2000; int16_t offsetdcr = 2000; int16_t batVoltage = (400 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE; int32_t batVoltageFixdt = (400 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE << 20; // Fixed-point filter output initialized at 400 V*100/cell = 4 V/cell converted to fixed-point int32_t board_temp_adcFixdt = adc_buffer.temp << 20; // Fixed-point filter output initialized with current ADC converted to fixed-point int16_t board_temp_adcFilt = adc_buffer.temp; int16_t board_temp_deg_c; struct { RT_MODEL rtM; /* Real-time model */ P rtP; /* Block parameters (auto storage) */ DW rtDW; /* Observable states */ ExtU rtU; /* External inputs */ ExtY rtY; /* External outputs */ MotorState state; uint32_t chops = 0; } left, right; struct { BuzzerState state; uint32_t timer = 0; } buzzer; Command command; Feedback feedback; void filtLowPass32(int16_t u, uint16_t coef, int32_t *y); void SystemClock_Config(); void UART2_Init(); //void UART3_Init(); void MX_GPIO_Init(); void MX_TIM_Init(); void MX_ADC1_Init(); void MX_ADC2_Init(); void poweroff(); void parseCommand(); void sendFeedback(); } // anonymous namespace int main() { HAL_Init(); __HAL_RCC_AFIO_CLK_ENABLE(); HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); /* System interrupt init*/ /* MemoryManagement_IRQn interrupt configuration */ HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0); /* BusFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0); /* UsageFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0); /* SVCall_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0); /* DebugMonitor_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0); /* PendSV_IRQn interrupt configuration */ HAL_NVIC_SetPriority(PendSV_IRQn, 0, 0); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); SystemClock_Config(); __HAL_RCC_DMA1_CLK_DISABLE(); MX_GPIO_Init(); MX_TIM_Init(); MX_ADC1_Init(); MX_ADC2_Init(); HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_SET); HAL_ADC_Start(&hadc1); HAL_ADC_Start(&hadc2); left.rtP = rtP_Left; left.rtP.z_selPhaCurMeasABC = 1; // Left motor measured current phases = {iA, iB} -> do NOT change left.rtP.z_ctrlTypSel = uint8_t(left.state.ctrlTyp); left.rtP.b_diagEna = DIAG_ENA; left.rtP.i_max = (left.state.iMotMax * A2BIT_CONV) << 4; // fixdt(1,16,4) left.rtP.n_max = left.state.nMotMax << 4; // fixdt(1,16,4) left.rtP.b_fieldWeakEna = FIELD_WEAK_ENA; left.rtP.id_fieldWeakMax = (left.state.fieldWeakMax * A2BIT_CONV) << 4; // fixdt(1,16,4) left.rtP.a_phaAdvMax = left.state.phaseAdvMax << 4; // fixdt(1,16,4) left.rtP.r_fieldWeakHi = FIELD_WEAK_HI << 4; // fixdt(1,16,4) left.rtP.r_fieldWeakLo = FIELD_WEAK_LO << 4; // fixdt(1,16,4) left.rtM.defaultParam = &left.rtP; left.rtM.dwork = &left.rtDW; left.rtM.inputs = &left.rtU; left.rtM.outputs = &left.rtY; right.rtP = rtP_Left; right.rtP.z_selPhaCurMeasABC = 1; // Left motor measured current phases = {iB, iC} -> do NOT change right.rtP.z_ctrlTypSel = uint8_t(right.state.ctrlTyp); right.rtP.b_diagEna = DIAG_ENA; right.rtP.i_max = (right.state.iMotMax * A2BIT_CONV) << 4; // fixdt(1,16,4) right.rtP.n_max = right.state.nMotMax << 4; // fixdt(1,16,4) right.rtP.b_fieldWeakEna = FIELD_WEAK_ENA; right.rtP.id_fieldWeakMax = (right.state.fieldWeakMax * A2BIT_CONV) << 4; // fixdt(1,16,4) right.rtP.a_phaAdvMax = right.state.phaseAdvMax << 4; // fixdt(1,16,4) right.rtP.r_fieldWeakHi = FIELD_WEAK_HI << 4; // fixdt(1,16,4) right.rtP.r_fieldWeakLo = FIELD_WEAK_LO << 4; // fixdt(1,16,4) right.rtM.defaultParam = &right.rtP; right.rtM.dwork = &right.rtDW; right.rtM.inputs = &right.rtU; right.rtM.outputs = &right.rtY; /* Initialize BLDC controllers */ BLDC_controller_initialize(&left.rtM); BLDC_controller_initialize(&right.rtM); for (int i = 8; i >= 0; i--) { buzzer.state.freq = (uint8_t)i; HAL_Delay(50); } buzzer.state.freq = 0; #define UART_DMA_CHANNEL DMA1_Channel7 UART2_Init(); //#define UART_DMA_CHANNEL DMA1_Channel2 //UART3_Init(); int pwm = 0; int8_t dir = 1; const int pwmMax = 1000; for (;;) { HAL_Delay(DELAY_IN_MAIN_LOOP ); //delay in ms timeout = 0; left.state.enable = true; left.state.ctrlMod = ControlMode::Voltage;//FieldOrientedControl left.state.ctrlTyp = ControlType::FieldOrientedControl;//Sinusoidal; left.state.pwm = pwm; left.state.iMotMax = 10; right.state.enable = true; right.state.ctrlMod = ControlMode::Voltage; right.state.ctrlTyp = ControlType::FieldOrientedControl; right.state.pwm = pwm; right.state.iMotMax = 10; pwm += dir; if (pwm > pwmMax) { pwm = pwmMax; dir = -1; } else if (pwm < -pwmMax) { pwm = -pwmMax; dir = 1; } // ####### CALC BOARD TEMPERATURE ####### filtLowPass32(adc_buffer.temp, TEMP_FILT_COEF, &board_temp_adcFixdt); board_temp_adcFilt = (int16_t)(board_temp_adcFixdt >> 20); // convert fixed-point to integer board_temp_deg_c = (TEMP_CAL_HIGH_DEG_C - TEMP_CAL_LOW_DEG_C) * (board_temp_adcFilt - TEMP_CAL_LOW_ADC) / (TEMP_CAL_HIGH_ADC - TEMP_CAL_LOW_ADC) + TEMP_CAL_LOW_DEG_C; // if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) // { // left.state.enable = right.state.enable = 0; // disable motors // // while (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {} // wait until button is released // // if(__HAL_RCC_GET_FLAG(RCC_FLAG_SFTRST)) { // do not power off after software reset (from a programmer/debugger) // __HAL_RCC_CLEAR_RESET_FLAGS(); // clear reset flags // } else { // poweroff(); // release power-latch // } // } main_loop_counter++; timeout++; } } namespace { void updateMotors() { DMA1->IFCR = DMA_IFCR_CTCIF1; if(offsetcount < 2000) { // calibrate ADC offsets offsetcount++; offsetrl1 = (adc_buffer.rl1 + offsetrl1) / 2; offsetrl2 = (adc_buffer.rl2 + offsetrl2) / 2; offsetrr1 = (adc_buffer.rr1 + offsetrr1) / 2; offsetrr2 = (adc_buffer.rr2 + offsetrr2) / 2; offsetdcl = (adc_buffer.dcl + offsetdcl) / 2; offsetdcr = (adc_buffer.dcr + offsetdcr) / 2; return; } if (buzzer.timer % 1000 == 0) { // because you get float rounding errors if it would run every time -> not any more, everything converted to fixed-point filtLowPass32(adc_buffer.batt1, BAT_FILT_COEF, &batVoltageFixdt); batVoltage = (int16_t)(batVoltageFixdt >> 20); // convert fixed-point to integer } // Get Left motor currents int16_t curL_phaB = (int16_t)(offsetrl1 - adc_buffer.rl1)*2; int16_t curL_phaA = (int16_t)(offsetrl2 - adc_buffer.rl2)*2; int16_t curL_DC = (int16_t)(offsetdcl - adc_buffer.dcl); // Get Right motor currents int16_t curR_phaB = (int16_t)(offsetrr1 - adc_buffer.rr1)*2; int16_t curR_phaC = (int16_t)(offsetrr2 - adc_buffer.rr2)*2; int16_t curR_DC = (int16_t)(offsetdcr - adc_buffer.dcr); const int8_t chopL = std::abs(curL_DC) > (left.state.iDcMax * A2BIT_CONV); if (chopL) left.chops++; const int8_t chopR = std::abs(curR_DC) > (right.state.iDcMax * A2BIT_CONV); if (chopR) right.chops++; // Disable PWM when current limit is reached (current chopping) // This is the Level 2 of current protection. The Level 1 should kick in first given by I_MOT_MAX if(chopL || timeout > TIMEOUT || left.state.enable == 0) { LEFT_TIM->BDTR &= ~TIM_BDTR_MOE; } else { LEFT_TIM->BDTR |= TIM_BDTR_MOE; } if(chopR || timeout > TIMEOUT || right.state.enable == 0) { RIGHT_TIM->BDTR &= ~TIM_BDTR_MOE; } else { RIGHT_TIM->BDTR |= TIM_BDTR_MOE; } //create square wave for buzzer buzzer.timer++; if (buzzer.state.freq != 0 && (buzzer.timer / 5000) % (buzzer.state.pattern + 1) == 0) { if (buzzer.timer % buzzer.state.freq == 0) { HAL_GPIO_TogglePin(BUZZER_PORT, BUZZER_PIN); } } else { HAL_GPIO_WritePin(BUZZER_PORT, BUZZER_PIN, GPIO_PIN_RESET); } // ############################### MOTOR CONTROL ############################### static boolean_T OverrunFlag = false; /* Check for overrun */ if (OverrunFlag) { return; } OverrunFlag = true; constexpr int32_t pwm_res = 64000000 / 2 / PWM_FREQ; // = 2000 constexpr int32_t pwm_margin = 100; /* This margin allows to always have a window in the PWM signal for proper Phase currents measurement */ /* Make sure to stop BOTH motors in case of an error */ const bool enableLFin = left.state.enable && left.rtY.z_errCode == 0 && left.rtY.z_errCode == 0; const bool enableRFin = right.state.enable && left.rtY.z_errCode == 0 && right.rtY.z_errCode == 0; // ========================= LEFT MOTOR ============================ // Get hall sensors values bool hall_ul = !(LEFT_HALL_U_PORT->IDR & LEFT_HALL_U_PIN); bool hall_vl = !(LEFT_HALL_V_PORT->IDR & LEFT_HALL_V_PIN); bool hall_wl = !