refactor documentation to use asciidoc

This commit is contained in:
Christian Mazakas
2024-12-18 15:31:13 -08:00
parent 22b8eebc3c
commit 99c3a4b966
9 changed files with 574 additions and 652 deletions

1
doc/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/html

View File

@ -1,19 +1,16 @@
#~ Copyright Marshall Clow 2013
#~ Copyright Christian Mazakas 2024
#~ Distributed under the Boost Software License, Version 1.0.
#~ (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
using boostbook ;
import asciidoctor ;
boostbook standalone
: array.xml
: <xsl:param>boost.root=../../../.. ;
html array.html : array.adoc ;
###############################################################################
alias boostdoc
: array.xml
:
:
: ;
explicit boostdoc ;
alias boostrelease ;
explicit boostrelease ;
install html_ : array.html : <location>html ;
pdf array.pdf : array.adoc ;
explicit array.pdf ;
install pdf_ : array.pdf : <location>pdf ;
explicit pdf_ ;

28
doc/array.adoc Normal file
View File

@ -0,0 +1,28 @@
////
Copyright 2001-2004 Nicolai M. Josuttis
Copyright 2012 Marshall Clow
Copyright 2024 Christian Mazakas
Distributed under the Boost Software License, Version 1.0.
https://www.boost.org/LICENSE_1_0.txt
////
# Array
Nicolai M. Josuttis
:toc: left
:toclevels: 4
:idprefix:
:docinfo: private-footer
:source-highlighter: rouge
:source-language: c++
:sectanchors:
:leveloffset: +1
include::array/introduction.adoc[]
include::array/reference.adoc[]
include::array/design_rationale.adoc[]
include::array/information.adoc[]
include::array/copyright.adoc[]
:leveloffset: -1

