Files
bobbycar-controller-firmware/main.cpp

1391 lines
45 KiB
C++

/*
* This file is part of the hoverboard-firmware-hack project.
*
* Copyright (C) 2017-2018 Rene Hopf <renehopf@mac.com>
* Copyright (C) 2017-2018 Nico Stute <crinq@crinq.de>
* Copyright (C) 2017-2018 Niklas Fauth <niklas.fauth@kit.fail>
* Copyright (C) 2019-2020 Emanuel FERU <aerdronix@gmail.com>
* Copyright (C) 2019-2020 Daniel Brunner <daniel@brunner.ninja>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <atomic>
#include "stm32f1xx_hal.h"
#include "defines.h"
#include "config.h"
#include "protocol.h"
extern "C" {
#include "BLDC_controller.h"
extern const P rtP_Left; // default settings defined in BLDC_controller_data.c
}
namespace {
TIM_HandleTypeDef htim_right;
TIM_HandleTypeDef htim_left;
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
#ifdef HUARN2
UART_HandleTypeDef huart2;
#endif
#ifdef HUARN3
UART_HandleTypeDef huart3;
#endif
#ifdef HUARN2
DMA_HandleTypeDef hdma_usart2_rx;
DMA_HandleTypeDef hdma_usart2_tx;
#endif
#ifdef HUARN3
DMA_HandleTypeDef hdma_usart3_rx;
DMA_HandleTypeDef hdma_usart3_tx;
#endif
volatile struct {
uint16_t dcr;
uint16_t dcl;
uint16_t rl1;
uint16_t rl2;
uint16_t rr1;
uint16_t rr2;
uint16_t batt1;
uint16_t l_tx2;
uint16_t temp;
uint16_t l_rx2;
} adc_buffer;
// ###############################################################################
std::atomic<uint32_t> timeout;
int16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command
uint32_t main_loop_counter;
uint16_t offsetcount = 0;
int16_t offsetrl1 = 2000;
int16_t offsetrl2 = 2000;
int16_t offsetrr1 = 2000;
int16_t offsetrr2 = 2000;
int16_t offsetdcl = 2000;
int16_t offsetdcr = 2000;
int16_t batVoltage = (400 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE;
int32_t batVoltageFixdt = (400 * BAT_CELLS * BAT_CALIB_ADC) / BAT_CALIB_REAL_VOLTAGE << 20; // Fixed-point filter output initialized at 400 V*100/cell = 4 V/cell converted to fixed-point
int32_t board_temp_adcFixdt = adc_buffer.temp << 20; // Fixed-point filter output initialized with current ADC converted to fixed-point
int16_t board_temp_adcFilt = adc_buffer.temp;
int16_t board_temp_deg_c;
struct {
RT_MODEL rtM; /* Real-time model */
P rtP; /* Block parameters (auto storage) */
DW rtDW; /* Observable states */
ExtU rtU; /* External inputs */
ExtY rtY; /* External outputs */
MotorState state;
uint32_t chops = 0;
} left, right;
struct {
BuzzerState state;
uint32_t timer = 0;
} buzzer;
Command command;
Feedback feedback;
void filtLowPass32(int16_t u, uint16_t coef, int32_t *y);
void SystemClock_Config();
#ifdef HUARN2
void UART2_Init();
#endif
#ifdef HUARN3
void UART3_Init();
#endif
void MX_GPIO_Init();
void MX_TIM_Init();
void MX_ADC1_Init();
void MX_ADC2_Init();
void poweroff();
#ifdef FEATURE_SERIAL_CONTROL
void parseCommand();
#endif
#ifdef FEATURE_SERIAL_FEEDBACK
void sendFeedback();
#endif
} // anonymous namespace
int main()
{
HAL_Init();
__HAL_RCC_AFIO_CLK_ENABLE();
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* System interrupt init*/
/* MemoryManagement_IRQn interrupt configuration */
HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0);
/* BusFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0);
/* UsageFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0);
/* SVCall_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0);
/* DebugMonitor_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0);
/* PendSV_IRQn interrupt configuration */
HAL_NVIC_SetPriority(PendSV_IRQn, 0, 0);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
SystemClock_Config();
__HAL_RCC_DMA1_CLK_DISABLE();
MX_GPIO_Init();
MX_TIM_Init();
MX_ADC1_Init();
MX_ADC2_Init();
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_SET);
HAL_ADC_Start(&hadc1);
HAL_ADC_Start(&hadc2);
enum { CurrentMeasAB, CurrentMeasBC, CurrentMeasAC };
left.rtP = rtP_Left;
#ifdef PETERS_PLATINE
left.rtP.z_selPhaCurMeasABC = CurrentMeasBC; // Left motor measured current phases = {iB, iC} -> do NOT change
#else
left.rtP.z_selPhaCurMeasABC = CurrentMeasAB; // Left motor measured current phases = {iA, iB} -> do NOT change
#endif
left.rtP.z_ctrlTypSel = uint8_t(left.state.ctrlTyp);
left.rtP.b_diagEna = DIAG_ENA;
left.rtP.i_max = (left.state.iMotMax * A2BIT_CONV) << 4; // fixdt(1,16,4)
left.rtP.n_max = left.state.nMotMax << 4; // fixdt(1,16,4)
left.rtP.b_fieldWeakEna = FIELD_WEAK_ENA;
left.rtP.id_fieldWeakMax = (left.state.fieldWeakMax * A2BIT_CONV) << 4; // fixdt(1,16,4)
left.rtP.a_phaAdvMax = left.state.phaseAdvMax << 4; // fixdt(1,16,4)
left.rtP.r_fieldWeakHi = FIELD_WEAK_HI << 4; // fixdt(1,16,4)
