forked from boostorg/algorithm
Compare commits
10 Commits
esp-idf-co
...
indirectSo
Author | SHA1 | Date | |
---|---|---|---|
62922bd1ff | |||
25ab833cae | |||
a7ae53d615 | |||
8be54b3eb7 | |||
3ae9ee2f92 | |||
814f8a5c05 | |||
17c47e8061 | |||
faac048d59 | |||
d1ecc8b0a8 | |||
3fe40eb999 |
@ -233,6 +233,8 @@ Convert a sequence of hexadecimal characters into a sequence of integers or char
|
|||||||
Convert a sequence of integral types into a lower case hexadecimal sequence of characters
|
Convert a sequence of integral types into a lower case hexadecimal sequence of characters
|
||||||
[endsect:hex_lower]
|
[endsect:hex_lower]
|
||||||
|
|
||||||
|
[include indirect_sort.qbk]
|
||||||
|
|
||||||
[include is_palindrome.qbk]
|
[include is_palindrome.qbk]
|
||||||
|
|
||||||
[include is_partitioned_until.qbk]
|
[include is_partitioned_until.qbk]
|
||||||
|
111
doc/indirect_sort.qbk
Normal file
111
doc/indirect_sort.qbk
Normal file
@ -0,0 +1,111 @@
|
|||||||
|
[/ File indirect_sort.qbk]
|
||||||
|
|
||||||
|
[section:indirect_sort indirect_sort ]
|
||||||
|
|
||||||
|
[/license
|
||||||
|
Copyright (c) 2023 Marshall Clow
|
||||||
|
|
||||||
|
Distributed under the Boost Software License, Version 1.0.
|
||||||
|
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||||
|
]
|
||||||
|
|
||||||
|
There are times that you want a sorted version of a sequence, but for some reason you don't want to modify it. Maybe the elements in the sequence can't be moved/copied, e.g. the sequence is const, or they're just really expensive to move around. An example of this might be a sequence of records from a database.
|
||||||
|
|
||||||
|
That's where indirect sorting comes in. In a "normal" sort, the elements of the sequence to be sorted are shuffled in place. In indirect sorting, the elements are unchanged, but the sort algorithm returns a "permutation" of the elements that, when applied, will put the elements in the sequence in a sorted order.
|
||||||
|
|
||||||
|
Assume have a sequence `[first, last)` of 1000 items that are expensive to swap:
|
||||||
|
```
|
||||||
|
std::sort(first, last); // ['O(N ln N)] comparisons and ['O(N ln N)] swaps (of the element type).
|
||||||
|
```
|
||||||
|
|
||||||
|
On the other hand, using indirect sorting:
|
||||||
|
```
|
||||||
|
auto perm = indirect_sort(first, last); // ['O(N lg N)] comparisons and ['O(N lg N)] swaps (of size_t).
|
||||||
|
apply_permutation(first, last, perm.begin(), perm.end()); // ['O(N)] swaps (of the element type)
|
||||||
|
```
|
||||||
|
|
||||||
|
If the element type is sufficiently expensive to swap, then 10,000 swaps of size_t + 1000 swaps of the element_type could be cheaper than 10,000 swaps of the element_type.
|
||||||
|
|
||||||
|
Or maybe you don't need the elements to actually be sorted - you just want to traverse them in a sorted order:
|
||||||
|
```
|
||||||
|
auto permutation = indirect_sort(first, last);
|
||||||
|
for (size_t idx: permutation)
|
||||||
|
std::cout << first[idx] << std::endl;
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
Assume that instead of an "array of structures", you have a "struct of arrays".
|
||||||
|
```
|
||||||
|
struct AType {
|
||||||
|
Type0 key;
|
||||||
|
Type1 value1;
|
||||||
|
Type1 value2;
|
||||||
|
};
|
||||||
|
|
||||||
|
std::array<AType, 1000> arrayOfStruct;
|
||||||
|
```
|
||||||
|
|
||||||
|
versus:
|
||||||
|
|
||||||
|
```
|
||||||
|
template <size_t N>
|
||||||
|
struct AType {
|
||||||
|
std::array<Type0, N> key;
|
||||||
|
std::array<Type1, N> value1;
|
||||||
|
std::array<Type2, N> value2;
|
||||||
|
};
|
||||||
|
|
||||||
|
AType<1000> structOfArrays;
|
||||||
|
```
|
||||||
|
|
||||||
|
Sorting the first one is easy, because each set of fields (`key`, `value1`, `value2`) are part of the same struct. But with indirect sorting, the second one is easy to sort as well - just sort the keys, then apply the permutation to the keys and the values:
|
||||||
|
```
|
||||||
|
auto perm = indirect_sort(std::begin(structOfArrays.key), std::end(structOfArrays.key));
|
||||||
|
apply_permutation(structOfArrays.key.begin(), structOfArrays.key.end(), perm.begin(), perm.end());
|
||||||
|
apply_permutation(structOfArrays.value1.begin(), structOfArrays.value1.end(), perm.begin(), perm.end());
|
||||||
|
apply_permutation(structOfArrays.value2.begin(), structOfArrays.value2.end(), perm.begin(), perm.end());
|
||||||
|
```
|
||||||
|
|
||||||
|
[heading interface]
|
||||||
|
|
||||||
|
The function `indirect_sort` returns a `vector<size_t>` containing the permutation necessary to put the input sequence into a sorted order. One version uses `std::less` to do the comparisons; the other lets the caller pass predicate to do the comparisons.