View File

@ -1,639 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd">
<library name="Array" dirname="array" id="array" last-revision="$Date$">
<libraryinfo>
<author>
<firstname>Nicolai</firstname>
<surname>Josuttis</surname>
</author>
<maintainer>
<firstname>Marshall</firstname>
<surname>Clow</surname>
</maintainer>
<copyright>
<year>2001</year>
<year>2002</year>
<year>2003</year>
<year>2004</year>
<holder>Nicolai M. Josuttis</holder>
</copyright>
<copyright>
<year>2012</year>
<holder>Marshall Clow</holder>
</copyright>
<legalnotice>
<para>Distributed under the Boost Software License, Version 1.0.
(See accompanying file <filename>LICENSE_1_0.txt</filename> or copy at
<ulink
url="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</ulink>)
</para>
</legalnotice>
<librarypurpose>STL compliant container wrapper for arrays of constant size</librarypurpose>
<librarycategory name="category:containers"/>
</libraryinfo>
<title>Boost.Array</title>
<section id="array.intro">
<title>Introduction</title>
<using-namespace name="boost"/>
<using-class name="array"/>
<para>The C++ Standard Template Library STL as part of the C++
Standard Library provides a framework for processing algorithms on
different kind of containers. However, ordinary arrays don't
provide the interface of STL containers (although, they provide
the iterator interface of STL containers).</para>
<para>As replacement for ordinary arrays, the STL provides class
<code><classname>std::vector</classname></code>. However,
<code><classname>std::vector&lt;&gt;</classname></code> provides
the semantics of dynamic arrays. Thus, it manages data to be able
to change the number of elements. This results in some overhead in
case only arrays with static size are needed.</para>
<para>In his book, <emphasis>Generic Programming and the
STL</emphasis>, Matthew H. Austern introduces a useful wrapper
class for ordinary arrays with static size, called
<code>block</code>. It is safer and has no worse performance than
ordinary arrays. In <emphasis>The C++ Programming
Language</emphasis>, 3rd edition, Bjarne Stroustrup introduces a
similar class, called <code>c_array</code>, which I (<ulink
url="http://www.josuttis.com">Nicolai Josuttis</ulink>) present
slightly modified in my book <emphasis>The C++ Standard Library -
A Tutorial and Reference</emphasis>, called
<code>carray</code>. This is the essence of these approaches
spiced with many feedback from <ulink
url="http://www.boost.org">boost</ulink>.</para>
<para>After considering different names, we decided to name this
class simply <code><classname>array</classname></code>.</para>
<para>Note that this class is suggested to be part of the next
Technical Report, which will extend the C++ Standard (see
<ulink url="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1548.htm">http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1548.htm</ulink>).</para>
<para>Update: <code>std::array</code> is (as of C++11) part of the C++ standard.
The differences between <code>boost::array</code> and <code>std::array</code> are minimal.
If you are using C++11, you should consider using <code>std::array</code> instead of <code>boost::array</code>.
</para>
<para>Class <code><classname>array</classname></code> fulfills most
but not all of the requirements of "reversible containers" (see
Section 23.1, [lib.container.requirements] of the C++
Standard). The reasons array is not an reversible STL container is
because:
<itemizedlist spacing="compact">
<listitem><simpara>No constructors are provided.</simpara></listitem>
<listitem><simpara>Elements may have an undetermined initial value (see <xref linkend="array.rationale"/>).</simpara></listitem>
<listitem><simpara><functionname>swap</functionname>() has no constant complexity.</simpara></listitem>
<listitem><simpara><methodname>size</methodname>() is always constant, based on the second template argument of the type.</simpara></listitem>
<listitem><simpara>The container provides no allocator support.</simpara></listitem>
</itemizedlist>
</para>
<para>It doesn't fulfill the requirements of a "sequence" (see Section 23.1.1, [lib.sequence.reqmts] of the C++ Standard), except that:
<itemizedlist spacing="compact">
<listitem><simpara><methodname>front</methodname>() and <methodname>back</methodname>() are provided.</simpara></listitem>
<listitem><simpara><methodname>operator[]</methodname> and <methodname>at</methodname>() are provided.</simpara></listitem>
</itemizedlist>
</para>
</section>
<library-reference>
<header name="boost/array.hpp">
<namespace name="boost">
<class name="array">
<template>
<template-type-parameter name="T"/>
<template-nontype-parameter name="N">
<type>std::size_t</type>
</template-nontype-parameter>