(LEFT_HALL_W_PORT->IDR & LEFT_HALL_W_PIN); /* Set motor inputs here */ left.rtP.z_ctrlTypSel = uint8_t(left.state.ctrlTyp); left.rtP.i_max = (left.state.iMotMax * A2BIT_CONV) << 4; // fixdt(1,16,4) left.rtP.n_max = left.state.nMotMax << 4; // fixdt(1,16,4) left.rtP.id_fieldWeakMax = (left.state.fieldWeakMax * A2BIT_CONV) << 4; // fixdt(1,16,4) left.rtP.a_phaAdvMax = left.state.phaseAdvMax << 4; // fixdt(1,16,4) left.rtU.b_motEna = enableLFin; left.rtU.z_ctrlModReq = uint8_t(left.state.ctrlMod); left.rtU.r_inpTgt = left.state.pwm; left.rtU.b_hallA = hall_ul; left.rtU.b_hallB = hall_vl; left.rtU.b_hallC = hall_wl; left.rtU.i_phaAB = curL_phaA; left.rtU.i_phaBC = curL_phaB; left.rtU.i_DCLink = curL_DC; /* Step the controller */ BLDC_controller_step(&left.rtM); /* Get motor outputs here */ int ul = left.rtY.DC_phaA; int vl = left.rtY.DC_phaB; int wl = left.rtY.DC_phaC; /* Apply commands */ LEFT_TIM->LEFT_TIM_U = (uint16_t)std::clamp(ul + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); LEFT_TIM->LEFT_TIM_V = (uint16_t)std::clamp(vl + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); LEFT_TIM->LEFT_TIM_W = (uint16_t)std::clamp(wl + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); // ================================================================= // ========================= RIGHT MOTOR =========================== // Get hall sensors values bool hall_ur = !(RIGHT_HALL_U_PORT->IDR & RIGHT_HALL_U_PIN); bool hall_vr = !(RIGHT_HALL_V_PORT->IDR & RIGHT_HALL_V_PIN); bool hall_wr = !(RIGHT_HALL_W_PORT->IDR & RIGHT_HALL_W_PIN); /* Set motor inputs here */ right.rtP.z_ctrlTypSel = uint8_t(right.state.ctrlTyp); right.rtP.i_max = (right.state.iMotMax * A2BIT_CONV) << 4; // fixdt(1,16,4) right.rtP.n_max = right.state.nMotMax << 4; // fixdt(1,16,4) right.rtP.id_fieldWeakMax = (right.state.fieldWeakMax * A2BIT_CONV) << 4; // fixdt(1,16,4) right.rtP.a_phaAdvMax = right.state.phaseAdvMax << 4; // fixdt(1,16,4) right.rtU.b_motEna = enableRFin; right.rtU.z_ctrlModReq = uint8_t(right.state.ctrlMod); right.rtU.r_inpTgt = right.state.pwm; right.rtU.b_hallA = hall_ur; right.rtU.b_hallB = hall_vr; right.rtU.b_hallC = hall_wr; right.rtU.i_phaAB = curR_phaB; right.rtU.i_phaBC = curR_phaC; right.rtU.i_DCLink = curR_DC; /* Step the controller */ BLDC_controller_step(&right.rtM); /* Get motor outputs here */ int ur = right.rtY.DC_phaA; int vr = right.rtY.DC_phaB; int wr = right.rtY.DC_phaC; /* Apply commands */ RIGHT_TIM->RIGHT_TIM_U = (uint16_t)std::clamp(ur + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); RIGHT_TIM->RIGHT_TIM_V = (uint16_t)std::clamp(vr + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); RIGHT_TIM->RIGHT_TIM_W = (uint16_t)std::clamp(wr + pwm_res / 2, pwm_margin, pwm_res-pwm_margin); // ================================================================= /* Indicate task complete */ OverrunFlag = false; } // =========================================================== /* Low pass filter fixed-point 32 bits: fixdt(1,32,20) * Max: 2047.9375 * Min: -2048 * Res: 0.0625 * * Inputs: u = int16 * Outputs: y = fixdt(1,32,20) * Parameters: coef = fixdt(0,16,16) = [0,65535U] * * Example: * If coef = 0.8 (in floating point), then coef = 0.8 * 2^16 = 52429 (in fixed-point) * filtLowPass16(u, 52429, &y); * yint = (int16_t)(y >> 20); // the integer output is the fixed-point ouput shifted by 20 bits */ void filtLowPass32(int16_t u, uint16_t coef, int32_t *y) { int tmp; tmp = (int16_t)(u << 4) - (*y >> 16); tmp = std::clamp(tmp, -32768, 32767); // Overflow protection *y = coef * tmp + (*y); } // =========================================================== /** System Clock Configuration */ void SystemClock_Config() { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInit; /**Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 16; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; HAL_RCC_OscConfig(&RCC_OscInitStruct); /**Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; // PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8; // 8 MHz PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV4; // 16 MHz HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000); /**Configure the