|
||||||
|
|
||||||
|
There is also a variant called `indirect_stable_sort`; it bears the same relation to `indirect_sort` that `std::stable_sort` does to `std::sort`.
|
||||||
|
|
||||||
|
```
|
||||||
|
template <typename RAIterator>
|
||||||
|
std::vector<size_t> indirect_sort (RAIterator first, RAIterator last);
|
||||||
|
|
||||||
|
template <typename RAIterator, typename BinaryPredicate>
|
||||||
|
std::vector<size_t> indirect_sort (RAIterator first, RAIterator last, BinaryPredicate pred);
|
||||||
|
|
||||||
|
template <typename RAIterator>
|
||||||
|
std::vector<size_t> indirect_stable_sort (RAIterator first, RAIterator last);
|
||||||
|
|
||||||
|
template <typename RAIterator, typename BinaryPredicate>
|
||||||
|
std::vector<size_t> indirect_stable_sort (RAIterator first, RAIterator last, BinaryPredicate pred);
|
||||||
|
```
|
||||||
|
|
||||||
|
[heading Examples]
|
||||||
|
|
||||||
|
[heading Iterator Requirements]
|
||||||
|
|
||||||
|
`indirect_sort` requires random-access iterators.
|
||||||
|
|
||||||
|
[heading Complexity]
|
||||||
|
|
||||||
|
Both of the variants of `indirect_sort` run in ['O(N lg N)] time; they are not more (or less) efficient than `std::sort`. There is an extra layer of indirection on each comparison, but all of the swaps are done on values of type `size_t`
|
||||||
|
|
||||||
|
[heading Exception Safety]
|
||||||
|
|
||||||
|
[heading Notes]
|
||||||
|
|
||||||
|
In numpy, this algorithm is known as `argsort`.
|
||||||
|
|
||||||
|
[endsect]
|
||||||
|
|
||||||
|
[/ File indirect_sort.qbk
|
||||||
|
Copyright 2023 Marshall Clow
|
||||||
|
Distributed under the Boost Software License, Version 1.0.
|
||||||
|
(See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).
|
||||||
|
]
|
@ -1,4 +1,4 @@
|
|||||||
/*
|
/*
|
||||||
Copyright 2008 Adobe Systems Incorporated
|
Copyright 2008 Adobe Systems Incorporated
|
||||||
|
|
||||||
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
||||||
@ -84,7 +84,7 @@ namespace boost { namespace algorithm {
|
|||||||
template <
|
template <
|
||||||
typename BidirectionalIterator, // models BidirectionalIterator
|
typename BidirectionalIterator, // models BidirectionalIterator
|
||||||
typename Pred> // models UnaryPredicate
|
typename Pred> // models UnaryPredicate
|
||||||
std::pair<BidirectionalIterator, BidirectionalIterator> gather
|
std::pair<BidirectionalIterator, BidirectionalIterator> gather
|
||||||
( BidirectionalIterator first, BidirectionalIterator last, BidirectionalIterator pivot, Pred pred )
|
( BidirectionalIterator first, BidirectionalIterator last, BidirectionalIterator pivot, Pred pred )
|
||||||
{
|
{
|
||||||
// The first call partitions everything up to (but not including) the pivot element,
|
// The first call partitions everything up to (but not including) the pivot element,
|
||||||
@ -106,11 +106,11 @@ template <
|
|||||||
typename BidirectionalRange, //
|
typename BidirectionalRange, //
|
||||||
typename Pred> // Pred models UnaryPredicate
|
typename Pred> // Pred models UnaryPredicate
|
||||||
std::pair<
|
std::pair<
|
||||||
typename boost::range_iterator<const BidirectionalRange>::type,
|
typename boost::range_iterator<BidirectionalRange>::type,
|
||||||
typename boost::range_iterator<const BidirectionalRange>::type>
|
typename boost::range_iterator<BidirectionalRange>::type>
|
||||||
gather (
|
gather (
|
||||||
const BidirectionalRange &range,
|
BidirectionalRange &range,
|
||||||
typename boost::range_iterator<const BidirectionalRange>::type pivot,
|
typename boost::range_iterator<BidirectionalRange>::type pivot,
|
||||||
Pred pred )
|
Pred pred )
|
||||||
{
|
{
|
||||||
return boost::algorithm::gather ( boost::begin ( range ), boost::end ( range ), pivot, pred );
|
return boost::algorithm::gather ( boost::begin ( range ), boost::end ( range ), pivot, pred );
|
||||||
|
207
include/boost/algorithm/indirect_sort.hpp
Normal file
207
include/boost/algorithm/indirect_sort.hpp
Normal file
@ -0,0 +1,207 @@
|
|||||||
|
/*
|
||||||
|
Copyright (c) Marshall Clow 2023.