</template>
<purpose><para>STL compliant container wrapper for arrays of constant size</para></purpose>
<typedef name="value_type">
<type>T</type>
</typedef>
<typedef name="iterator">
<type>T*</type>
</typedef>
<typedef name="const_iterator">
<type>const T*</type>
</typedef>
<typedef name="reverse_iterator">
<type><classname>std::reverse_iterator</classname>&lt;iterator&gt;</type>
</typedef>
<typedef name="const_reverse_iterator">
<type><classname>std::reverse_iterator</classname>&lt;const_iterator&gt;</type>
</typedef>
<typedef name="reference">
<type>T&amp;</type>
</typedef>
<typedef name="const_reference">
<type>const T&amp;</type>
</typedef>
<typedef name="size_type">
<type>std::size_t</type>
</typedef>
<typedef name="difference_type">
<type>std::ptrdiff_t</type>
</typedef>
<static-constant name="static_size">
<type>size_type</type>
<default>N</default>
</static-constant>
<copy-assignment>
<template>
<template-type-parameter name="U"/>
</template>
<parameter name="other">
<paramtype>const <classname>array</classname>&lt;U, N&gt;&amp;</paramtype>
</parameter>
<effects><simpara><code>std::copy(rhs.<methodname>begin</methodname>(),rhs.<methodname>end</methodname>(), <methodname>begin</methodname>())</code></simpara></effects>
</copy-assignment>
<method-group name="iterator support">
<overloaded-method name="begin">
<signature>
<type>iterator</type>
</signature>
<signature cv="const">
<type>const_iterator</type>
</signature>
<returns><simpara>iterator for the first element</simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</overloaded-method>
<overloaded-method name="end">
<signature>
<type>iterator</type>
</signature>
<signature cv="const">
<type>const_iterator</type>
</signature>
<returns><simpara>iterator for position after the last element</simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</overloaded-method>
<overloaded-method name="cbegin" cv="const">
<signature>
<type>const_iterator</type>
</signature>
<returns><simpara>constant iterator for the first element</simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</overloaded-method>
<overloaded-method name="cend" cv="const">
<signature>
<type>const_iterator</type>
</signature>
<returns><simpara>constant iterator for position after the last element</simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</overloaded-method>
</method-group>
<method-group name="reverse iterator support">
<overloaded-method name="rbegin">
<signature>
<type>reverse_iterator</type>
</signature>
<signature cv="const">
<type>const_reverse_iterator</type>
</signature>
<returns><simpara>reverse iterator for the first element of reverse iteration</simpara></returns>
</overloaded-method>
<overloaded-method name="rend">
<signature>
<type>reverse_iterator</type>
</signature>
<signature cv="const">
<type>const_reverse_iterator</type>
</signature>
<returns><simpara>reverse iterator for position after the last element in reverse iteration</simpara></returns>
</overloaded-method>
<overloaded-method name="crbegin" cv="const">
<signature>
<type>const_reverse_iterator</type>
</signature>
<returns><simpara>constant reverse iterator for the first element of reverse iteration</simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</overloaded-method>
<overloaded-method name="crend" cv="const">
<signature>
<type>const_reverse_iterator</type>
</signature>
<returns><simpara>constant reverse iterator for position after the last element in reverse iteration</simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</overloaded-method>
</method-group>
<method-group name="capacity">
<method name="size">
<type>size_type</type>
<returns><simpara><code>N</code></simpara></returns>
</method>
<method name="empty">
<type>bool</type>
<returns><simpara><code>N==0</code></simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</method>
<method name="max_size">
<type>size_type</type>
<returns><simpara><code>N</code></simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</method>
</method-group>
<method-group name="element access">
<overloaded-method name="operator[]">
<signature>
<type>reference</type>
<parameter name="i">
<paramtype>size_type</paramtype>
</parameter>
</signature>
<signature cv="const">
<type>const_reference</type>
<parameter name="i">
<paramtype>size_type</paramtype>
</parameter>
</signature>
<requires><simpara><code>i &lt; N</code></simpara></requires>
<returns><simpara>element with index <code>i</code></simpara></returns>
<throws><simpara>will not throw.</simpara></throws>
</overloaded-method>
<overloaded-method name="at">
<signature>
<type>reference</type>
<parameter name="i">
<paramtype>size_type</paramtype>
</parameter>
</signature>
<signature cv="const">
<type>const_reference</type>