left.rtP.r_fieldWeakLo = FIELD_WEAK_LO << 4; // fixdt(1,16,4)
left.rtM.defaultParam = &left.rtP;
left.rtM.dwork = &left.rtDW;
left.rtM.inputs = &left.rtU;
left.rtM.outputs = &left.rtY;
right.rtP = rtP_Left;
right.rtP.z_selPhaCurMeasABC = CurrentMeasBC; // Right motor measured current phases = {iB, iC} -> do NOT change
right.rtP.z_ctrlTypSel = uint8_t(right.state.ctrlTyp);
right.rtP.b_diagEna = DIAG_ENA;
right.rtP.i_max = (right.state.iMotMax * A2BIT_CONV) << 4; // fixdt(1,16,4)
right.rtP.n_max = right.state.nMotMax << 4; // fixdt(1,16,4)
right.rtP.b_fieldWeakEna = FIELD_WEAK_ENA;
right.rtP.id_fieldWeakMax = (right.state.fieldWeakMax * A2BIT_CONV) << 4; // fixdt(1,16,4)
right.rtP.a_phaAdvMax = right.state.phaseAdvMax << 4; // fixdt(1,16,4)
right.rtP.r_fieldWeakHi = FIELD_WEAK_HI << 4; // fixdt(1,16,4)
right.rtP.r_fieldWeakLo = FIELD_WEAK_LO << 4; // fixdt(1,16,4)
right.rtM.defaultParam = &right.rtP;
right.rtM.dwork = &right.rtDW;
right.rtM.inputs = &right.rtU;
right.rtM.outputs = &right.rtY;
/* Initialize BLDC controllers */
BLDC_controller_initialize(&left.rtM);
BLDC_controller_initialize(&right.rtM);
for (int i = 8; i >= 0; i--)
{
buzzer.state.freq = (uint8_t)i;
HAL_Delay(50);
}
buzzer.state.freq = 0;
#ifdef HUARN2
UART2_Init();
#endif
#ifdef HUARN3
UART3_Init();
#endif
#ifdef MOTOR_TEST
int pwm = 0;
int8_t dir = 1;
#endif
#ifdef FEATURE_SERIAL_CONTROL
#ifdef HUARN2
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&command, sizeof(command));
#endif
#ifdef HUARN3
HAL_UART_Receive_DMA(&huart3, (uint8_t *)&command, sizeof(command));
#endif
#endif
while (true)
{
HAL_Delay(DELAY_IN_MAIN_LOOP); //delay in ms
#ifdef FEATURE_SERIAL_CONTROL
parseCommand();
#endif
timeout = 0;
#ifdef MOTOR_TEST
left.state.enable = true;
left.state.ctrlMod = ControlMode::Voltage;
left.state.ctrlTyp = ControlType::FieldOrientedControl;
left.state.pwm = pwm;
left.state.iMotMax = 2;
right.state.enable = true;
right.state.ctrlMod = ControlMode::Voltage;
right.state.ctrlTyp = ControlType::FieldOrientedControl;
right.state.pwm = pwm;
right.state.iMotMax = 2;
constexpr auto pwmMax = 250;
pwm += dir;
if (pwm > pwmMax) {
pwm = pwmMax;
dir = -1;
} else if (pwm < -pwmMax) {
pwm = -pwmMax;
dir = 1;
}
#endif
// ####### CALC BOARD TEMPERATURE #######
filtLowPass32(adc_buffer.temp, TEMP_FILT_COEF, &board_temp_adcFixdt);
board_temp_adcFilt = (int16_t)(board_temp_adcFixdt >> 20); // convert fixed-point to integer
board_temp_deg_c = (TEMP_CAL_HIGH_DEG_C - TEMP_CAL_LOW_DEG_C) * (board_temp_adcFilt - TEMP_CAL_LOW_ADC) / (TEMP_CAL_HIGH_ADC - TEMP_CAL_LOW_ADC) + TEMP_CAL_LOW_DEG_C;
#ifdef FEATURE_SERIAL_FEEDBACK
if (main_loop_counter % 50 != 0) // Send data periodically
sendFeedback();
#endif
#ifdef FEATURE_BUTTON
if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN))
{
left.state.enable = right.state.enable = 0; // disable motors
while (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {} // wait until button is released
if(__HAL_RCC_GET_FLAG(RCC_FLAG_SFTRST)) { // do not power off after software reset (from a programmer/debugger)
__HAL_RCC_CLEAR_RESET_FLAGS(); // clear reset flags
} else {
poweroff(); // release power-latch
}
}
#endif
main_loop_counter++;
timeout++;
}
}
namespace {
void updateMotors()
{
DMA1->IFCR = DMA_IFCR_CTCIF1;
if (offsetcount < 2000) // calibrate ADC offsets
{
offsetcount++;
offsetrl1 = (adc_buffer.rl1 + offsetrl1) / 2;
offsetrl2 = (adc_buffer.rl2 + offsetrl2) / 2;
offsetrr1 = (adc_buffer.rr1 + offsetrr1) / 2;
offsetrr2 = (adc_buffer.rr2 + offsetrr2) / 2;
offsetdcl = (adc_buffer.dcl + offsetdcl) / 2;
offsetdcr = (adc_buffer.dcr + offsetdcr) / 2;
return;
}
if (buzzer.timer % 1000 == 0) // because you get float rounding errors if it would run every time -> not any more, everything converted to fixed-point
{
filtLowPass32(adc_buffer.batt1, BAT_FILT_COEF, &batVoltageFixdt);
batVoltage = (int16_t)(batVoltageFixdt >> 20); // convert fixed-point to integer
}
// Get Left motor currents
#ifdef PETERS_PLATINE
int16_t curL_phaB = (int16_t)(offsetrl1 - adc_buffer.rl1)*2;
int16_t curL_phaA = (int16_t)(offsetrl2 - adc_buffer.rl2)*2;
#else
int16_t curL_phaA = (int16_t)(offsetrl1 - adc_buffer.rl1);
int16_t curL_phaB = (int16_t)(offsetrl2 - adc_buffer.rl2);
#endif
int16_t curL_DC = (int16_t)(offsetdcl - adc_buffer.dcl);
// Get Right motor currents
#ifdef PETERS_PLATINE
int16_t curR_phaB = (int16_t)(offsetrr1 - adc_buffer.rr1)*2;
int16_t curR_phaC = (int16_t)(offsetrr2 - adc_buffer.rr2)*2;
#else
int16_t curR_phaB = (int16_t)(offsetrr1 - adc_buffer.rr1);