|
||||||
|
|
||||||
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
||||||
|
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||||
|
|
||||||
|
*/
|
||||||
|
|
||||||
|
/// \file indirect_sort.hpp
|
||||||
|
/// \brief indirect sorting algorithms
|
||||||
|
/// \author Marshall Clow
|
||||||
|
///
|
||||||
|
|
||||||
|
#ifndef BOOST_ALGORITHM_INDIRECT_SORT
|
||||||
|
#define BOOST_ALGORITHM_INDIRECT_SORT
|
||||||
|
|
||||||
|
#include <algorithm> // for std::sort (and others)
|
||||||
|
#include <functional> // for std::less
|
||||||
|
#include <vector> // for std::vector
|
||||||
|
|
||||||
|
#include <boost/algorithm/cxx11/iota.hpp>
|
||||||
|
|
||||||
|
namespace boost { namespace algorithm {
|
||||||
|
|
||||||
|
typedef std::vector<size_t> Permutation;
|
||||||
|
|
||||||
|
namespace detail {
|
||||||
|
|
||||||
|
template <class Predicate, class Iter>
|
||||||
|
struct indirect_predicate {
|
||||||
|
indirect_predicate (Predicate pred, Iter iter)
|
||||||
|
: pred_(pred), iter_(iter) {}
|
||||||
|
|
||||||
|
bool operator ()(size_t a, size_t b) const {
|
||||||
|
return pred_(iter_[a], iter_[b]);
|
||||||
|
}
|
||||||
|
|
||||||
|
Predicate pred_;
|
||||||
|
Iter iter_;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Initialize a permutation of size 'size'. [ 0, 1, 2, ... size-1 ]
|
||||||
|
// Note: it would be nice to use 'iota' here, but that call writes over
|
||||||
|
// existing elements - not append them. I don't want to initialize
|
||||||
|
// the elements of the permutation to zero, and then immediately
|
||||||
|
// overwrite them.
|
||||||
|
void init_permutation (Permutation &p, size_t size) {
|
||||||
|
p.reserve(size);
|
||||||
|
boost::algorithm::iota_n(
|
||||||
|
std::back_insert_iterator<Permutation>(p), size_t(0), size);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// ===== sort =====
|
||||||
|
|
||||||
|
/// \fn indirect_sort (RAIterator first, RAIterator last, Predicate pred)
|
||||||
|
/// \returns a permutation of the elements in the range [first, last)
|
||||||
|
/// such that when the permutation is applied to the sequence,
|
||||||
|
/// the result is ordered as if 'std::sort(first, last, pred)'
|
||||||
|
// was called on the sequence.
|
||||||
|
///
|
||||||
|
/// \param first The start of the input sequence
|
||||||
|
/// \param last The end of the input sequence
|
||||||
|
/// \param pred The predicate to compare elements with
|
||||||
|
///
|
||||||
|
template <typename RAIterator, typename Pred>
|
||||||
|
Permutation indirect_sort (RAIterator first, RAIterator last, Pred pred) {
|
||||||
|
|
||||||
|
Permutation ret;
|
||||||
|
detail::init_permutation(ret, std::distance(first, last));
|
||||||
|
std::sort(ret.begin(), ret.end(),
|
||||||
|
detail::indirect_predicate<Pred, RAIterator>(pred, first));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// \fn indirect_sort (RAIterator first, RAIterator last)
|
||||||
|
/// \returns a permutation of the elements in the range [first, last)
|
||||||
|
/// such that when the permutation is applied to the sequence,
|
||||||
|
/// the result is ordered as if 'std::sort(first, last)'
|
||||||
|
// was called on the sequence.
|
||||||
|
///
|
||||||
|
/// \param first The start of the input sequence
|
||||||
|
/// \param last The end of the input sequence
|
||||||
|
///
|
||||||
|
template <typename RAIterator>
|
||||||
|
Permutation indirect_sort (RAIterator first, RAIterator last) {
|
||||||
|
return indirect_sort(first, last,
|
||||||
|
std::less<typename std::iterator_traits<RAIterator>::value_type>());
|
||||||
|
}
|
||||||
|
|
||||||
|
// ===== stable_sort =====
|
||||||
|
|
||||||
|
/// \fn indirect_stable_sort (RAIterator first, RAIterator last, Predicate pred)
|
||||||
|
/// \returns a permutation of the elements in the range [first, last)
|
||||||
|
/// such that when the permutation is applied to the sequence,
|
||||||
|
/// the result is ordered as if 'std::stable_sort(first, last, pred)'
|
||||||
|
// was called on the sequence.
|
||||||
|
///
|
||||||
|
/// \param first The start of the input sequence
|
||||||
|
/// \param last The end of the input sequence
|
||||||
|
/// \param pred The predicate to compare elements with
|
||||||
|
///
|
||||||
|
template <typename RAIterator, typename Pred>
|
||||||
|
Permutation indirect_stable_sort (RAIterator first, RAIterator last, Pred pred) {
|
||||||
|
Permutation ret;
|
||||||
|
detail::init_permutation(ret, std::distance(first, last));
|
||||||
|
std::stable_sort(ret.begin(), ret.end(),
|
||||||
|
detail::indirect_predicate<Pred, RAIterator>(pred, first));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// \fn indirect_stable_sort (RAIterator first, RAIterator last)
|
||||||
|
/// \returns a permutation of the elements in the range [first, last)
|
||||||
|
/// such that when the permutation is applied to the sequence,
|
||||||
|
/// the result is ordered as if 'std::stable_sort(first, last)'
|
||||||
|
// was called on the sequence.