<parameter name="i">
<paramtype>size_type</paramtype>
</parameter>
</signature>
<returns><simpara>element with index <code>i</code></simpara></returns>
<throws><simpara><code><classname>std::range_error</classname></code> if <code>i &gt;= N</code></simpara></throws>
</overloaded-method>
<overloaded-method name="front">
<signature>
<type>reference</type>
</signature>
<signature cv="const">
<type>const_reference</type>
</signature>
<requires><simpara><code>N &gt; 0</code></simpara></requires>
<returns><simpara>the first element</simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</overloaded-method>
<overloaded-method name="back">
<signature>
<type>reference</type>
</signature>
<signature cv="const">
<type>const_reference</type>
</signature>
<requires><simpara><code>N &gt; 0</code></simpara></requires>
<returns><simpara>the last element</simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</overloaded-method>
<method name="data" cv="const">
<type>const T*</type>
<returns><simpara><code>elems</code></simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</method>
<method name="c_array">
<type>T*</type>
<returns><simpara><code>elems</code></simpara></returns>
<throws><simpara>will not throw</simpara></throws>
</method>
</method-group>
<method-group name="modifiers">
<method name="swap">
<type>void</type>
<parameter name="other">
<paramtype><classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<effects><simpara><code>std::swap_ranges(<methodname>begin</methodname>(), <methodname>end</methodname>(), other.<methodname>begin</methodname>())</code></simpara></effects>
<complexity><simpara>linear in <code>N</code></simpara></complexity>
</method>
<method name="assign">
<type>void</type>
<parameter name="value">
<paramtype>const T&amp;</paramtype>
</parameter>
<effects><simpara><code>std::fill_n(<methodname>begin</methodname>(), N, value)</code></simpara></effects>
</method>
</method-group>
<data-member name="elems[N]"> <!-- HACK -->
<type>T</type>
</data-member>
<free-function-group name="specialized algorithms">
<function name="swap">
<template>
<template-type-parameter name="T"/>
<template-nontype-parameter name="N">
<type>std::size_t</type>
</template-nontype-parameter>
</template>
<type>void</type>
<parameter name="x">
<paramtype><classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<parameter name="y">
<paramtype><classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<effects><simpara><code>x.<methodname>swap</methodname>(y)</code></simpara></effects>
<throws><simpara>will not throw.</simpara></throws>
</function>
</free-function-group>
<free-function-group name="comparisons">
<function name="operator==">
<template>
<template-type-parameter name="T"/>
<template-nontype-parameter name="N">
<type>std::size_t</type>
</template-nontype-parameter>
</template>
<type>bool</type>
<parameter name="x">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<parameter name="y">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<returns><simpara><code>std::equal(x.<methodname>begin</methodname>(), x.<methodname>end</methodname>(), y.<methodname>begin</methodname>())</code></simpara>
</returns>
</function>
<function name="operator!=">
<template>
<template-type-parameter name="T"/>
<template-nontype-parameter name="N">
<type>std::size_t</type>
</template-nontype-parameter>
</template>
<type>bool</type>
<parameter name="x">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<parameter name="y">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<returns><simpara><code>!(x == y)</code></simpara>
</returns>
</function>
<function name="operator&lt;">
<template>
<template-type-parameter name="T"/>
<template-nontype-parameter name="N">
<type>std::size_t</type>
</template-nontype-parameter>
</template>
<type>bool</type>
<parameter name="x">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<parameter name="y">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<returns><simpara><code>std::lexicographical_compare(x.<methodname>begin</methodname>(), x.<methodname>end</methodname>(), y.<methodname>begin</methodname>(), y.<methodname>end</methodname>())</code></simpara>
</returns>
</function>
<function name="operator&gt;">
<template>
<template-type-parameter name="T"/>
<template-nontype-parameter name="N">
<type>std::size_t</type>
</template-nontype-parameter>
</template>
<type>bool</type>
<parameter name="x">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<parameter name="y">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<returns><simpara><code>y &lt; x</code></simpara></returns>
</function>
<function name="operator&lt;=">
<template>
<template-type-parameter name="T"/>
<template-nontype-parameter name="N">