Systick */ HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); } void UART2_Init() { /* The code below is commented out - otwerwise Serial Receive does not work */ // #ifdef CONTROL_SERIAL_USART2 // /* DMA1_Channel6_IRQn interrupt configuration */ // HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 6); // HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn); // /* DMA1_Channel7_IRQn interrupt configuration */ // HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 7); // HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn); // #endif // Disable serial interrupt - it is not needed HAL_NVIC_DisableIRQ(DMA1_Channel6_IRQn); // Rx Channel HAL_NVIC_DisableIRQ(DMA1_Channel7_IRQn); // Tx Channel __HAL_RCC_DMA1_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_USART2_CLK_ENABLE(); huart2.Instance = USART2; huart2.Init.BaudRate = USART2_BAUD; huart2.Init.WordLength = USART2_WORDLENGTH; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.Mode = UART_MODE_TX_RX; HAL_UART_Init(&huart2); USART2->CR3 |= USART_CR3_DMAT; // | USART_CR3_DMAR | USART_CR3_OVRDIS; GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Pull = GPIO_PULLUP; //GPIO_NOPULL; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; //GPIO_MODE_AF_PP; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* Peripheral DMA init*/ hdma_usart2_rx.Instance = DMA1_Channel6; hdma_usart2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_usart2_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart2_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart2_rx.Init.Mode = DMA_CIRCULAR; //DMA_NORMAL; hdma_usart2_rx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_usart2_rx); __HAL_LINKDMA(&huart2, hdmarx, hdma_usart2_rx); hdma_usart2_tx.Instance = DMA1_Channel7; hdma_usart2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_usart2_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_usart2_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_usart2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; hdma_usart2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; hdma_usart2_tx.Init.Mode = DMA_NORMAL; hdma_usart2_tx.Init.Priority = DMA_PRIORITY_LOW; HAL_DMA_Init(&hdma_usart2_tx); __HAL_LINKDMA(&huart2, hdmatx, hdma_usart2_tx); DMA1_Channel7->CPAR = uint64_t(&(USART2->DR)); DMA1_Channel7->CNDTR = 0; DMA1->IFCR = DMA_IFCR_CTCIF7 | DMA_IFCR_CHTIF7 | DMA_IFCR_CGIF7; } //void UART3_Init() { // /* The code below is commented out - otwerwise Serial Receive does not work */ // // #ifdef CONTROL_SERIAL_USART3 // // /* DMA1_Channel3_IRQn interrupt configuration */ // // HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 5, 3); // // HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn); // // /* DMA1_Channel2_IRQn interrupt configuration */ // // HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 5, 2); // // HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn); // // #endif // // Disable serial interrupt - it is not needed // HAL_NVIC_DisableIRQ(DMA1_Channel3_IRQn); // Rx Channel // HAL_NVIC_DisableIRQ(DMA1_Channel2_IRQn); // Tx Channel // __HAL_RCC_DMA1_CLK_ENABLE(); // __HAL_RCC_GPIOB_CLK_ENABLE(); // __HAL_RCC_USART3_CLK_ENABLE(); // huart3.Instance = USART3; // huart3.Init.BaudRate = USART3_BAUD; // huart3.Init.WordLength = USART3_WORDLENGTH; // huart3.Init.StopBits = UART_STOPBITS_1; // huart3.Init.Parity = UART_PARITY_NONE; // huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; // huart3.Init.OverSampling = UART_OVERSAMPLING_16; // #if defined(CONTROL_SERIAL_USART3) // huart3.Init.Mode = UART_MODE_TX_RX; // #elif defined(DEBUG_SERIAL_USART3) // huart3.Init.Mode = UART_MODE_TX; // #endif // HAL_UART_Init(&huart3); // #if defined(FEEDBACK_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3) // USART3->CR3 |= USART_CR3_DMAT; // | USART_CR3_DMAR | USART_CR3_OVRDIS; // #endif // GPIO_InitTypeDef GPIO_InitStruct; // GPIO_InitStruct.Pin = GPIO_PIN_10; // GPIO_InitStruct.Pull = GPIO_PULLUP; // GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; // GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); // #ifdef CONTROL_SERIAL_USART3 // GPIO_InitStruct.Pin = GPIO_PIN_11; // GPIO_InitStruct.Mode = GPIO_MODE_INPUT; // HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); // /* Peripheral DMA init*/ // hdma_usart3_rx.Instance = DMA1_Channel3; // hdma_usart3_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; // hdma_usart3_rx.Init.PeriphInc = DMA_PINC_DISABLE; // hdma_usart3_rx.Init.MemInc = DMA_MINC_ENABLE; // hdma_usart3_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; // hdma_usart3_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; // hdma_usart3_rx.Init.Mode = DMA_CIRCULAR; //DMA_NORMAL; // hdma_usart3_rx.Init.Priority = DMA_PRIORITY_LOW; // HAL_DMA_Init(&hdma_usart3_rx); // __HAL_LINKDMA(&huart3, hdmarx, hdma_usart3_rx); // #endif // hdma_usart3_tx.Instance = DMA1_Channel2; // hdma_usart3_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; // hdma_usart3_tx.Init.PeriphInc = DMA_PINC_DISABLE; // hdma_usart3_tx.Init.MemInc = DMA_MINC_ENABLE; // hdma_usart3_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; // hdma_usart3_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; // hdma_usart3_tx.Init.Mode = DMA_NORMAL; // hdma_usart3_tx.Init.Priority = DMA_PRIORITY_LOW; // HAL_DMA_Init(&hdma_usart3_tx); // #ifdef CONTROL_SERIAL_USART3 // __HAL_LINKDMA(&huart3, hdmatx, hdma_usart3_tx); // #endif // #if defined(FEEDBACK_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3) // DMA1_Channel2->CPAR = (uint32_t) & (USART3->DR); // DMA1_Channel2->CNDTR = 0; // DMA1->IFCR = DMA_IFCR_CTCIF2 | DMA_IFCR_CHTIF2 | DMA_IFCR_CGIF2; // #endif //} void MX_GPIO_Init() { GPIO_InitTypeDef GPIO_InitStruct; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = LEFT_HALL_U_PIN; HAL_GPIO_Init(LEFT_HALL_U_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_HALL_V_PIN; HAL_GPIO_Init(LEFT_HALL_V_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_HALL_W_PIN; HAL_GPIO_Init(LEFT_HALL_W_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_HALL_U_PIN; HAL_GPIO_Init(RIGHT_HALL_U_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_HALL_V_PIN; HAL_GPIO_Init(RIGHT_HALL_V_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_HALL_W_PIN; HAL_GPIO_Init(RIGHT_HALL_W_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = CHARGER_PIN; HAL_GPIO_Init(CHARGER_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = BUTTON_PIN; HAL_GPIO_Init(BUTTON_PORT, &GPIO_InitStruct); GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pin = LED_PIN; HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = BUZZER_PIN; HAL_GPIO_Init(BUZZER_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = OFF_PIN; HAL_GPIO_Init(OFF_PORT, &GPIO_InitStruct); GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pin = LEFT_DC_CUR_PIN; HAL_GPIO_Init(LEFT_DC_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_U_CUR_PIN; HAL_GPIO_Init(LEFT_U_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_V_CUR_PIN; HAL_GPIO_Init(LEFT_V_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_DC_CUR_PIN; HAL_GPIO_Init(RIGHT_DC_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_U_CUR_PIN; HAL_GPIO_Init(RIGHT_U_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_V_CUR_PIN; HAL_GPIO_Init(RIGHT_V_CUR_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = DCLINK_PIN; HAL_GPIO_Init(DCLINK_PORT, &GPIO_InitStruct); //Analog in GPIO_InitStruct.Pin = GPIO_PIN_3; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_2; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pin = LEFT_TIM_UH_PIN; HAL_GPIO_Init(LEFT_TIM_UH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_VH_PIN; HAL_GPIO_Init(LEFT_TIM_VH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_WH_PIN; HAL_GPIO_Init(LEFT_TIM_WH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_UL_PIN; HAL_GPIO_Init(LEFT_TIM_UL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_VL_PIN; HAL_GPIO_Init(LEFT_TIM_VL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = LEFT_TIM_WL_PIN; HAL_GPIO_Init(LEFT_TIM_WL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_UH_PIN; HAL_GPIO_Init(RIGHT_TIM_UH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_VH_PIN; HAL_GPIO_Init(RIGHT_TIM_VH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_WH_PIN; HAL_GPIO_Init(RIGHT_TIM_WH_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_UL_PIN; HAL_GPIO_Init(RIGHT_TIM_UL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_VL_PIN; HAL_GPIO_Init(RIGHT_TIM_VL_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = RIGHT_TIM_WL_PIN; HAL_GPIO_Init(RIGHT_TIM_WL_PORT, &GPIO_InitStruct); } void MX_TIM_Init() { __HAL_RCC_TIM1_CLK_ENABLE(); __HAL_RCC_TIM8_CLK_ENABLE(); TIM_MasterConfigTypeDef sMasterConfig; TIM_OC_InitTypeDef sConfigOC; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig; TIM_SlaveConfigTypeDef sTimConfig; htim_right.Instance = RIGHT_TIM; htim_right.Init.Prescaler = 0; htim_right.