|
||||||
|
///
|
||||||
|
/// \param first The start of the input sequence
|
||||||
|
/// \param last The end of the input sequence
|
||||||
|
///
|
||||||
|
template <typename RAIterator>
|
||||||
|
Permutation indirect_stable_sort (RAIterator first, RAIterator last) {
|
||||||
|
return indirect_stable_sort(first, last,
|
||||||
|
std::less<typename std::iterator_traits<RAIterator>::value_type>());
|
||||||
|
}
|
||||||
|
|
||||||
|
// ===== partial_sort =====
|
||||||
|
|
||||||
|
/// \fn indirect_partial_sort (RAIterator first, RAIterator middle, RAIterator last, Predicate pred)
|
||||||
|
/// \returns a permutation of the elements in the range [first, last)
|
||||||
|
/// such that when the permutation is applied to the sequence,
|
||||||
|
/// the result is ordered as if 'std::partial_sort(first, middle, last, pred)'
|
||||||
|
// was called on the sequence.
|
||||||
|
///
|
||||||
|
/// \param first The start of the input sequence
|
||||||
|
/// \param middle The end of the range to be sorted
|
||||||
|
/// \param last The end of the input sequence
|
||||||
|
/// \param pred The predicate to compare elements with
|
||||||
|
///
|
||||||
|
template <typename RAIterator, typename Pred>
|
||||||
|
Permutation indirect_partial_sort (RAIterator first, RAIterator middle,
|
||||||
|
RAIterator last, Pred pred) {
|
||||||
|
Permutation ret;
|
||||||
|
detail::init_permutation(ret, std::distance(first, last));
|
||||||
|
std::partial_sort(ret.begin(), ret.begin() + std::distance(first, middle), ret.end(),
|
||||||
|
detail::indirect_predicate<Pred, RAIterator>(pred, first));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// \fn indirect_partial_sort (RAIterator first, RAIterator middle, RAIterator last)
|
||||||
|
/// \returns a permutation of the elements in the range [first, last)
|
||||||
|
/// such that when the permutation is applied to the sequence,
|
||||||
|
/// the result is ordered as if 'std::partial_sort(first, middle, last)'
|
||||||
|
// was called on the sequence.
|
||||||
|
///
|
||||||
|
/// \param first The start of the input sequence
|
||||||
|
/// \param middle The end of the range to be sorted
|
||||||
|
/// \param last The end of the input sequence
|
||||||
|
///
|
||||||
|
template <typename RAIterator>
|
||||||
|
Permutation indirect_partial_sort (RAIterator first, RAIterator middle, RAIterator last) {
|
||||||
|
return indirect_partial_sort(first, middle, last,
|
||||||
|
std::less<typename std::iterator_traits<RAIterator>::value_type>());
|
||||||
|
}
|
||||||
|
|
||||||
|
// ===== nth_element =====
|
||||||
|
|
||||||
|
/// \fn indirect_nth_element (RAIterator first, RAIterator nth, RAIterator last, Predicate p)
|
||||||
|
/// \returns a permutation of the elements in the range [first, last)
|
||||||
|
/// such that when the permutation is applied to the sequence,
|
||||||
|
/// the result is ordered as if 'std::nth_element(first, nth, last, p)'
|
||||||
|
// was called on the sequence.
|
||||||
|
///
|
||||||
|
/// \param first The start of the input sequence
|
||||||
|
/// \param nth The sort partition point in the input sequence
|
||||||
|
/// \param last The end of the input sequence
|
||||||
|
/// \param pred The predicate to compare elements with
|
||||||
|
///
|
||||||
|
template <typename RAIterator, typename Pred>
|
||||||
|
Permutation indirect_nth_element (RAIterator first, RAIterator nth,
|
||||||
|
RAIterator last, Pred pred) {
|
||||||
|
Permutation ret;
|
||||||
|
detail::init_permutation(ret, std::distance(first, last));
|
||||||
|
std::nth_element(ret.begin(), ret.begin() + std::distance(first, nth), ret.end(),
|
||||||
|
detail::indirect_predicate<Pred, RAIterator>(pred, first));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// \fn indirect_nth_element (RAIterator first, RAIterator nth, RAIterator last)
|
||||||
|
/// \returns a permutation of the elements in the range [first, last)
|
||||||
|
/// such that when the permutation is applied to the sequence,
|
||||||
|
/// the result is ordered as if 'std::nth_element(first, nth, last)'
|
||||||
|
// was called on the sequence.
