Add 'indirect_sort'

This commit is contained in:
Marshall Clow
2023-06-14 18:30:08 -07:00
parent faac048d59
commit 17c47e8061
5 changed files with 260 additions and 0 deletions

View File

@ -233,6 +233,8 @@ Convert a sequence of hexadecimal characters into a sequence of integers or char
Convert a sequence of integral types into a lower case hexadecimal sequence of characters
[endsect:hex_lower]
[include indirect_sort.qbk]
[include is_palindrome.qbk]
[include is_partitioned_until.qbk]

71
doc/indirect_sort.qbk Normal file
View File

@ -0,0 +1,71 @@
[/ File indirect_sort.qbk]
[section:indirect_sort indirect_sort ]
[/license
Copyright (c) 2023 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
There are times that you want a sorted version of a sequence, but for some reason or another, you don't really want to sort them. Maybe the elements in the sequence are non-copyable (or non-movable), or the sequence is const, or they're just really expensive to move around. An example of this might be a sequence of records from a database.
Nevertheless, you might want to sort them. That's where indirect sorting comes in. In a "normal" sort, the elements of the sequence to be sorted are shuffled in place. In indirect sorting, the elements are unchanged, but the sort algorithm returns to you a "permutation" of the elements that, when applied, will leave the elements in the sequence in a sorted order.
Say you have a sequence `[first, last)` of 1000 items that are expensive to swap:
```
std::sort(first, last); // ['O(N ln N)] comparisons and ['O(N ln N)] swaps (of the element type).
```
On the other hand, using indirect sorting:
```
auto permutation = boost::algorithm::indirect_sort(first, last); // ['O(N lg N)] comparisons and ['O(N lg N)] swaps (of size_t).
boost::algorithm::apply_permutation(first, last, perm.begin(), perm.end()); // ['O(N)] swaps (of the element type)
```
If the element type is sufficiently expensive to swap, then 10,000 swaps of size_t + 1000 swaps of the element_type could be cheaper than 10,000 swaps of the element_type.
Or maybe you don't need the elements to actually be sorted - you just want to traverse them in a sorted order:
```
auto permutation = boost::algorithm::indirect_sort(first, last);
for (size_t idx: permutation)
std::cout << first[idx] << std::endl;
```
More to come here ....
[heading interface]
The function `indirect_sort` a `vector<size_t>` containing the permutation necessary to put the input sequence into a sorted order. One version uses `std::less` to do the comparisons; the other lets the caller pass predicate to do the comparisons.
```
template <typename RAIterator>
std::vector<size_t> indirect_sort (RAIterator first, RAIterator last);
template <typename RAIterator, typename BinaryPredicate>
std::vector<size_t> indirect_sort (RAIterator first, RAIterator last, BinaryPredicate pred);
```
[heading Examples]
[heading Iterator Requirements]
`indirect_sort` requires random-access iterators.
[heading Complexity]
Both of the variants of `indirect_sort` run in ['O(N lg N)] time; they are not more (or less) efficient than `std::sort`. There is an extra layer of indirection on each comparison, but all off the swaps are done on values of type `size_t`
[heading Exception Safety]
[heading Notes]
[endsect]
[/ File indirect_sort.qbk
Copyright 2023 Marshall Clow
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
]