forked from boostorg/algorithm
Created detail subdir.
Moved naive query function into its own header file in detail subdir. Added header for Yuan Ming Chen's k_means algorithm implementation. [SVN r45228]
This commit is contained in:
@ -8,6 +8,7 @@
|
||||
|
||||
#include <boost/algorithm/cluster/cluster_data.hpp>
|
||||
#include <boost/algorithm/cluster/concept.hpp>
|
||||
#include <boost/algorithm/cluster/detail/naive_query.hpp>
|
||||
#include <vector>
|
||||
|
||||
namespace boost
|
||||
@ -23,29 +24,6 @@ namespace detail
|
||||
int const UNCLASSIFIED = -1;
|
||||
int const NOISE = 0;
|
||||
|
||||
// TODO: Replace this naive query function w/ R*-tree or fractional cascading.
|
||||
// This query mechanism makes the runtime quadratic.
|
||||
template<typename NTupleIterT, typename DistFunT>
|
||||
static void query(
|
||||
NTupleIterT const & query_pt,
|
||||
NTupleIterT const & begin,
|
||||
NTupleIterT const & end,
|
||||
typename NTupleIterT::difference_type eps,
|
||||
DistFunT const & d,
|
||||
std::vector<NTupleIterT> & v)
|
||||
{
|
||||
for(NTupleIterT cur_pt = begin; cur_pt != end; ++cur_pt)
|
||||
{
|
||||
if (query_pt == cur_pt)
|
||||
continue;
|
||||
|
||||
if (d(*query_pt->tuple, *cur_pt->tuple) > eps)
|
||||
continue;
|
||||
|
||||
v.push_back(cur_pt);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Replace this so we don't have to store the cluster info for each tuple?
|
||||
template<typename NTupleIterT>
|
||||
struct node
|
||||
@ -107,7 +85,7 @@ dbscan(NTupleIterT const & begin,
|
||||
// Expand cluster.
|
||||
|
||||
std::vector<ntuple_nodes::iterator> seeds;
|
||||
detail::query(it, tuples.begin(), tuples.end(), eps, d, seeds);
|
||||
detail::naive_query(it, tuples.begin(), tuples.end(), eps, d, seeds);
|
||||
// If the neighborhood of this tuple is too small, then mark it as noise.
|
||||
if (seeds.size() < min_points)
|
||||
{
|
||||
@ -137,7 +115,7 @@ dbscan(NTupleIterT const & begin,
|
||||
seeds.pop_back();
|
||||
|
||||
std::vector<ntuple_nodes::iterator> results;
|
||||
detail::query(cur, tuples.begin(), tuples.end(), eps, d, results);
|
||||
detail::naive_query(cur, tuples.begin(), tuples.end(), eps, d, results);
|
||||
|
||||
if (results.size() >= min_points)
|
||||
{
|
||||
|
50
include/boost/algorithm/cluster/detail/naive_query.hpp
Normal file
50
include/boost/algorithm/cluster/detail/naive_query.hpp
Normal file
@ -0,0 +1,50 @@
|
||||
// (C) Copyright Jonathan Franklin 2008.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#if ! defined BOOST_ALGORITHM_CLUSTER_DETAIL_NAIVE_QUERY_HPP
|
||||
#define BOOST_ALGORITHM_CLUSTER_DETAIL_NAIVE_QUERY_HPP
|
||||
|
||||
#include <boost/algorithm/cluster/cluster_data.hpp>
|
||||
#include <boost/algorithm/cluster/concept.hpp>
|
||||
#include <vector>
|
||||
|
||||
namespace boost
|
||||
{
|
||||
namespace algorithm
|
||||
{
|
||||
namespace cluster
|
||||
{
|
||||
namespace detail
|
||||
{
|
||||
|
||||
// TODO: Replace this naive query function w/ R*-tree or fractional cascading.
|
||||
// This query mechanism makes the runtime quadratic.
|
||||
template<typename NTupleIterT, typename DistFunT>
|
||||
static void naive_query(
|
||||
NTupleIterT const & query_pt,
|
||||
NTupleIterT const & begin,
|
||||
NTupleIterT const & end,
|
||||
typename NTupleIterT::difference_type eps,
|
||||
DistFunT const & d,
|
||||
std::vector<NTupleIterT> & v)
|
||||
{
|
||||
for(NTupleIterT cur_pt = begin; cur_pt != end; ++cur_pt)
|
||||
{
|
||||
if (query_pt == cur_pt)
|
||||
continue;
|
||||
|
||||
if (d(*query_pt->tuple, *cur_pt->tuple) > eps)
|
||||
continue;
|
||||
|
||||
v.push_back(cur_pt);
|
||||
}
|
||||
}
|
||||
|
||||
} // End of namespace detail.