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1; htim_right.Init.Period = 64000000 / 2 / PWM_FREQ; htim_right.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim_right.Init.RepetitionCounter = 0; htim_right.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; HAL_TIM_PWM_Init(&htim_right); sMasterConfig.MasterOutputTrigger = TIM_TRGO_ENABLE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(&htim_right, &sMasterConfig); sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET; HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_1); HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_2); HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_3); sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = DEAD_TIME; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; HAL_TIMEx_ConfigBreakDeadTime(&htim_right, &sBreakDeadTimeConfig); htim_left.Instance = LEFT_TIM; htim_left.Init.Prescaler = 0; htim_left.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1; htim_left.Init.Period = 64000000 / 2 / PWM_FREQ; htim_left.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim_left.Init.RepetitionCounter = 0; htim_left.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; HAL_TIM_PWM_Init(&htim_left); sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE; HAL_TIMEx_MasterConfigSynchronization(&htim_left, &sMasterConfig); sTimConfig.InputTrigger = TIM_TS_ITR0; sTimConfig.SlaveMode = TIM_SLAVEMODE_GATED; HAL_TIM_SlaveConfigSynchronization(&htim_left, &sTimConfig); // Start counting >0 to effectively offset timers by the time it takes for one ADC conversion to complete. // This method allows that the Phase currents ADC measurements are properly aligned with LOW-FET ON region for both motors LEFT_TIM->CNT = ADC_TOTAL_CONV_TIME; sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET; HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_1); HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_2); HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_3); sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = DEAD_TIME; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; HAL_TIMEx_ConfigBreakDeadTime(&htim_left, &sBreakDeadTimeConfig); LEFT_TIM->BDTR &= ~TIM_BDTR_MOE; RIGHT_TIM->BDTR &= ~TIM_BDTR_MOE; HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_3); HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_1); HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_2); HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_3); HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_3); HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_1); HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_2); HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_3); htim_left.Instance->RCR = 1; __HAL_TIM_ENABLE(&htim_right); } void MX_ADC1_Init() { ADC_MultiModeTypeDef multimode; ADC_ChannelConfTypeDef sConfig; __HAL_RCC_ADC1_CLK_ENABLE(); hadc1.Instance = ADC1; hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T8_TRGO; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 5; HAL_ADC_Init(&hadc1); /**Enable or disable the remapping of ADC1_ETRGREG: * ADC1 External Event regular conversion is connected to TIM8 TRG0 */ __HAL_AFIO_REMAP_ADC1_ETRGREG_ENABLE(); /**Configure the ADC multi-mode */ multimode.Mode = ADC_DUALMODE_REGSIMULT; HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode); sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.Channel = ADC_CHANNEL_11; // pc1 left cur -> right sConfig.Rank = 1; HAL_ADC_ConfigChannel(&hadc1, &sConfig); // sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5; sConfig.Channel = ADC_CHANNEL_0; // pa0 right a -> left sConfig.Rank = 2; HAL_ADC_ConfigChannel(&hadc1, &sConfig); sConfig.Channel = ADC_CHANNEL_14; // pc4 left b -> right sConfig.Rank = 3; HAL_ADC_ConfigChannel(&hadc1, &sConfig); sConfig.Channel = ADC_CHANNEL_12; // pc2 vbat sConfig.Rank = 4; HAL_ADC_ConfigChannel(&hadc1, &sConfig); //temperature requires at least 17.1uS sampling time sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5; sConfig.Channel = ADC_CHANNEL_TEMPSENSOR; // internal temp sConfig.Rank = 5; HAL_ADC_ConfigChannel(&hadc1, &sConfig); hadc1.Instance->CR2 |= ADC_CR2_DMA | ADC_CR2_TSVREFE; __HAL_ADC_ENABLE(&hadc1); __HAL_RCC_DMA1_CLK_ENABLE(); DMA1_Channel1->CCR = 0; DMA1_Channel1->CNDTR = 5; DMA1_Channel1->CPAR = uint64_t(&(ADC1->DR)); DMA1_Channel1->CMAR = uint64_t(&adc_buffer); DMA1_Channel1->CCR = DMA_CCR_MSIZE_1 | DMA_CCR_PSIZE_1 | DMA_CCR_MINC | DMA_CCR_CIRC | DMA_CCR_TCIE; DMA1_Channel1->CCR |= DMA_CCR_EN; HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); } /* ADC2 init function */ void MX_ADC2_Init() { ADC_ChannelConfTypeDef sConfig; __HAL_RCC_ADC2_CLK_ENABLE(); // HAL_ADC_DeInit(&hadc2); // hadc2.Instance->CR2 = 0; /**Common config */ hadc2.Instance = ADC2; hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.NbrOfConversion = 5; HAL_ADC_Init(&hadc2); sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.Channel = ADC_CHANNEL_10; // pc0 right cur -> left sConfig.Rank = 1; HAL_ADC_ConfigChannel(&hadc2, &sConfig); // sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5; sConfig.Channel = ADC_CHANNEL_13; // pc3 right b -> left sConfig.Rank = 2; HAL_ADC_ConfigChannel(&hadc2, &sConfig); sConfig.Channel = ADC_CHANNEL_15; // pc5 left c -> right sConfig.Rank = 3; HAL_ADC_ConfigChannel(&hadc2, &sConfig); sConfig.Channel = ADC_CHANNEL_2; // pa2 uart-l-tx sConfig.Rank = 4; HAL_ADC_ConfigChannel(&hadc2, &sConfig); sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5; sConfig.Channel = ADC_CHANNEL_3; // pa3 uart-l-rx sConfig.Rank = 5; HAL_ADC_ConfigChannel(&hadc2, &sConfig); hadc2.Instance->CR2 |= ADC_CR2_DMA; __HAL_ADC_ENABLE(&hadc2); } void poweroff() { // if (abs(speed) < 20) { // wait for the speed to drop, then shut down -> this is commented out for SAFETY reasons buzzer.state.pattern = 0; left.state.enable = right.state.enable = 0; for (int i = 0; i < 8; i++) { buzzer.state.freq = (uint8_t)i; HAL_Delay(50); } HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_RESET); for (int i = 0; i < 5; i++) HAL_Delay(1000); // } } void parseCommand() { bool any_parsed{false}; for (int i = 0; i < 1; i++) { if (command.start != Command::VALID_HEADER) continue; uint16_t checksum = calculateChecksum(command); if (command.checksum != checksum) continue; left.state = command.left; right.state = command.right; buzzer.state = command.buzzer; if (command.poweroff) poweroff(); HAL_GPIO_WritePin(LED_PORT, LED_PIN, command.led ? GPIO_PIN_RESET : GPIO_PIN_SET); command.start = Command::INVALID_HEADER; // Change the Start Frame for timeout detection in the next cycle timeoutCntSerial = 0; // Reset the timeout counter any_parsed = true; break; } if (!any_parsed) { if (timeoutCntSerial++ >= 100) // Timeout qualification { timeoutCntSerial = 100; // Limit timout counter value left.state = right.state = {.enable=true}; buzzer.state = { 24, 1 }; HAL_GPIO_WritePin(LED_PORT, LED_PIN, GPIO_PIN_RESET); // Check periodically the received Start Frame. Try to re-sync by reseting the DMA if (main_loop_counter % 25 == 0) { HAL_UART_DMAStop(&huart2); HAL_UART_Receive_DMA(&huart2, (uint8_t *)&command, sizeof(command)); } } } } void sendFeedback() { if (main_loop_counter % 50 == 0) { // Send data periodically if(UART_DMA_CHANNEL->CNDTR == 0) { feedback.start = Feedback::VALID_HEADER; feedback.left.angle = left.rtY.a_elecAngle; feedback.right.angle = right.rtY.a_elecAngle; feedback.left.speed = left.rtY.n_mot; feedback.right.speed = right.rtY.n_mot; feedback.left.error = left.rtY.z_errCode; feedback.right.error = right.rtY.z_errCode; feedback.left.current = left.rtU.i_DCLink; feedback.right.current = right.rtU.i_DCLink; feedback.left.chops = left.chops; feedback.right.chops = right.chops; left.chops = 0; right.chops = 