Files
boost_algorithm/include/boost/algorithm/cluster/dbscan.hpp

191 lines
4.8 KiB
C++
Raw Normal View History

#if ! defined BOOST_ALGORITHM_CLUSTER_DBSCAN_HPP
#define BOOST_ALGORITHM_CLUSTER_DBSCAN_HPP
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/shared_ptr.hpp>
#include <vector>
#include <list>
namespace boost
{
namespace algorithm
{
namespace cluster
{
namespace detail
{
// TODO: Replace this naive query function w/ R*-tree or fractional cascading.
// It makes the runtime quadratic.
template<typename NTupleIter, typename DistFun>
static void query(
NTupleIter const & query_pt,
NTupleIter const & begin,
NTupleIter const & end,
float eps,
DistFun const & d,
std::vector<NTupleIter> & v)
{
for(NTupleIter cur_pt = begin; cur_pt != end; ++cur_pt)
{
if (query_pt == cur_pt)
continue;
if (d(*query_pt->tuple, *cur_pt->tuple) > eps)
continue;
v.push_back(cur_pt);
}
}
// TODO: Replace this so we don't have to store the cluster info for each tuple.
template<typename NTupleIter>
struct node
{
node(NTupleIter const & t) : tuple(t), cluster(UNCLASSIFIED) {}
NTupleIter tuple;
int cluster;
};
} // End of namespace detail.
// TODO: Document this type.
template<typename Cluster>
struct cluster_data
{
typedef Cluster value_type;
typedef std::vector<value_type> clusters;
cluster_data() : m_pClusters(new clusters) {}
~cluster_data() {}
cluster_data(cluster_data const & c) : m_pClusters(c.m_pClusters) {}
cluster_data const & cluster_data::operator=(cluster_data const & rhs)
{ m_pClusters = rhs.m_pClusters; }
typedef typename clusters::iterator iterator;
typedef typename clusters::const_iterator const_iterator;
typedef typename clusters::reverse_iterator reverse_iterator;
iterator begin() { return m_pClusters->begin(); }
iterator end() { return m_pClusters->end(); }
const_iterator begin() const { return m_pClusters->begin(); }
const_iterator end() const { return m_pClusters->end(); }
iterator rbegin() { return m_pClusters->rbegin(); }
iterator rend() { return m_pClusters->rend(); }
iterator insert(iterator loc, value_type const & val)
{ return m_pClusters->insert(loc, val); }
void push_back(value_type const & v) { m_pClusters->push_back(v); }
void pop_back() { m_pClusters->pop_back(); }
value_type & back() { return m_pClusters->back(); }
value_type const & back() const { return m_pClusters->back(); }
private:
boost::shared_ptr<clusters> m_pClusters;
};
/**
*/
template<typename Cluster, typename NTupleIter, typename DistFun>
cluster_data<Cluster>
dbscan(NTupleIter const & begin,
NTupleIter const & end,
typename NTupleIter::difference_type const & eps,
size_t min_points,
DistFun const & d)
{
// TODO: Rework the algorithm to NOT make this extra collection.
typedef detail::node<NTupleIter> node;
typedef std::vector<node> ntuple_nodes;
ntuple_nodes tuples;
// Initialize algorithm.
//size_t num_elems = 0;
for(NTupleIter it = begin; it != end; ++it)
{
//++num_elems;
//it->cluster = UNCLASSIFIED;
tuples.push_back(node(it));
}
typedef cluster_data<std::vector<NTupleIter> > cluster_data;
cluster_data p;
// Do it...
int cluster_num = 0;
for(ntuple_nodes::iterator it = tuples.begin(); it != tuples.end(); ++it)
{
if (it->cluster != UNCLASSIFIED) // Been classified.
continue;
// Expand cluster.
std::vector<ntuple_nodes::iterator> seeds;
detail::query(it, tuples.begin(), tuples.end(), eps, d, seeds);
if (seeds.size() < min_points)
{
it->cluster = NOISE;
continue;
}
// Start the next cluster.
++cluster_num;
p.push_back(Cluster());
Cluster & cur_cluster = p.back();
// Mark entire neighborhood as part of current cluster.
it->cluster = cluster_num;
cur_cluster.push_back(it->tuple);
// TODO: Remove it from noise.
for (size_t n = 0; n < seeds.size(); ++n)
{
seeds[n]->cluster = cluster_num;
cur_cluster.push_back(seeds[n]->tuple);
// TODO: Remove it from noise.
}
while (! seeds.empty())
{
ntuple_nodes::iterator cur = seeds.back();
seeds.pop_back();
std::vector<ntuple_nodes::iterator> results;
detail::query(cur, tuples.begin(), tuples.end(), eps, d, results);
if (results.size() >= min_points)
{
for (size_t n = 0; n < results.size(); ++n)
{
if (results[n]->cluster < 1) // Not assigned to cluster yet.
{
if (UNCLASSIFIED == results[n]->cluster)
seeds.push_back(results[n]);
results[n]->cluster = cluster_num;
cur_cluster.push_back(results[n]->tuple);
}
}
}
}
} // Outer loop for all tuples.
return p;
}
} // End of namespace cluster
using namespace cluster;
} // End of namespace algorithm
} // End of namespace boost
#endif // BOOST_ALGORITHM_CLUSTER_DBSCAN_HPP