int16_t curR_phaC = (int16_t)(offsetrr2 - adc_buffer.rr2);
#endif
int16_t curR_DC = (int16_t)(offsetdcr - adc_buffer.dcr);
const int8_t chopL = std::abs(curL_DC) > (left.state.iDcMax * A2BIT_CONV);
if (chopL)
left.chops++;
const int8_t chopR = std::abs(curR_DC) > (right.state.iDcMax * A2BIT_CONV);
if (chopR)
right.chops++;
// Disable PWM when current limit is reached (current chopping)
// This is the Level 2 of current protection. The Level 1 should kick in first given by I_MOT_MAX
const auto timeoutVal = timeout.load();
if (chopL || timeoutVal > TIMEOUT || left.state.enable == 0)
{
LEFT_TIM->BDTR &= ~TIM_BDTR_MOE;
}
else
{
LEFT_TIM->BDTR |= TIM_BDTR_MOE;
}
if (chopR || timeoutVal > TIMEOUT || right.state.enable == 0)
{
RIGHT_TIM->BDTR &= ~TIM_BDTR_MOE;
}
else
{
RIGHT_TIM->BDTR |= TIM_BDTR_MOE;
}
//create square wave for buzzer
buzzer.timer++;
if (buzzer.state.freq != 0 && (buzzer.timer / 1000) % (buzzer.state.pattern + 1) == 0)
{
if (buzzer.timer % buzzer.state.freq == 0)
{
HAL_GPIO_TogglePin(BUZZER_PORT, BUZZER_PIN);
}
}
else
{
HAL_GPIO_WritePin(BUZZER_PORT, BUZZER_PIN, GPIO_PIN_RESET);
}
// ############################### MOTOR CONTROL ###############################
static boolean_T OverrunFlag = false;
/* Check for overrun */
if (OverrunFlag)
return;
OverrunFlag = true;
constexpr int32_t pwm_res = 64000000 / 2 / PWM_FREQ; // = 2000
constexpr int32_t pwm_margin = 100; /* This margin allows to always have a window in the PWM signal for proper Phase currents measurement */
/* Make sure to stop BOTH motors in case of an error */
#ifdef FEATURE_IGNORE_OTHER_MOTOR
constexpr bool ignoreOtherMotor = false;
#else
constexpr bool ignoreOtherMotor = true;
#endif
const bool enableLFin = left.state.enable && left.rtY.z_errCode == 0 && (right.rtY.z_errCode == 0 || ignoreOtherMotor);
const bool enableRFin = right.state.enable && (left.rtY.z_errCode == 0 || ignoreOtherMotor) && right.rtY.z_errCode == 0;
// ========================= LEFT MOTOR ============================
// Get hall sensors values
bool hall_ul = !(LEFT_HALL_U_PORT->IDR & LEFT_HALL_U_PIN);
bool hall_vl = !(LEFT_HALL_V_PORT->IDR & LEFT_HALL_V_PIN);
bool hall_wl = !(LEFT_HALL_W_PORT->IDR & LEFT_HALL_W_PIN);
/* Set motor inputs here */
left.rtP.z_ctrlTypSel = uint8_t(left.state.ctrlTyp);
left.rtP.i_max = (left.state.iMotMax * A2BIT_CONV) << 4; // fixdt(1,16,4)
left.rtP.n_max = left.state.nMotMax << 4; // fixdt(1,16,4)
left.rtP.id_fieldWeakMax = (left.state.fieldWeakMax * A2BIT_CONV) << 4; // fixdt(1,16,4)
left.rtP.a_phaAdvMax = left.state.phaseAdvMax << 4; // fixdt(1,16,4)
left.rtU.b_motEna = enableLFin;
left.rtU.z_ctrlModReq = uint8_t(left.state.ctrlMod);
left.rtU.r_inpTgt = left.state.pwm;
left.rtU.b_hallA = hall_ul;
left.rtU.b_hallB = hall_vl;
left.rtU.b_hallC = hall_wl;
left.rtU.i_phaAB = curL_phaA;
left.rtU.i_phaBC = curL_phaB;
left.rtU.i_DCLink = curL_DC;
/* Step the controller */
BLDC_controller_step(&left.rtM);
/* Get motor outputs here */
int ul = left.rtY.DC_phaA;
int vl = left.rtY.DC_phaB;
int wl = left.rtY.DC_phaC;
/* Apply commands */
LEFT_TIM->LEFT_TIM_U = (uint16_t)std::clamp(ul + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
LEFT_TIM->LEFT_TIM_V = (uint16_t)std::clamp(vl + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
LEFT_TIM->LEFT_TIM_W = (uint16_t)std::clamp(wl + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
// =================================================================
// ========================= RIGHT MOTOR ===========================
// Get hall sensors values
bool hall_ur = !(RIGHT_HALL_U_PORT->IDR & RIGHT_HALL_U_PIN);
bool hall_vr = !(RIGHT_HALL_V_PORT->IDR & RIGHT_HALL_V_PIN);
bool hall_wr = !(RIGHT_HALL_W_PORT->IDR & RIGHT_HALL_W_PIN);
/* Set motor inputs here */
right.rtP.z_ctrlTypSel = uint8_t(right.state.ctrlTyp);
right.rtP.i_max = (right.state.iMotMax * A2BIT_CONV) << 4; // fixdt(1,16,4)
right.rtP.n_max = right.state.nMotMax << 4; // fixdt(1,16,4)
right.rtP.id_fieldWeakMax = (right.state.fieldWeakMax * A2BIT_CONV) << 4; // fixdt(1,16,4)
right.rtP.a_phaAdvMax = right.state.phaseAdvMax << 4; // fixdt(1,16,4)
right.rtU.b_motEna = enableRFin;
right.rtU.z_ctrlModReq = uint8_t(right.state.ctrlMod);
right.rtU.r_inpTgt = right.state.pwm;
right.rtU.b_hallA = hall_ur;
right.rtU.b_hallB = hall_vr;
right.rtU.b_hallC = hall_wr;
right.rtU.i_phaAB = curR_phaB;
right.rtU.i_phaBC = curR_phaC;
right.rtU.i_DCLink = curR_DC;
/* Step the controller */
BLDC_controller_step(&right.rtM);
/* Get motor outputs here */
int ur = right.rtY.DC_phaA;
int vr = right.rtY.DC_phaB;
int wr = right.rtY.DC_phaC;