|
||||||
|
///
|
||||||
|
/// \param first The start of the input sequence
|
||||||
|
/// \param nth The sort partition point in the input sequence
|
||||||
|
/// \param last The end of the input sequence
|
||||||
|
///
|
||||||
|
template <typename RAIterator>
|
||||||
|
Permutation indirect_nth_element (RAIterator first, RAIterator nth, RAIterator last) {
|
||||||
|
return indirect_nth_element(first, nth, last,
|
||||||
|
std::less<typename std::iterator_traits<RAIterator>::value_type>());
|
||||||
|
}
|
||||||
|
|
||||||
|
}}
|
||||||
|
|
||||||
|
#endif // BOOST_ALGORITHM_INDIRECT_SORT
|
@ -88,6 +88,10 @@ alias unit_test_framework
|
|||||||
|
|
||||||
# Apply_permutation tests
|
# Apply_permutation tests
|
||||||
[ run apply_permutation_test.cpp unit_test_framework : : : : apply_permutation_test ]
|
[ run apply_permutation_test.cpp unit_test_framework : : : : apply_permutation_test ]
|
||||||
|
|
||||||
|
# Indirect_sort tests
|
||||||
|
[ run indirect_sort_test.cpp unit_test_framework : : : : indirect_sort_test ]
|
||||||
|
|
||||||
# Find tests
|
# Find tests
|
||||||
[ run find_not_test.cpp unit_test_framework : : : : find_not_test ]
|
[ run find_not_test.cpp unit_test_framework : : : : find_not_test ]
|
||||||
[ run find_backward_test.cpp unit_test_framework : : : : find_backward_test ]
|
[ run find_backward_test.cpp unit_test_framework : : : : find_backward_test ]
|
||||||
|
348
test/indirect_sort_test.cpp
Normal file
348
test/indirect_sort_test.cpp
Normal file
@ -0,0 +1,348 @@
|
|||||||
|
/*
|
||||||
|
Copyright (c) Marshall Clow 2023.
|
||||||
|
|
||||||
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
||||||
|
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||||
|
|
||||||
|
For more information, see http://www.boost.org
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <boost/config.hpp>
|
||||||
|
#include <boost/algorithm/indirect_sort.hpp>
|
||||||
|
#include <boost/algorithm/apply_permutation.hpp>
|
||||||
|
#include <boost/algorithm/cxx11/is_sorted.hpp>
|
||||||
|
#include <boost/algorithm/cxx11/all_of.hpp>
|
||||||
|
|
||||||
|
#define BOOST_TEST_MAIN
|
||||||
|
#include <boost/test/unit_test.hpp>
|
||||||
|
|
||||||
|
#include <iostream>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include <list>
|
||||||
|
|
||||||
|
using boost::algorithm::Permutation;
|
||||||
|
|
||||||
|
// A permutation of size N is a sequence of values in the range [0..N)
|
||||||
|
// such that no value appears more than once in the permutation.
|
||||||
|
bool is_a_permutation(Permutation p, size_t N) {
|
||||||
|
if (p.size() != N) return false;
|
||||||
|
|
||||||
|
// Sort the permutation, and ensure that each value appears exactly once.
|
||||||
|
std::sort(p.begin(), p.end());
|
||||||
|
for (size_t i = 0; i < N; ++i)
|
||||||
|
if (p[i] != i) return false;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Iter,
|
||||||
|
typename Comp = typename std::less<typename std::iterator_traits<Iter>::value_type> >
|
||||||
|
struct indirect_comp {
|
||||||
|
indirect_comp (Iter it, Comp c = Comp())
|
||||||
|
: iter_(it), comp_(c) {}
|
||||||
|
|
||||||
|
bool operator ()(size_t a, size_t b) const { return comp_(iter_[a], iter_[b]);}
|
||||||
|
|
||||||
|
Iter iter_;
|
||||||
|
Comp comp_;
|
||||||
|
};
|
||||||
|
|
||||||
|
//// =======================
|
||||||
|
//// ==== indirect_sort ====
|
||||||
|
//// =======================
|
||||||
|
template <typename Iter>
|
||||||
|
void test_one_sort(Iter first, Iter last) {
|
||||||
|
Permutation perm = boost::algorithm::indirect_sort(first, last);
|
||||||
|
BOOST_CHECK (is_a_permutation(perm, std::distance(first, last)));
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(perm.begin(), perm.end(), indirect_comp<Iter>(first)));
|
||||||
|
|
||||||
|
// Make a copy of the data, apply the permutation, and ensure that it is sorted.
|
||||||
|
typedef std::vector<typename std::iterator_traits<Iter>::value_type> Vector;
|
||||||
|
Vector v(first, last);
|
||||||
|
boost::algorithm::apply_permutation(v.begin(), v.end(), perm.begin(), perm.end());
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(v.begin(), v.end()));
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Iter, typename Comp>
|
||||||
|
void test_one_sort(Iter first, Iter last, Comp comp) {
|
||||||
|
Permutation perm = boost::algorithm::indirect_sort(first, last, comp);
|
||||||
|
BOOST_CHECK (is_a_permutation(perm, std::distance(first, last)));
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(perm.begin(), perm.end(),
|
||||||
|
indirect_comp<Iter, Comp>(first, comp)));
|
||||||
|
|
||||||
|
// Make a copy of the data, apply the permutation, and ensure that it is sorted.