|
||||
} // End of namespace cluster
|
||||
} // End of namespace algorithm
|
||||
} // End of namespace boost
|
||||
|
||||
#endif // BOOST_ALGORITHM_CLUSTER_DETAIL_NAIVE_QUERY_HPP
|
195
include/boost/algorithm/cluster/k_means.hpp
Normal file
195
include/boost/algorithm/cluster/k_means.hpp
Normal file
@ -0,0 +1,195 @@
|
||||
/*****
|
||||
** References
|
||||
** - J. MacQueen, "Some methods for classification and analysis
|
||||
** of multivariate observations", Fifth Berkeley Symposium on
|
||||
** Math Statistics and Probability, 281-297, 1967.
|
||||
** - I.S. Dhillon and D.S. Modha, "A data-clustering algorithm
|
||||
** on distributed memory multiprocessors",
|
||||
** Large-Scale Parallel Data Mining, 245-260, 1999.
|
||||
** Yuanming Chen, 2008-05-08
|
||||
*/
|
||||
|
||||
#ifndef BOOST_ALGORITHM_CLUSTER_K_MEANS_HPP
|
||||
#define BOOST_ALGORITHM_CLUSTER_K_MEANS_HPP
|
||||
|
||||
#include <cmath>
|
||||
#include <float.h>
|
||||
//#include "common.hpp"
|
||||
#include <vector>
|
||||
#include <list>
|
||||
#include <cassert>
|
||||
|
||||
namespace boost {
|
||||
namespace algorithm {
|
||||
namespace cluster {
|
||||
namespace detail {
|
||||
template<typename AttributeType, typename differenceType>
|
||||
//The original C function
|
||||
int *k_means(AttributeType **data, int n, int m, int k, differenceType eps, AttributeType **centroids)
|
||||
{
|
||||
/* output cluster label for each data point */
|
||||
int *labels = (int*)calloc(n, sizeof(int));
|
||||
|
||||
int h, i, j; /* loop counters, of course :) */
|
||||
int *counts = (int*)calloc(k, sizeof(int)); /* size of each cluster */
|
||||
AttributeType old_error, error = FLT_MAX; /* sum of squared euclidean distance */
|
||||
AttributeType **c = centroids ? centroids : (AttributeType**)calloc(k, sizeof(AttributeType*));
|
||||
AttributeType **c1 = (AttributeType**)calloc(k, sizeof(AttributeType*)); /* temp centroids */
|
||||
|
||||
//assert(data && k > 0 && k <= n && m > 0 && t >= 0); /* for debugging */
|
||||
|
||||
/****
|
||||
** initialization */
|
||||
|
||||
for (h = i = 0; i < k; h += n / k, i++) {
|
||||
c1[i] = (AttributeType*)calloc(m, sizeof(AttributeType));
|
||||
if (!centroids) {
|
||||
c[i] = (AttributeType*)calloc(m, sizeof(AttributeType));
|
||||
}
|
||||
/* pick k points as initial centroids */
|
||||
for (j = m; j-- > 0; c[i][j] = data[h][j]);
|
||||
}
|
||||
|
||||
/****
|
||||
** main loop */
|
||||
|
||||
do {
|
||||
/* save error from last step */
|
||||
old_error = error, error = 0;
|
||||
|
||||
/* clear old counts and temp centroids */
|
||||
for (i = 0; i < k; counts[i++] = 0) {
|
||||
for (j = 0; j < m; c1[i][j++] = 0);
|
||||
}
|
||||
|
||||
for (h = 0; h < n; h++) {
|
||||
/* identify the closest cluster */
|
||||
AttributeType min_distance = FLT_MAX;
|
||||
for (i = 0; i < k; i++) {
|
||||
AttributeType distance = 0;
|
||||
for (j = m; j-- > 0; distance += pow(data[h][j] - c[i][j], 2));
|
||||
if (distance < min_distance) {
|
||||
labels[h] = i;
|
||||
min_distance = distance;
|
||||
}
|
||||
}
|
||||
/* update size and temp centroid of the destination cluster */
|
||||
for (j = m; j-- > 0; c1[labels[h]][j] += data[h][j]);
|
||||
counts[labels[h]]++;
|
||||
/* update standard error */
|
||||
error += min_distance;
|
||||
}
|
||||
|
||||
for (i = 0; i < k; i++) { /* update all centroids */
|
||||
for (j = 0; j < m; j++) {
|
||||
c[i][j] = counts[i] ? c1[i][j] / counts[i] : c1[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