/* Apply commands */
RIGHT_TIM->RIGHT_TIM_U = (uint16_t)std::clamp(ur + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
RIGHT_TIM->RIGHT_TIM_V = (uint16_t)std::clamp(vr + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
RIGHT_TIM->RIGHT_TIM_W = (uint16_t)std::clamp(wr + pwm_res / 2, pwm_margin, pwm_res-pwm_margin);
// =================================================================
/* Indicate task complete */
OverrunFlag = false;
}
// ===========================================================
/* Low pass filter fixed-point 32 bits: fixdt(1,32,20)
* Max: 2047.9375
* Min: -2048
* Res: 0.0625
*
* Inputs: u = int16
* Outputs: y = fixdt(1,32,20)
* Parameters: coef = fixdt(0,16,16) = [0,65535U]
*
* Example:
* If coef = 0.8 (in floating point), then coef = 0.8 * 2^16 = 52429 (in fixed-point)
* filtLowPass16(u, 52429, &y);
* yint = (int16_t)(y >> 20); // the integer output is the fixed-point ouput shifted by 20 bits
*/
void filtLowPass32(int16_t u, uint16_t coef, int32_t *y)
{
int tmp;
tmp = (int16_t)(u << 4) - (*y >> 16);
tmp = std::clamp(tmp, -32768, 32767); // Overflow protection
*y = coef * tmp + (*y);
}
// ===========================================================
/** System Clock Configuration
*/
void SystemClock_Config()
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
// PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8; // 8 MHz
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV4; // 16 MHz
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
#ifdef HUARN2
void UART2_Init()
{
/* The code below is commented out - otwerwise Serial Receive does not work */
// #ifdef CONTROL_SERIAL_USART2
// /* DMA1_Channel6_IRQn interrupt configuration */
// HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 6);
// HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
// /* DMA1_Channel7_IRQn interrupt configuration */
// HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 7);
// HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
// #endif
// Disable serial interrupt - it is not needed
HAL_NVIC_DisableIRQ(DMA1_Channel6_IRQn); // Rx Channel
HAL_NVIC_DisableIRQ(DMA1_Channel7_IRQn); // Tx Channel
__HAL_RCC_DMA1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_USART2_CLK_ENABLE();
huart2.Instance = USART2;
huart2.Init.BaudRate = USART2_BAUD;
huart2.Init.WordLength = USART2_WORDLENGTH;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.Mode = UART_MODE_TX_RX;
HAL_UART_Init(&huart2);
USART2->CR3 |= USART_CR3_DMAT; // | USART_CR3_DMAR | USART_CR3_OVRDIS;
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Pull = GPIO_PULLUP; //GPIO_NOPULL;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT; //GPIO_MODE_AF_PP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* Peripheral DMA init*/
hdma_usart2_rx.Instance = DMA1_Channel6;
hdma_usart2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart2_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_rx.Init.Mode = DMA_CIRCULAR; //DMA_NORMAL;
hdma_usart2_rx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart2_rx);
__HAL_LINKDMA(&huart2, hdmarx, hdma_usart2_rx);
hdma_usart2_tx.Instance = DMA1_Channel7;
hdma_usart2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart2_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_tx.Init.Mode = DMA_NORMAL;
hdma_usart2_tx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart2_tx);
__HAL_LINKDMA(&huart2, hdmatx, hdma_usart2_tx);
DMA1_Channel7->CPAR = uint64_t(&(USART2->DR));
DMA1_Channel7->CNDTR = 0;
DMA1->IFCR = DMA_IFCR_CTCIF7 | DMA_IFCR_CHTIF7 | DMA_IFCR_CGIF7;
}
#endif
#ifdef HUARN3
void UART3_Init()
{
/* The code below is commented out - otwerwise Serial Receive does not work */
// #ifdef CONTROL_SERIAL_USART3
// /* DMA1_Channel3_IRQn interrupt configuration */
// HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 5, 3);
// HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
// /* DMA1_Channel2_IRQn interrupt configuration */
// HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 5, 2);
// HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
// #endif
// Disable serial interrupt - it is not needed
HAL_NVIC_DisableIRQ(DMA1_Channel3_IRQn); // Rx Channel
HAL_NVIC_DisableIRQ(DMA1_Channel2_IRQn); // Tx Channel
__HAL_RCC_DMA1_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_USART3_CLK_ENABLE();
huart3.Instance = USART3;
huart3.Init.BaudRate = USART3_BAUD;
huart3.Init.WordLength = USART3_WORDLENGTH;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
huart3.Init.Mode = UART_MODE_TX_RX;
HAL_UART_Init(&huart3);