0; feedback.left.hallA = left.rtU.b_hallA; feedback.left.hallB = left.rtU.b_hallB; feedback.left.hallC = left.rtU.b_hallC; feedback.right.hallA = right.rtU.b_hallA; feedback.right.hallB = right.rtU.b_hallB; feedback.right.hallC = right.rtU.b_hallC; feedback.batVoltage = batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC; feedback.boardTemp = board_temp_deg_c; feedback.timeoutCntSerial = timeoutCntSerial; feedback.checksum = calculateChecksum(feedback); UART_DMA_CHANNEL->CCR &= ~DMA_CCR_EN; UART_DMA_CHANNEL->CNDTR = sizeof(feedback); UART_DMA_CHANNEL->CMAR = uint64_t(&feedback); UART_DMA_CHANNEL->CCR |= DMA_CCR_EN; } } } } // anonymous namespace /******************************************************************************/ /* Cortex-M3 Processor Interruption and Exception Handlers */ /******************************************************************************/ /** * @brief This function handles Non maskable interrupt. */ extern "C" void NMI_Handler() { /* USER CODE BEGIN NonMaskableInt_IRQn 0 */ /* USER CODE END NonMaskableInt_IRQn 0 */ /* USER CODE BEGIN NonMaskableInt_IRQn 1 */ /* USER CODE END NonMaskableInt_IRQn 1 */ } /** * @brief This function handles Hard fault interrupt. */ extern "C" void HardFault_Handler() { /* USER CODE BEGIN HardFault_IRQn 0 */ /* USER CODE END HardFault_IRQn 0 */ while(1) { } /* USER CODE BEGIN HardFault_IRQn 1 */ /* USER CODE END HardFault_IRQn 1 */ } /** * @brief This function handles Memory management fault. */ extern "C" void MemManage_Handler() { /* USER CODE BEGIN MemoryManagement_IRQn 0 */ /* USER CODE END MemoryManagement_IRQn 0 */ while(1) { } /* USER CODE BEGIN MemoryManagement_IRQn 1 */ /* USER CODE END MemoryManagement_IRQn 1 */ } /** * @brief This function handles Prefetch fault, memory access fault. */ extern "C" void BusFault_Handler() { /* USER CODE BEGIN BusFault_IRQn 0 */ /* USER CODE END BusFault_IRQn 0 */ while(1) { } /* USER CODE BEGIN BusFault_IRQn 1 */ /* USER CODE END BusFault_IRQn 1 */ } /** * @brief This function handles Undefined instruction or illegal state. */ extern "C" void UsageFault_Handler() { /* USER CODE BEGIN UsageFault_IRQn 0 */ /* USER CODE END UsageFault_IRQn 0 */ while(1) { } /* USER CODE BEGIN UsageFault_IRQn 1 */ /* USER CODE END UsageFault_IRQn 1 */ } /** * @brief This function handles System service call via SWI instruction. */ extern "C" void SVC_Handler() { /* USER CODE BEGIN SVCall_IRQn 0 */ /* USER CODE END SVCall_IRQn 0 */ /* USER CODE BEGIN SVCall_IRQn 1 */ /* USER CODE END SVCall_IRQn 1 */ } /** * @brief This function handles Debug monitor. */ extern "C" void DebugMon_Handler() { /* USER CODE BEGIN DebugMonitor_IRQn 0 */ /* USER CODE END DebugMonitor_IRQn 0 */ /* USER CODE BEGIN DebugMonitor_IRQn 1 */ /* USER CODE END DebugMonitor_IRQn 1 */ } /** * @brief This function handles Pendable request for system service. */ extern "C" void PendSV_Handler() { /* USER CODE BEGIN PendSV_IRQn 0 */ /* USER CODE END PendSV_IRQn 0 */ /* USER CODE BEGIN PendSV_IRQn 1 */ /* USER CODE END PendSV_IRQn 1 */ } /** * @brief This function handles System tick timer. */ #ifdef CONTROL_PPM extern "C" void PPM_SysTick_Callback(); #endif extern "C" void SysTick_Handler() { /* USER CODE BEGIN SysTick_IRQn 0 */ /* USER CODE END SysTick_IRQn 0 */ HAL_IncTick(); HAL_SYSTICK_IRQHandler(); /* USER CODE BEGIN SysTick_IRQn 1 */ #ifdef CONTROL_PPM PPM_SysTick_Callback(); #endif /* USER CODE END SysTick_IRQn 1 */ } // ================================= // DMA interrupt frequency =~ 16 kHz // ================================= extern "C" void DMA1_Channel1_IRQHandler() { updateMotors(); } extern "C" void DMA1_Channel6_IRQHandler() { /* USER CODE BEGIN DMA1_Channel4_IRQn 0 */ /* USER CODE END DMA1_Channel4_IRQn 0 */ HAL_DMA_IRQHandler(&hdma_usart2_rx); /* USER CODE BEGIN DMA1_Channel4_IRQn 1 */ /* USER CODE END DMA1_Channel4_IRQn 1 */ } /** * @brief This function handles DMA1 channel5 global interrupt. */ extern "C" void DMA1_Channel7_IRQHandler() { /* USER CODE BEGIN DMA1_Channel5_IRQn 0 */ /* USER CODE END DMA1_Channel5_IRQn 0 */ HAL_DMA_IRQHandler(&hdma_usart2_tx); /* USER CODE BEGIN DMA1_Channel5_IRQn 1 */ /* USER CODE END DMA1_Channel5_IRQn 1 */ }