} while (fabs(error - old_error) > eps);
|
||||
|
||||
/****
|
||||
** housekeeping */
|
||||
|
||||
for (i = 0; i < k; i++) {
|
||||
if (!centroids) {
|
||||
free(c[i]);
|
||||
}
|
||||
free(c1[i]);
|
||||
}
|
||||
|
||||
if (!centroids) {
|
||||
free(c);
|
||||
}
|
||||
free(c1);
|
||||
|
||||
free(counts);
|
||||
|
||||
return labels;
|
||||
}
|
||||
} //End of details namespace
|
||||
|
||||
template<typename PointType>
|
||||
struct KMeansCluster {
|
||||
PointType centroid;
|
||||
std::vector<int> points; //The indice of points are stored here
|
||||
};
|
||||
|
||||
template <typename KMeansCluster>
|
||||
struct KMeansClustering {
|
||||
typedef std::vector< KMeansCluster > type;
|
||||
type clusters;
|
||||
};
|
||||
|
||||
/**
|
||||
* @param first: the first data point's iterator
|
||||
* @param last: the last data point's iterator
|
||||
* @param k: the k value for the k-mean algorithm
|
||||
* @return collections of clusters
|
||||
*/
|
||||
template <typename NTupleIter>
|
||||
typename KMeansClustering< typename KMeansCluster<typename NTupleIter::value_type> >
|
||||
k_means(NTupleIter first, NTupleIter last, unsigned k,
|
||||
typename NTupleIter::difference_type const & eps)
|
||||
{
|
||||
typedef NTupleIter::difference_type DistanceType;
|
||||
typedef NTupleIter::value_type PointType;
|
||||
typedef PointType::value_type AttributeType; //For the c funtion test, it will be a double type
|
||||
const DistanceType knumOfPoints = last - first; //The n variable in the C function
|
||||
const size_t knDimension = PointType::size(); //The m variable in the C function
|
||||
|
||||
AttributeType** ppData = new AttributeType* [knumOfPoints];
|
||||
AttributeType** centroids = new AttributeType* [k];
|
||||
//Pre-allocate the result array
|
||||
for(size_t nCentroid = 0; nCentroid < k; nCentroid++)
|
||||
{
|
||||
centroids[nCentroid] = new AttributeType[knDimension];
|
||||
}
|
||||
|
||||
int nIndex = 0;
|
||||
for(NTupleIter iter = first; iter != last; iter++, nIndex++)
|
||||
{
|
||||
PointType& pt= *iter; //A point
|
||||
ppData[nIndex] = new AttributeType[knDimension];
|
||||
for(unsigned int nAttribute = 0; nAttribute < knDimension; nAttribute++)
|
||||
{
|
||||
ppData[nIndex][nAttribute] = pt[nAttribute];
|
||||
}
|
||||
}
|
||||
|
||||
int* labels = detail::k_means(ppData, (int) knumOfPoints, (int) knDimension, k, eps, centroids);
|
||||
|
||||
typedef KMeansCluster<PointType> KMeansClusterType;
|
||||
KMeansClustering< KMeansClusterType > clustering;
|
||||
for(size_t nCentroid = 0; nCentroid < k; nCentroid++)
|
||||
{
|
||||
|
||||
KMeansClusterType cluster;
|
||||
PointType centroid;
|
||||
for(unsigned int nAttribute = 0; nAttribute < knDimension; nAttribute++)
|
||||
{
|
||||
centroid[nAttribute] = centroids[nCentroid][nAttribute];
|
||||
}
|
||||
cluster.centroid = centroid;
|
||||
clustering.clusters.push_back(cluster);
|
||||
delete[] centroids[nCentroid];
|
||||
}
|
||||
|
||||
for(int nPoint = 0; nPoint < knumOfPoints; nPoint++)
|
||||
{
|
||||
int nCentroidIndex = labels[nPoint];
|
||||
clustering.clusters[nCentroidIndex].points.push_back(nPoint);
|
||||
delete[] ppData[nPoint];
|
||||
}
|
||||
|
||||
delete[] centroids;
|
||||
delete[] ppData;
|
||||
delete[] labels;
|
||||
|
||||
return clustering;
|
||||
}
|
||||
} //End of cluster namespace
|
||||
} //End of algorithm namespace
|
||||
} //End of boost namespace
|
||||
|
||||
#endif // BOOST_ALGORITHM_CLUSTER_K_MEANS_HPP
|
Reference in New Issue
Block a user