USART3->CR3 |= USART_CR3_DMAT; // | USART_CR3_DMAR | USART_CR3_OVRDIS;
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* Peripheral DMA init*/
hdma_usart3_rx.Instance = DMA1_Channel3;
hdma_usart3_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart3_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart3_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart3_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart3_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart3_rx.Init.Mode = DMA_CIRCULAR; //DMA_NORMAL;
hdma_usart3_rx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart3_rx);
__HAL_LINKDMA(&huart3, hdmarx, hdma_usart3_rx);
hdma_usart3_tx.Instance = DMA1_Channel2;
hdma_usart3_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart3_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart3_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart3_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart3_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart3_tx.Init.Mode = DMA_NORMAL;
hdma_usart3_tx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart3_tx);
__HAL_LINKDMA(&huart3, hdmatx, hdma_usart3_tx);
DMA1_Channel2->CPAR = (uint32_t) & (USART3->DR);
DMA1_Channel2->CNDTR = 0;
DMA1->IFCR = DMA_IFCR_CTCIF2 | DMA_IFCR_CHTIF2 | DMA_IFCR_CGIF2;
}
#endif
void MX_GPIO_Init()
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = LEFT_HALL_U_PIN;
HAL_GPIO_Init(LEFT_HALL_U_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_HALL_V_PIN;
HAL_GPIO_Init(LEFT_HALL_V_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_HALL_W_PIN;
HAL_GPIO_Init(LEFT_HALL_W_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_HALL_U_PIN;
HAL_GPIO_Init(RIGHT_HALL_U_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_HALL_V_PIN;
HAL_GPIO_Init(RIGHT_HALL_V_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_HALL_W_PIN;
HAL_GPIO_Init(RIGHT_HALL_W_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = CHARGER_PIN;
HAL_GPIO_Init(CHARGER_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = BUTTON_PIN;
HAL_GPIO_Init(BUTTON_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pin = LED_PIN;
HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = BUZZER_PIN;
HAL_GPIO_Init(BUZZER_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = OFF_PIN;
HAL_GPIO_Init(OFF_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pin = LEFT_DC_CUR_PIN;
HAL_GPIO_Init(LEFT_DC_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_U_CUR_PIN;
HAL_GPIO_Init(LEFT_U_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_V_CUR_PIN;
HAL_GPIO_Init(LEFT_V_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_DC_CUR_PIN;
HAL_GPIO_Init(RIGHT_DC_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_U_CUR_PIN;
HAL_GPIO_Init(RIGHT_U_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_V_CUR_PIN;
HAL_GPIO_Init(RIGHT_V_CUR_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = DCLINK_PIN;
HAL_GPIO_Init(DCLINK_PORT, &GPIO_InitStruct);
//Analog in
GPIO_InitStruct.Pin = GPIO_PIN_3;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pin = LEFT_TIM_UH_PIN;
HAL_GPIO_Init(LEFT_TIM_UH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_VH_PIN;
HAL_GPIO_Init(LEFT_TIM_VH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_WH_PIN;
HAL_GPIO_Init(LEFT_TIM_WH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_UL_PIN;
HAL_GPIO_Init(LEFT_TIM_UL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_VL_PIN;
HAL_GPIO_Init(LEFT_TIM_VL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LEFT_TIM_WL_PIN;
HAL_GPIO_Init(LEFT_TIM_WL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_UH_PIN;
HAL_GPIO_Init(RIGHT_TIM_UH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_VH_PIN;
HAL_GPIO_Init(RIGHT_TIM_VH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_WH_PIN;
HAL_GPIO_Init(RIGHT_TIM_WH_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_UL_PIN;
HAL_GPIO_Init(RIGHT_TIM_UL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_VL_PIN;
HAL_GPIO_Init(RIGHT_TIM_VL_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = RIGHT_TIM_WL_PIN;
HAL_GPIO_Init(RIGHT_TIM_WL_PORT, &GPIO_InitStruct);
}
void MX_TIM_Init()
{
__HAL_RCC_TIM1_CLK_ENABLE();
__HAL_RCC_TIM8_CLK_ENABLE();
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;
TIM_SlaveConfigTypeDef sTimConfig;
htim_right.Instance = RIGHT_TIM;
htim_right.Init.Prescaler = 0;
htim_right.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1;
htim_right.Init.Period = 64000000 / 2 / PWM_FREQ;
htim_right.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim_right.Init.RepetitionCounter = 0;