<type>std::size_t</type>
</template-nontype-parameter>
</template>
<type>bool</type>
<parameter name="x">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<parameter name="y">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<returns><simpara><code>!(y &lt; x)</code></simpara></returns>
</function>
<function name="operator&gt;=">
<template>
<template-type-parameter name="T"/>
<template-nontype-parameter name="N">
<type>std::size_t</type>
</template-nontype-parameter>
</template>
<type>bool</type>
<parameter name="x">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<parameter name="y">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<returns><simpara><code>!(x &lt; y)</code></simpara></returns>
</function>
</free-function-group>
<free-function-group name="specializations">
<function name="boost::get">
<template>
<template-type-parameter name="T"/>
<template-nontype-parameter name="N">
<type>std::size_t</type>
</template-nontype-parameter>
<template-nontype-parameter name="Idx">
<type>std::size_t</type>
</template-nontype-parameter>
</template>
<type>T</type>
<parameter name="arr">
<paramtype><classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<returns><simpara>element of array with index <code>Idx</code></simpara></returns>
<effects><simpara>Will <code>static_assert</code> if <code>Idx >= N</code></simpara></effects>
</function>
<function name="boost::get">
<template>
<template-type-parameter name="T"/>
<template-nontype-parameter name="N">
<type>std::size_t</type>
</template-nontype-parameter>
<template-nontype-parameter name="Idx">
<type>std::size_t</type>
</template-nontype-parameter>
</template>
<type>T</type>
<parameter name="arr">
<paramtype>const <classname>array</classname>&lt;T, N&gt;&amp;</paramtype>
</parameter>
<returns><simpara>const element of array with index <code>Idx</code></simpara></returns>
<effects><simpara>Will <code>static_assert</code> if <code>Idx >= N</code></simpara></effects>
</function>
</free-function-group>
</class>
</namespace>
</header>
</library-reference>
<section id="array.rationale">
<title>Design Rationale</title>
<para>There was an important design tradeoff regarding the
constructors: We could implement array as an "aggregate" (see
Section 8.5.1, [dcl.init.aggr], of the C++ Standard). This would
mean:
<itemizedlist>
<listitem><simpara>An array can be initialized with a
brace-enclosing, comma-separated list of initializers for the
elements of the container, written in increasing subscript
order:</simpara>
<programlisting><classname>boost::array</classname>&lt;int,4&gt; a = { { 1, 2, 3 } };</programlisting>
<simpara>Note that if there are fewer elements in the
initializer list, then each remaining element gets
default-initialized (thus, it has a defined value).</simpara>
</listitem></itemizedlist></para>
<para>However, this approach has its drawbacks: <emphasis
role="bold"> passing no initializer list means that the elements
have an indetermined initial value</emphasis>, because the rule says
that aggregates may have:
<itemizedlist>
<listitem><simpara>No user-declared constructors.</simpara></listitem>
<listitem><simpara>No private or protected non-static data members.</simpara></listitem>
<listitem><simpara>No base classes.</simpara></listitem>
<listitem><simpara>No virtual functions.</simpara></listitem>
</itemizedlist>
</para>
<para>Nevertheless, The current implementation uses this approach.</para>
<para>Note that for standard conforming compilers it is possible to
use fewer braces (according to 8.5.1 (11) of the Standard). That is,
you can initialize an array as follows:</para>
<programlisting>
<classname>boost::array</classname>&lt;int,4&gt; a = { 1, 2, 3 };
</programlisting>
<para>I'd appreciate any constructive feedback. <emphasis
role="bold">Please note: I don't have time to read all boost
mails. Thus, to make sure that feedback arrives to me, please send
me a copy of each mail regarding this class.</emphasis></para>
<para>The code is provided "as is" without expressed or implied
warranty.</para>
</section>
<section id="array.more.info">
<title>For more information...</title>
<para>To find more details about using ordinary arrays in C++ and
the framework of the STL, see e.g.
<literallayout>The C++ Standard Library - A Tutorial and Reference
by Nicolai M. Josuttis
Addison Wesley Longman, 1999
ISBN 0-201-37926-0</literallayout>
</para>
<para><ulink url="http://www.josuttis.com/">Home Page of Nicolai
Josuttis</ulink></para>
</section>
<section id="array.ack">
<title>Acknowledgements</title>
<para>Doug Gregor ported the documentation to the BoostBook format.</para>
</section>
<!-- Notes:
empty() should return N != 0
size(), empty(), max_size() should be const
-->
</library>