|
||||||
|
typedef std::vector<typename std::iterator_traits<Iter>::value_type> Vector;
|
||||||
|
Vector v(first, last);
|
||||||
|
boost::algorithm::apply_permutation(v.begin(), v.end(), perm.begin(), perm.end());
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(v.begin(), v.end(), comp));
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
BOOST_AUTO_TEST_CASE(test_sort) {
|
||||||
|
int num[] = { 1,3,5,7,9, 2, 4, 6, 8, 10 };
|
||||||
|
const int sz = sizeof (num)/sizeof(num[0]);
|
||||||
|
int *first = &num[0];
|
||||||
|
int const *cFirst = &num[0];
|
||||||
|
|
||||||
|
// Test subsets
|
||||||
|
for (size_t i = 0; i <= sz; ++i) {
|
||||||
|
test_one_sort(first, first + i);
|
||||||
|
test_one_sort(first, first + i, std::greater<int>());
|
||||||
|
|
||||||
|
// test with constant inputs
|
||||||
|
test_one_sort(cFirst, cFirst + i);
|
||||||
|
test_one_sort(cFirst, cFirst + i, std::greater<int>());
|
||||||
|
}
|
||||||
|
|
||||||
|
// make sure we work with iterators as well as pointers
|
||||||
|
std::vector<int> v(first, first + sz);
|
||||||
|
test_one_sort(v.begin(), v.end());
|
||||||
|
test_one_sort(v.begin(), v.end(), std::greater<int>());
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//// ==============================
|
||||||
|
//// ==== indirect_stable_sort ====
|
||||||
|
//// ==============================
|
||||||
|
|
||||||
|
template <typename T1, typename T2>
|
||||||
|
struct MyPair {
|
||||||
|
MyPair () {}
|
||||||
|
|
||||||
|
MyPair (const T1 &t1, const T2 &t2)
|
||||||
|
: first(t1), second(t2) {}
|
||||||
|
|
||||||
|
T1 first;
|
||||||
|
T2 second;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T1, typename T2>
|
||||||
|
bool operator < (const MyPair<T1, T2>& lhs, const MyPair<T1, T2>& rhs) {
|
||||||
|
return lhs.first < rhs.first; // compare only the first elements
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T1, typename T2>
|
||||||
|
bool MyGreater (const MyPair<T1, T2>& lhs, const MyPair<T1, T2>& rhs) {
|
||||||
|
return lhs.first > rhs.first; // compare only the first elements
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Iter>
|
||||||
|
void test_one_stable_sort(Iter first, Iter last) {
|
||||||
|
Permutation perm = boost::algorithm::indirect_stable_sort(first, last);
|
||||||
|
BOOST_CHECK (is_a_permutation(perm, std::distance(first, last)));
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(perm.begin(), perm.end(), indirect_comp<Iter>(first)));
|
||||||
|
|
||||||
|
if (first != last) {
|
||||||
|
Iter iFirst = first;
|
||||||
|
Iter iSecond = first; ++iSecond;
|
||||||
|
|
||||||
|
while (iSecond != last) {
|
||||||
|
if (iFirst->first == iSecond->first)
|
||||||
|
BOOST_CHECK(iFirst->second < iSecond->second);
|
||||||
|
++iFirst;
|
||||||
|
++iSecond;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Make a copy of the data, apply the permutation, and ensure that it is sorted.
|
||||||
|
typedef std::vector<typename std::iterator_traits<Iter>::value_type> Vector;
|
||||||
|
Vector v(first, last);
|
||||||
|
boost::algorithm::apply_permutation(v.begin(), v.end(), perm.begin(), perm.end());
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(v.begin(), v.end()));
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Iter, typename Comp>
|
||||||
|
void test_one_stable_sort(Iter first, Iter last, Comp comp) {
|
||||||
|
Permutation perm = boost::algorithm::indirect_stable_sort(first, last, comp);
|
||||||
|
BOOST_CHECK (is_a_permutation(perm, std::distance(first, last)));
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(perm.begin(), perm.end(), indirect_comp<Iter, Comp>(first, comp)));
|
||||||
|
|
||||||
|
if (first != last) {
|
||||||
|
Iter iFirst = first;
|
||||||
|
Iter iSecond = first; ++iSecond;
|
||||||
|
|
||||||
|
while (iSecond != last) {
|
||||||
|
if (iFirst->first == iSecond->first)
|
||||||
|
BOOST_CHECK(iFirst->second < iSecond->second);
|
||||||
|
++iFirst;
|
||||||
|
++iSecond;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Make a copy of the data, apply the permutation, and ensure that it is sorted.