htim_right.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_PWM_Init(&htim_right);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_ENABLE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim_right, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
#ifdef PETERS_PLATINE
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
#else
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW;
#endif
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET;
HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_1);
HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_2);
HAL_TIM_PWM_ConfigChannel(&htim_right, &sConfigOC, TIM_CHANNEL_3);
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = DEAD_TIME;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(&htim_right, &sBreakDeadTimeConfig);
htim_left.Instance = LEFT_TIM;
htim_left.Init.Prescaler = 0;
htim_left.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1;
htim_left.Init.Period = 64000000 / 2 / PWM_FREQ;
htim_left.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim_left.Init.RepetitionCounter = 0;
htim_left.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_PWM_Init(&htim_left);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim_left, &sMasterConfig);
sTimConfig.InputTrigger = TIM_TS_ITR0;
sTimConfig.SlaveMode = TIM_SLAVEMODE_GATED;
HAL_TIM_SlaveConfigSynchro(&htim_left, &sTimConfig);
// Start counting >0 to effectively offset timers by the time it takes for one ADC conversion to complete.
// This method allows that the Phase currents ADC measurements are properly aligned with LOW-FET ON region for both motors
LEFT_TIM->CNT = ADC_TOTAL_CONV_TIME;
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
#ifdef PETERS_PLATINE
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
#else
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW;
#endif
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_SET;
HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_1);
HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_2);
HAL_TIM_PWM_ConfigChannel(&htim_left, &sConfigOC, TIM_CHANNEL_3);
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = DEAD_TIME;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(&htim_left, &sBreakDeadTimeConfig);
LEFT_TIM->BDTR &= ~TIM_BDTR_MOE;
RIGHT_TIM->BDTR &= ~TIM_BDTR_MOE;
HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim_left, TIM_CHANNEL_3);
HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_1);
HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_2);
HAL_TIMEx_PWMN_Start(&htim_left, TIM_CHANNEL_3);
HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim_right, TIM_CHANNEL_3);
HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_1);
HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_2);
HAL_TIMEx_PWMN_Start(&htim_right, TIM_CHANNEL_3);
htim_left.Instance->RCR = 1;
__HAL_TIM_ENABLE(&htim_right);
}
void MX_ADC1_Init()
{
ADC_MultiModeTypeDef multimode;
ADC_ChannelConfTypeDef sConfig;
__HAL_RCC_ADC1_CLK_ENABLE();
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T8_TRGO;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 5;
HAL_ADC_Init(&hadc1);
/**Enable or disable the remapping of ADC1_ETRGREG:
* ADC1 External Event regular conversion is connected to TIM8 TRG0
*/
__HAL_AFIO_REMAP_ADC1_ETRGREG_ENABLE();
/**Configure the ADC multi-mode
*/
multimode.Mode = ADC_DUALMODE_REGSIMULT;
HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode);
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.Channel = ADC_CHANNEL_11; // pc1 left cur -> right
sConfig.Rank = 1;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
// sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5;
sConfig.Channel = ADC_CHANNEL_0; // pa0 right a -> left
sConfig.Rank = 2;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
sConfig.Channel = ADC_CHANNEL_14; // pc4 left b -> right
sConfig.Rank = 3;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
sConfig.Channel = ADC_CHANNEL_12; // pc2 vbat
sConfig.Rank = 4;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
//temperature requires at least 17.1uS sampling time
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR; // internal temp
sConfig.Rank = 5;
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
hadc1.Instance->CR2 |= ADC_CR2_DMA | ADC_CR2_TSVREFE;
__HAL_ADC_ENABLE(&hadc1);
__HAL_RCC_DMA1_CLK_ENABLE();
DMA1_Channel1->CCR = 0;
DMA1_Channel1->CNDTR = 5;
DMA1_Channel1->CPAR = uint64_t(&(ADC1->DR));
DMA1_Channel1->CMAR = uint64_t(&adc_buffer);
DMA1_Channel1->CCR = DMA_CCR_MSIZE_1 | DMA_CCR_PSIZE_1 | DMA_CCR_MINC | DMA_CCR_CIRC | DMA_CCR_TCIE;