15
doc/array/copyright.adoc Normal file
View File

@ -0,0 +1,15 @@
////
Copyright 2024 Christian Mazakas
Distributed under the Boost Software License, Version 1.0.
https://www.boost.org/LICENSE_1_0.txt
////
[#copyright]
# Copyright and License
:idprefix: copyright
Copyright (C) 2001-2004 Nicolai M. Josuttis
Copyright (C) 2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

View File

@ -0,0 +1,43 @@
////
Copyright 2001-2004 Nicolai M. Josuttis
Copyright 2012 Marshall Clow
Copyright 2024 Christian Mazakas
Distributed under the Boost Software License, Version 1.0.
https://www.boost.org/LICENSE_1_0.txt
////
[#design]
# Design Rationale
:idprefix: design_
:cpp: C++
There was an important design tradeoff regarding the constructors: We could implement array as an "aggregate" (see Section 8.5.1, [dcl.init.aggr], of the C++ Standard). This would mean:
* An array can be initialized with a brace-enclosing, comma-separated list of initializers for the elements of the container, written in increasing subscript order:
+
--
```cpp
boost::array<int,4> a = { { 1, 2, 3 } };
```
Note that if there are fewer elements in the initializer list, then each remaining element gets default-initialized (thus, it has a defined value).
--
However, this approach has its drawbacks: **passing no initializer list means that the elements have an indetermined initial value**, because the rule says that aggregates may have:
* No user-declared constructors.
* No private or protected non-static data members.
* No base classes.
* No virtual functions.
Nevertheless, the current implementation uses this approach.
Note that for standard conforming compilers it is possible to use fewer braces (according to 8.5.1 (11) of the Standard). That is, you can initialize an array as follows:
```cpp
boost::array<int,4> a = { 1, 2, 3 };
```
I'd appreciate any constructive feedback. **Please note: I don't have time to read all boost mails. Thus, to make sure that feedback arrives to me, please send me a copy of each mail regarding this class.**
The code is provided "as is" without expressed or implied warranty.

View File

@ -0,0 +1,22 @@
////
Copyright 2001-2004 Nicolai M. Josuttis
Copyright 2012 Marshall Clow
Copyright 2024 Christian Mazakas
Distributed under the Boost Software License, Version 1.0.
https://www.boost.org/LICENSE_1_0.txt
////
[#information]
# For more information...
:idprefix: information_
:cpp: C++
To find more details about using ordinary arrays in C++ and the framework of the STL, see e.g.
The C++ Standard Library - A Tutorial and Reference +
by Nicolai M. Josuttis +
Addison Wesley Longman, 1999 +
ISBN 0-201-37926-0
http://www.josuttis.com/[Home Page of Nicolai Josuttis]

View File

@ -0,0 +1,37 @@
////
Copyright 2001-2004 Nicolai M. Josuttis
Copyright 2012 Marshall Clow
Copyright 2024 Christian Mazakas
Distributed under the Boost Software License, Version 1.0.
https://www.boost.org/LICENSE_1_0.txt
////
[#introduction]
# Introduction
:idprefix: introduction_
:cpp: C++
The {cpp} Standard Template Library STL as part of the {cpp} Standard Library provides a framework for processing algorithms on different kind of containers. However, ordinary arrays don't provide the interface of STL containers (although, they provide the iterator interface of STL containers).
As replacement for ordinary arrays, the STL provides class `std::vector`. However, `std::vector<>` provides the semantics of dynamic arrays. Thus, it manages data to be able to change the number of elements. This results in some overhead in case only arrays with static size are needed.
In his book, _Generic Programming and the STL_, Matthew H. Austern introduces a useful wrapper class for ordinary arrays with static size, called `block`. It is safer and has no worse performance than ordinary arrays. In _The {cpp} Programming Language_, 3rd edition, Bjarne Stroustrup introduces a similar class, called c_array, which I (http://www.josuttis.com/[Nicolai Josuttis]) present slightly modified in my book _The {cpp} Standard Library - A Tutorial and Reference_, called `carray`. This is the essence of these approaches spiced with many feedback from https://www.boost.org/[boost].
After considering different names, we decided to name this class simply `array`.
Note that this class is suggested to be part of the next Technical Report, which will extend the {cpp} Standard (see http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1548.htm).
Update: `std::array` is (as of {cpp}11) part of the {cpp} standard. The differences between `boost::array` and `std::array` are minimal. If you are using {cpp}11, you should consider using `std::array` instead of `boost::array`.
Class `array` fulfills most but not all of the requirements of "reversible containers" (see Section 23.1, [lib.container.requirements] of the {cpp} Standard). The reasons array is not an reversible STL container is because:
* No constructors are provided.
* Elements may have an undetermined initial value (see the <<design, section called "Design Rationale">>).
* `swap()` has no constant complexity.
* `size()` is always constant, based on the second template argument of the type.
* The container provides no allocator support.
It doesn't fulfill the requirements of a "sequence" (see Section 23.1.1, [lib.sequence.reqmts] of the {cpp} Standard), except that:
* `front()` and `back()` are provided.
* `operator[]` and `at()` are provided.