|
||||||
|
typedef std::vector<typename std::iterator_traits<Iter>::value_type> Vector;
|
||||||
|
Vector v(first, last);
|
||||||
|
boost::algorithm::apply_permutation(v.begin(), v.end(), perm.begin(), perm.end());
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(v.begin(), v.end(), comp));
|
||||||
|
}
|
||||||
|
|
||||||
|
BOOST_AUTO_TEST_CASE(test_stable_sort) {
|
||||||
|
typedef MyPair<int, long> Pair;
|
||||||
|
const int sz = 10;
|
||||||
|
Pair vals[sz];
|
||||||
|
|
||||||
|
for (int i = 0; i < sz; ++i) {
|
||||||
|
vals[i].first = 100 - (i >> 1);
|
||||||
|
vals[i].second = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
Pair *first = &vals[0];
|
||||||
|
Pair const *cFirst = &vals[0];
|
||||||
|
|
||||||
|
// Test subsets
|
||||||
|
for (size_t i = 0; i <= sz; ++i) {
|
||||||
|
test_one_stable_sort(first, first + i);
|
||||||
|
test_one_stable_sort(first, first + i, MyGreater<int, long>);
|
||||||
|
|
||||||
|
// test with constant inputs
|
||||||
|
test_one_sort(cFirst, cFirst + i);
|
||||||
|
test_one_sort(cFirst, cFirst + i, MyGreater<int, long>);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//// ===============================
|
||||||
|
//// ==== indirect_partial_sort ====
|
||||||
|
//// ===============================
|
||||||
|
|
||||||
|
template <typename Iter>
|
||||||
|
void test_one_partial_sort(Iter first, Iter middle, Iter last) {
|
||||||
|
const size_t middleIdx = std::distance(first, middle);
|
||||||
|
Permutation perm = boost::algorithm::indirect_partial_sort(first, middle, last);
|
||||||
|
BOOST_CHECK (is_a_permutation(perm, std::distance(first, last)));
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(perm.begin(), perm.begin() + middleIdx, indirect_comp<Iter>(first)));
|
||||||
|
|
||||||
|
// Make a copy of the data, apply the permutation, and ensure that it is sorted.
|
||||||
|
typedef std::vector<typename std::iterator_traits<Iter>::value_type> Vector;
|
||||||
|
Vector v(first, last);
|
||||||
|
boost::algorithm::apply_permutation(v.begin(), v.end(), perm.begin(), perm.end());
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(v.begin(), v.begin() + middleIdx));
|
||||||
|
|
||||||
|
// Make sure that [middle, end) are all "greater" than the sorted part
|
||||||
|
if (middleIdx > 0) {
|
||||||
|
typename Vector::iterator lastSorted = v.begin() + middleIdx - 1;
|
||||||
|
for (typename Vector::iterator it = v.begin () + middleIdx; it != v.end(); ++it)
|
||||||
|
BOOST_CHECK(*lastSorted < *it);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Iter, typename Comp>
|
||||||
|
void test_one_partial_sort(Iter first, Iter middle, Iter last, Comp comp) {
|
||||||
|
const size_t middleIdx = std::distance(first, middle);
|
||||||
|
Permutation perm = boost::algorithm::indirect_partial_sort(first, middle, last, comp);
|
||||||
|
BOOST_CHECK (is_a_permutation(perm, std::distance(first, last)));
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(perm.begin(), perm.begin() + middleIdx,
|
||||||
|
indirect_comp<Iter, Comp>(first, comp)));
|
||||||
|
|
||||||
|
// Make a copy of the data, apply the permutation, and ensure that it is sorted.
|
||||||
|
typedef std::vector<typename std::iterator_traits<Iter>::value_type> Vector;
|
||||||
|
Vector v(first, last);
|
||||||
|
boost::algorithm::apply_permutation(v.begin(), v.end(), perm.begin(), perm.end());
|
||||||
|
BOOST_CHECK (boost::algorithm::is_sorted(v.begin(), v.begin() + middleIdx, comp));
|
||||||
|
|
||||||
|
// Make sure that [middle, end) are all "greater" than the sorted part
|
||||||
|
if (middleIdx > 0) {
|
||||||
|
typename Vector::iterator lastSorted = v.begin() + middleIdx - 1;
|
||||||
|
for (typename Vector::iterator it = v.begin () + middleIdx; it != v.end(); ++it)
|
||||||
|
BOOST_CHECK(comp(*lastSorted, *it));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
BOOST_AUTO_TEST_CASE(test_partial_sort) {
|
||||||
|
int num[] = { 1,3,5,7,9, 2, 4, 6, 8, 10 };
|
||||||
|
const int sz = sizeof (num)/sizeof(num[0]);
|
||||||
|
int *first = &num[0];
|
||||||
|
int const *cFirst = &num[0];
|
||||||
|
|
||||||
|
// Test subsets
|
||||||
|
for (size_t i = 0; i <= sz; ++i) {
|
||||||
|
for (size_t j = 0; j < i; ++j) {
|
||||||
|
test_one_partial_sort(first, first + j, first + i);
|
||||||
|
test_one_partial_sort(first, first + j, first + i, std::greater<int>());
|
||||||
|
|
||||||
|
// test with constant inputs
|
||||||
|
test_one_partial_sort(cFirst, cFirst + j, cFirst + i);
|
||||||
|
test_one_partial_sort(cFirst, cFirst + j, cFirst + i, std::greater<int>());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// make sure we work with iterators as well as pointers
|
||||||
|
std::vector<int> v(first, first + sz);
|
||||||
|
test_one_partial_sort(v.begin(), v.begin() + (sz / 2), v.end());
|
||||||
|
test_one_partial_sort(v.begin(), v.begin() + (sz / 2), v.end(), std::greater<int>());
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//// ===================================
|
||||||
|
//// ==== indirect_nth_element_sort ====
|
||||||
|
//// ===================================
|
||||||
|
|
||||||
|
template <typename Iter>
|
||||||
|
void test_one_nth_element(Iter first, Iter nth, Iter last) {
|
||||||
|
const size_t nthIdx = std::distance(first, nth);
|
||||||
|
Permutation perm = boost::algorithm::indirect_nth_element(first, nth, last);
|
||||||
|
BOOST_CHECK (is_a_permutation(perm, std::distance(first, last)));
|
||||||
|
|
||||||
|
for (size_t i = 0; i < nthIdx; ++i)
|
||||||
|
BOOST_CHECK(!(first[perm[nthIdx]] < first[perm[i]])); // all items before the nth element are <= the nth element
|
||||||
|
for (size_t i = nthIdx; i < std::distance(first, last); ++i)
|
||||||
|
BOOST_CHECK(!(first[perm[i]] < first[perm[nthIdx]])); // all items before the nth element are >= the nth element
|
||||||
|
|
||||||
|
// Make a copy of the data, apply the permutation, and ensure that the result is correct.
