forked from boostorg/algorithm
191 lines
4.8 KiB
C++
191 lines
4.8 KiB
C++
![]() |
#if ! defined BOOST_ALGORITHM_CLUSTER_DBSCAN_HPP
|
||
|
#define BOOST_ALGORITHM_CLUSTER_DBSCAN_HPP
|
||
|
|
||
|
#include <boost/range/begin.hpp>
|
||
|
#include <boost/range/end.hpp>
|
||
|
#include <boost/shared_ptr.hpp>
|
||
|
#include <vector>
|
||
|
#include <list>
|
||
|
|
||
|
namespace boost
|
||
|
{
|
||
|
namespace algorithm
|
||
|
{
|
||
|
namespace cluster
|
||
|
{
|
||
|
|
||
|
namespace detail
|
||
|
{
|
||
|
|
||
|
// TODO: Replace this naive query function w/ R*-tree or fractional cascading.
|
||
|
// It makes the runtime quadratic.
|
||
|
template<typename NTupleIter, typename DistFun>
|
||
|
static void query(
|
||
|
NTupleIter const & query_pt,
|
||
|
NTupleIter const & begin,
|
||
|
NTupleIter const & end,
|
||
|
float eps,
|
||
|
DistFun const & d,
|
||
|
std::vector<NTupleIter> & v)
|
||
|
{
|
||
|
for(NTupleIter cur_pt = begin; cur_pt != end; ++cur_pt)
|
||
|
{
|
||
|
if (query_pt == cur_pt)
|
||
|
continue;
|
||
|
|
||
|
if (d(*query_pt->tuple, *cur_pt->tuple) > eps)
|
||
|
continue;
|
||
|
|
||
|
v.push_back(cur_pt);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// TODO: Replace this so we don't have to store the cluster info for each tuple.
|
||
|
template<typename NTupleIter>
|
||
|
struct node
|
||
|
{
|
||
|
node(NTupleIter const & t) : tuple(t), cluster(UNCLASSIFIED) {}
|
||
|
|
||
|
NTupleIter tuple;
|
||
|
int cluster;
|
||
|
};
|
||
|
|
||
|
} // End of namespace detail.
|
||
|
|
||
|
// TODO: Document this type.
|
||
|
template<typename Cluster>
|
||
|
struct cluster_data
|
||
|
{
|
||
|
typedef Cluster value_type;
|
||
|
typedef std::vector<value_type> clusters;
|
||
|
cluster_data() : m_pClusters(new clusters) {}
|
||
|
~cluster_data() {}
|
||
|
|
||
|
cluster_data(cluster_data const & c) : m_pClusters(c.m_pClusters) {}
|
||
|
cluster_data const & cluster_data::operator=(cluster_data const & rhs)
|
||
|
{ m_pClusters = rhs.m_pClusters; }
|
||
|
|
||
|
typedef typename clusters::iterator iterator;
|
||
|
typedef typename clusters::const_iterator const_iterator;
|
||
|
typedef typename clusters::reverse_iterator reverse_iterator;
|
||
|
|
||
|
iterator begin() { return m_pClusters->begin(); }
|
||
|
iterator end() { return m_pClusters->end(); }
|
||
|
|
||
|
const_iterator begin() const { return m_pClusters->begin(); }
|
||
|
const_iterator end() const { return m_pClusters->end(); }
|
||
|
|
||
|
iterator rbegin() { return m_pClusters->rbegin(); }
|
||
|
iterator rend() { return m_pClusters->rend(); }
|
||
|
|
||
|
iterator insert(iterator loc, value_type const & val)
|
||
|
{ return m_pClusters->insert(loc, val); }
|
||
|
|
||
|
void push_back(value_type const & v) { m_pClusters->push_back(v); }
|
||
|
void pop_back() { m_pClusters->pop_back(); }
|
||
|
|
||
|
value_type & back() { return m_pClusters->back(); }
|
||
|
value_type const & back() const { return m_pClusters->back(); }
|
||
|
|
||
|
private:
|
||
|
boost::shared_ptr<clusters> m_pClusters;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
*/
|
||
|
template<typename Cluster, typename NTupleIter, typename DistFun>
|
||
|
cluster_data<Cluster>
|
||
|
dbscan(NTupleIter const & begin,
|
||
|
NTupleIter const & end,
|
||
|
typename NTupleIter::difference_type const & eps,
|
||
|
size_t min_points,
|
||
|
DistFun const & d)
|
||
|
{
|
||
|
// TODO: Rework the algorithm to NOT make this extra collection.