418
doc/array/reference.adoc Normal file
View File

@ -0,0 +1,418 @@
////
Copyright 2001-2004 Nicolai M. Josuttis
Copyright 2012 Marshall Clow
Copyright 2024 Christian Mazakas
Distributed under the Boost Software License, Version 1.0.
https://www.boost.org/LICENSE_1_0.txt
////
[#reference]
# Reference
:idprefix: reference_
:cpp: C++
## Header <boost/array.hpp>
```cpp
namespace boost {
template<typename T, std::size_t N> class array;
template<typename T, std::size_t N> void swap(array<T, N>&, array<T, N>&);
template<typename T, std::size_t N>
bool operator==(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
bool operator!=(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
bool operator<(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
bool operator>(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
bool operator<=(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
bool operator>=(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N, std::size_t Idx>
T boost::get(array<T, N>&);
template<typename T, std::size_t N, std::size_t Idx>
T boost::get(const array<T, N>&);
}
```
## Class template array
### Synopsis
```cpp
// In header: <boost/array.hpp>
template<typename T, std::size_t N>
class array {
public:
// types
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
// static constants
static const size_type static_size = N;
// construct/copy/destruct
template<typename U> array& operator=(const array<U, N>&);
// iterator support
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin();
const_iterator cend();
// reverse iterator support
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_reverse_iterator crbegin();
const_reverse_iterator crend();
// capacity
size_type size();
bool empty();
size_type max_size();
// element access
reference operator[](size_type);
const_reference operator[](size_type) const;
reference at(size_type);
const_reference at(size_type) const;
reference front();
const_reference front() const;
reference back();
const_reference back() const;
const T* data() const;
T* c_array();
// modifiers
void swap(array<T, N>&);
void assign(const T&);
// public data members
T elems[N];
};
// specialized algorithms
template<typename T, std::size_t N> void swap(array<T, N>&, array<T, N>&);
// comparisons
template<typename T, std::size_t N>
bool operator==(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
bool operator!=(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
bool operator<(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
bool operator>(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
bool operator<=(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
bool operator>=(const array<T, N>&, const array<T, N>&);
// specializations
template<typename T, std::size_t N, std::size_t Idx>
T boost::get(array<T, N>&);
template<typename T, std::size_t N, std::size_t Idx>
T boost::get(const array<T, N>&);
```
### Description
#### array public construct/copy/destruct
```
template<typename U> array& operator=(const array<U, N>& other);
```
[horizontal]
Effects: :: `std::copy(rhs.begin(), rhs.end(), begin())`
---
#### array iterator support
```
iterator begin();
const_iterator begin() const;
```
[horizontal]
Returns: :: iterator for the first element
Throws: :: will not throw
---
```
iterator end();
const_iterator end() const;
```
[horizontal]
Returns: :: iterator for position after the last element
Throws: :: will not throw
---
```
const_iterator cbegin();
```
[horizontal]
Returns: :: constant iterator for the first element
Throws: :: will not throw
---
```
const_iterator cend();
```
[horizontal]
Returns: :: constant iterator for position after the last element
Throws: :: will not throw
---