DMA1_Channel1->CCR |= DMA_CCR_EN;
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/* ADC2 init function */
void MX_ADC2_Init()
{
ADC_ChannelConfTypeDef sConfig;
__HAL_RCC_ADC2_CLK_ENABLE();
// HAL_ADC_DeInit(&hadc2);
// hadc2.Instance->CR2 = 0;
/**Common config
*/
hadc2.Instance = ADC2;
hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc2.Init.ContinuousConvMode = DISABLE;
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = 5;
HAL_ADC_Init(&hadc2);
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.Channel = ADC_CHANNEL_10; // pc0 right cur -> left
sConfig.Rank = 1;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
// sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5;
sConfig.Channel = ADC_CHANNEL_13; // pc3 right b -> left
sConfig.Rank = 2;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = ADC_CHANNEL_15; // pc5 left c -> right
sConfig.Rank = 3;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = ADC_CHANNEL_2; // pa2 uart-l-tx
sConfig.Rank = 4;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
sConfig.Channel = ADC_CHANNEL_3; // pa3 uart-l-rx
sConfig.Rank = 5;
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
hadc2.Instance->CR2 |= ADC_CR2_DMA;
__HAL_ADC_ENABLE(&hadc2);
}
void poweroff()
{
// if (abs(speed) < 20) { // wait for the speed to drop, then shut down -> this is commented out for SAFETY reasons
buzzer.state.pattern = 0;
left.state.enable = right.state.enable = 0;
for (int i = 0; i < 8; i++) {
buzzer.state.freq = (uint8_t)i;
HAL_Delay(50);
}
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_RESET);
for (int i = 0; i < 5; i++)
HAL_Delay(1000);
// }
}
#ifdef FEATURE_SERIAL_CONTROL
void parseCommand()
{
bool any_parsed{false};
for (int i = 0; i < 1; i++)
{
if (command.start != Command::VALID_HEADER)
continue;
uint16_t checksum = calculateChecksum(command);
if (command.checksum != checksum)
continue;
left.state = command.left;
right.state = command.right;
buzzer.state = command.buzzer;
if (command.poweroff)
poweroff();
HAL_GPIO_WritePin(LED_PORT, LED_PIN, command.led ? GPIO_PIN_RESET : GPIO_PIN_SET);
command.start = Command::INVALID_HEADER; // Change the Start Frame for timeout detection in the next cycle
timeoutCntSerial = 0; // Reset the timeout counter
any_parsed = true;
break;
}
if (!any_parsed)
{
if (timeoutCntSerial++ >= 100) // Timeout qualification
{
timeoutCntSerial = 100; // Limit timout counter value
left.state = right.state = {.enable=true};
buzzer.state = { 24, 1 };
HAL_GPIO_WritePin(LED_PORT, LED_PIN, GPIO_PIN_RESET);
// Check periodically the received Start Frame. Try to re-sync by reseting the DMA
if (main_loop_counter % 25 == 0)
{
#ifdef HUARN2
HAL_UART_DMAStop(&huart2);
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&command, sizeof(command));
#endif
#ifdef HUARN3
HAL_UART_DMAStop(&huart3);
HAL_UART_Receive_DMA(&huart3, (uint8_t *)&command, sizeof(command));
#endif
}
}
}
}
#endif
#ifdef FEATURE_SERIAL_FEEDBACK
void sendFeedback()
{
#ifdef HUARN2
#define UART_DMA_CHANNEL DMA1_Channel7
#endif
#ifdef HUARN3
#define UART_DMA_CHANNEL DMA1_Channel2
#endif
if (UART_DMA_CHANNEL->CNDTR != 0)
return;
feedback.start = Feedback::VALID_HEADER;
feedback.left.angle = left.rtY.a_elecAngle;
feedback.right.angle = right.rtY.a_elecAngle;
feedback.left.speed = left.rtY.n_mot;
feedback.right.speed = right.rtY.n_mot;
feedback.left.error = left.rtY.z_errCode;
feedback.right.error = right.rtY.z_errCode;
feedback.left.current = left.rtU.i_DCLink;
feedback.right.current = right.rtU.i_DCLink;
feedback.left.chops = left.chops;
feedback.right.chops = right.chops;
left.chops = 0;
right.chops = 0;
feedback.left.hallA = left.rtU.b_hallA;
feedback.left.hallB = left.rtU.b_hallB;
feedback.left.hallC = left.rtU.b_hallC;
feedback.right.hallA = right.rtU.b_hallA;
feedback.right.hallB = right.rtU.b_hallB;
feedback.right.hallC = right.rtU.b_hallC;
feedback.batVoltage = batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC;
feedback.boardTemp = board_temp_deg_c;
feedback.timeoutCntSerial = timeoutCntSerial;
feedback.checksum = calculateChecksum(feedback);
UART_DMA_CHANNEL->CCR &= ~DMA_CCR_EN;
UART_DMA_CHANNEL->CNDTR = sizeof(feedback);
UART_DMA_CHANNEL->CMAR = uint64_t(&feedback);
UART_DMA_CHANNEL->CCR |= DMA_CCR_EN;
}
#endif
} // anonymous namespace
/******************************************************************************/
/* Cortex-M3 Processor Interruption and Exception Handlers */
/******************************************************************************/
/**
* @brief This function handles Non maskable interrupt.