|
||
|
typedef detail::node<NTupleIter> node;
|
||
|
typedef std::vector<node> ntuple_nodes;
|
||
|
ntuple_nodes tuples;
|
||
|
|
||
|
// Initialize algorithm.
|
||
|
//size_t num_elems = 0;
|
||
|
for(NTupleIter it = begin; it != end; ++it)
|
||
|
{
|
||
|
//++num_elems;
|
||
|
//it->cluster = UNCLASSIFIED;
|
||
|
tuples.push_back(node(it));
|
||
|
}
|
||
|
|
||
|
typedef cluster_data<std::vector<NTupleIter> > cluster_data;
|
||
|
cluster_data p;
|
||
|
|
||
|
// Do it...
|
||
|
int cluster_num = 0;
|
||
|
for(ntuple_nodes::iterator it = tuples.begin(); it != tuples.end(); ++it)
|
||
|
{
|
||
|
if (it->cluster != UNCLASSIFIED) // Been classified.
|
||
|
continue;
|
||
|
|
||
|
// Expand cluster.
|
||
|
|
||
|
std::vector<ntuple_nodes::iterator> seeds;
|
||
|
detail::query(it, tuples.begin(), tuples.end(), eps, d, seeds);
|
||
|
if (seeds.size() < min_points)
|
||
|
{
|
||
|
it->cluster = NOISE;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Start the next cluster.
|
||
|
++cluster_num;
|
||
|
p.push_back(Cluster());
|
||
|
Cluster & cur_cluster = p.back();
|
||
|
|
||
|
// Mark entire neighborhood as part of current cluster.
|
||
|
it->cluster = cluster_num;
|
||
|
cur_cluster.push_back(it->tuple);
|
||
|
// TODO: Remove it from noise.
|
||
|
for (size_t n = 0; n < seeds.size(); ++n)
|
||
|
{
|
||
|
seeds[n]->cluster = cluster_num;
|
||
|
cur_cluster.push_back(seeds[n]->tuple);
|
||
|
// TODO: Remove it from noise.
|
||
|
}
|
||
|
|
||
|
while (! seeds.empty())
|
||
|
{
|
||
|
ntuple_nodes::iterator cur = seeds.back();
|
||
|
seeds.pop_back();
|
||
|
|
||
|
std::vector<ntuple_nodes::iterator> results;
|
||
|
detail::query(cur, tuples.begin(), tuples.end(), eps, d, results);
|
||
|
|
||
|
if (results.size() >= min_points)
|
||
|
{
|
||
|
for (size_t n = 0; n < results.size(); ++n)
|
||
|
{
|
||
|
if (results[n]->cluster < 1) // Not assigned to cluster yet.
|
||
|
{
|
||
|
if (UNCLASSIFIED == results[n]->cluster)
|
||
|
seeds.push_back(results[n]);
|
||
|
results[n]->cluster = cluster_num;
|
||
|
cur_cluster.push_back(results[n]->tuple);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // Outer loop for all tuples.
|
||
|
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
} // End of namespace cluster
|
||
|
|
||
|
using namespace cluster;
|
||
|
|
||
|
} // End of namespace algorithm
|
||
|
|
||
|
} // End of namespace boost
|
||
|
|
||
|
#endif // BOOST_ALGORITHM_CLUSTER_DBSCAN_HPP
|