#### array reverse iterator support
```
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
```
[horizontal]
Returns: :: reverse iterator for the first element of reverse iteration
---
```
reverse_iterator rend();
const_reverse_iterator rend() const;
```
[horizontal]
Returns: :: reverse iterator for position after the last element in reverse iteration
---
```
const_reverse_iterator crbegin();
```
[horizontal]
Returns: :: constant reverse iterator for the first element of reverse iteration
Throws: :: will not throw
---
```
const_reverse_iterator crend();
```
[horizontal]
Returns: :: constant reverse iterator for position after the last element in reverse iteration
Throws: :: will not throw
---
#### array capacity
```
size_type size();
```
[horizontal]
Returns: :: `N`
---
```
bool empty();
```
[horizontal]
Returns: :: `N==0`
Throws: :: will not throw
---
```
size_type max_size();
```
[horizontal]
Returns: :: `N`
Throws: :: will not throw
---
#### array element access
```
reference operator[](size_type i);
const_reference operator[](size_type i) const;
```
[horizontal]
Requires: :: `i < N`
Returns: :: element with index `i`
Throws: :: will not throw.
---
```
reference at(size_type i);
const_reference at(size_type i) const;
```
[horizontal]
Returns: :: element with index `i`
Throws: :: `std::range_error` if `i >= N`
---
```
reference front();
const_reference front() const;
```
[horizontal]
Requires: :: `N > 0`
Returns: :: the first element
Throws: :: will not throw
---
```
reference back();
const_reference back() const;
```
[horizontal]
Requires: :: `N > 0`
Returns: :: the last element
Throws: :: will not throw
---
```
const T* data() const;
```
[horizontal]
Returns: :: `elems`
Throws: :: will not throw
---
```
T* c_array();
```
[horizontal]
Returns: :: `elems`
Throws: :: will not throw
---
#### array modifiers
```
void swap(array<T, N>& other);
```
[horizontal]
Effects: :: `std::swap_ranges(begin(), end(), other.begin())`
Complexity: :: linear in `N`
---
```
void assign(const T& value);
```
[horizontal]
Effects: :: `std::fill_n(begin(), N, value)`
---
#### array specialized algorithms
```
template<typename T, std::size_t N> void swap(array<T, N>& x, array<T, N>& y);
```
[horizontal]
Effects: :: `x.swap(y)`
Throws: :: will not throw.
---
#### array comparisons
```
template<typename T, std::size_t N>
bool operator==(const array<T, N>& x, const array<T, N>& y);
```
[horizontal]
Returns: :: `std::equal(x.begin(), x.end(), y.begin())`
---
```
template<typename T, std::size_t N>
bool operator!=(const array<T, N>& x, const array<T, N>& y);
```
[horizontal]
Returns: :: `!(x == y)`
---
```
template<typename T, std::size_t N>
bool operator<(const array<T, N>& x, const array<T, N>& y);
```
[horizontal]
Returns: :: `std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end())`
---
```
template<typename T, std::size_t N>
bool operator>(const array<T, N>& x, const array<T, N>& y);
```
[horizontal]
Returns: :: `y < x`
---
```
template<typename T, std::size_t N>
bool operator<=(const array<T, N>& x, const array<T, N>& y);
```
[horizontal]
Returns: :: `!(y < x)`
---
```
template<typename T, std::size_t N>
bool operator>=(const array<T, N>& x, const array<T, N>& y);
```
[horizontal]
Returns: :: `!(x < y)`
---
#### array specializations
```
template<typename T, std::size_t N, std::size_t Idx>
T boost::get(array<T, N>& arr);
```
[horizontal]
Returns: :: element of array with index `Idx`
Effects: :: Will `static_assert` if `Idx >= N`
---
```
template<typename T, std::size_t N, std::size_t Idx>
T boost::get(const array<T, N>& arr);
```
[horizontal]
Returns: :: const element of array with index `Idx`
Effects: :: Will `static_assert` if `Idx >= N`
---