*/
extern "C" void NMI_Handler()
{
/* USER CODE BEGIN NonMaskableInt_IRQn 0 */
/* USER CODE END NonMaskableInt_IRQn 0 */
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */
/* USER CODE END NonMaskableInt_IRQn 1 */
}
/**
* @brief This function handles Hard fault interrupt.
*/
extern "C" void HardFault_Handler()
{
/* USER CODE BEGIN HardFault_IRQn 0 */
/* USER CODE END HardFault_IRQn 0 */
while (true);
/* USER CODE BEGIN HardFault_IRQn 1 */
/* USER CODE END HardFault_IRQn 1 */
}
/**
* @brief This function handles Memory management fault.
*/
extern "C" void MemManage_Handler()
{
/* USER CODE BEGIN MemoryManagement_IRQn 0 */
/* USER CODE END MemoryManagement_IRQn 0 */
while (true);
/* USER CODE BEGIN MemoryManagement_IRQn 1 */
/* USER CODE END MemoryManagement_IRQn 1 */
}
/**
* @brief This function handles Prefetch fault, memory access fault.
*/
extern "C" void BusFault_Handler()
{
/* USER CODE BEGIN BusFault_IRQn 0 */
/* USER CODE END BusFault_IRQn 0 */
while (true);
/* USER CODE BEGIN BusFault_IRQn 1 */
/* USER CODE END BusFault_IRQn 1 */
}
/**
* @brief This function handles Undefined instruction or illegal state.
*/
extern "C" void UsageFault_Handler()
{
/* USER CODE BEGIN UsageFault_IRQn 0 */
/* USER CODE END UsageFault_IRQn 0 */
while (true);
/* USER CODE BEGIN UsageFault_IRQn 1 */
/* USER CODE END UsageFault_IRQn 1 */
}
/**
* @brief This function handles System service call via SWI instruction.
*/
extern "C" void SVC_Handler()
{
/* USER CODE BEGIN SVCall_IRQn 0 */
/* USER CODE END SVCall_IRQn 0 */
/* USER CODE BEGIN SVCall_IRQn 1 */
/* USER CODE END SVCall_IRQn 1 */
}
/**
* @brief This function handles Debug monitor.
*/
extern "C" void DebugMon_Handler()
{
/* USER CODE BEGIN DebugMonitor_IRQn 0 */
/* USER CODE END DebugMonitor_IRQn 0 */
/* USER CODE BEGIN DebugMonitor_IRQn 1 */
/* USER CODE END DebugMonitor_IRQn 1 */
}
/**
* @brief This function handles Pendable request for system service.
*/
extern "C" void PendSV_Handler()
{
/* USER CODE BEGIN PendSV_IRQn 0 */
/* USER CODE END PendSV_IRQn 0 */
/* USER CODE BEGIN PendSV_IRQn 1 */
/* USER CODE END PendSV_IRQn 1 */
}
extern "C" void SysTick_Handler()
{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick();
HAL_SYSTICK_IRQHandler();
/* USER CODE BEGIN SysTick_IRQn 1 */
/* USER CODE END SysTick_IRQn 1 */
}
// =================================
// DMA interrupt frequency =~ 16 kHz
// =================================
extern "C" void DMA1_Channel1_IRQHandler()
{
updateMotors();
}
#ifdef HUARN2
extern "C" void DMA1_Channel6_IRQHandler()
{
/* USER CODE BEGIN DMA1_Channel4_IRQn 0 */
/* USER CODE END DMA1_Channel4_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_usart2_rx);
/* USER CODE BEGIN DMA1_Channel4_IRQn 1 */
/* USER CODE END DMA1_Channel4_IRQn 1 */
}
/**
* @brief This function handles DMA1 channel5 global interrupt.
*/
extern "C" void DMA1_Channel7_IRQHandler()
{
/* USER CODE BEGIN DMA1_Channel5_IRQn 0 */
/* USER CODE END DMA1_Channel5_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_usart2_tx);
/* USER CODE BEGIN DMA1_Channel5_IRQn 1 */
/* USER CODE END DMA1_Channel5_IRQn 1 */
}
#endif
#ifdef HUARN3
/**
* @brief This function handles DMA1 channel2 global interrupt.
*/
extern "C" void DMA1_Channel2_IRQHandler()
{
/* USER CODE BEGIN DMA1_Channel2_IRQn 0 */
/* USER CODE END DMA1_Channel2_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_usart3_tx);
/* USER CODE BEGIN DMA1_Channel2_IRQn 1 */
/* USER CODE END DMA1_Channel2_IRQn 1 */
}
/**
* @brief This function handles DMA1 channel3 global interrupt.
*/
extern "C" void DMA1_Channel3_IRQHandler()
{
/* USER CODE BEGIN DMA1_Channel3_IRQn 0 */
/* USER CODE END DMA1_Channel3_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_usart3_rx);
/* USER CODE BEGIN DMA1_Channel3_IRQn 1 */
/* USER CODE END DMA1_Channel3_IRQn 1 */
}
#endif