|
||||||
|
typedef std::vector<typename std::iterator_traits<Iter>::value_type> Vector;
|
||||||
|
Vector v(first, last);
|
||||||
|
boost::algorithm::apply_permutation(v.begin(), v.end(), perm.begin(), perm.end());
|
||||||
|
|
||||||
|
for (size_t i = 0; i < nthIdx; ++i)
|
||||||
|
BOOST_CHECK(!(v[nthIdx] < v[i])); // all items before the nth element are <= the nth element
|
||||||
|
for (size_t i = nthIdx; i < v.size(); ++i)
|
||||||
|
BOOST_CHECK(!(v[i] < v[nthIdx])); // all items before the nth element are >= the nth element
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Iter, typename Comp>
|
||||||
|
void test_one_nth_element(Iter first, Iter nth, Iter last, Comp comp) {
|
||||||
|
const size_t nthIdx = std::distance(first, nth);
|
||||||
|
|
||||||
|
Permutation perm = boost::algorithm::indirect_nth_element(first, nth, last, comp);
|
||||||
|
BOOST_CHECK (is_a_permutation(perm, std::distance(first, last)));
|
||||||
|
for (size_t i = 0; i < nthIdx; ++i)
|
||||||
|
BOOST_CHECK(!comp(first[perm[nthIdx]], first[perm[i]])); // all items before the nth element are <= the nth element
|
||||||
|
for (size_t i = nthIdx; i < std::distance(first, last); ++i)
|
||||||
|
BOOST_CHECK(!comp(first[perm[i]], first[perm[nthIdx]])); // all items before the nth element are >= the nth element
|
||||||
|
|
||||||
|
|
||||||
|
// Make a copy of the data, apply the permutation, and ensure that the result is correct.
|
||||||
|
typedef std::vector<typename std::iterator_traits<Iter>::value_type> Vector;
|
||||||
|
Vector v(first, last);
|
||||||
|
boost::algorithm::apply_permutation(v.begin(), v.end(), perm.begin(), perm.end());
|
||||||
|
|
||||||
|
for (size_t i = 0; i < nthIdx; ++i)
|
||||||
|
BOOST_CHECK(!comp(v[nthIdx], v[i])); // all items before the nth element are <= the nth element
|
||||||
|
for (size_t i = nthIdx; i < v.size(); ++i)
|
||||||
|
BOOST_CHECK(!comp(v[i], v[nthIdx])); // all items before the nth element are >= the nth element
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
BOOST_AUTO_TEST_CASE(test_nth_element) {
|
||||||
|
int num[] = { 1, 3, 5, 7, 9, 2, 4, 6, 8, 10, 1, 2, 3, 4, 5 };
|
||||||
|
const int sz = sizeof (num)/sizeof(num[0]);
|
||||||
|
int *first = &num[0];
|
||||||
|
int const *cFirst = &num[0];
|
||||||
|
|
||||||
|
// Test subsets
|
||||||
|
for (size_t i = 0; i <= sz; ++i) {
|
||||||
|
for (size_t j = 0; j < i; ++j) {
|
||||||
|
test_one_nth_element(first, first + j, first + i);
|
||||||
|
test_one_nth_element(first, first + j, first + i, std::greater<int>());
|
||||||
|
|
||||||
|
// test with constant inputs
|
||||||
|
test_one_nth_element(cFirst, cFirst + j, cFirst + i);
|
||||||
|
test_one_nth_element(cFirst, cFirst + j, cFirst + i, std::greater<int>());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// make sure we work with iterators as well as pointers
|
||||||
|
std::vector<int> v(first, first + sz);
|
||||||
|
test_one_nth_element(v.begin(), v.begin() + (sz / 2), v.end());
|
||||||
|
test_one_nth_element(v.begin(), v.begin() + (sz / 2), v.end(), std::greater<int>());
|
||||||
|
}
|
Reference in New Issue
Block a user