Files
boost_beast/include/boost/beast/websocket/impl/write.ipp
2017-08-15 16:59:17 -07:00

850 lines
26 KiB
C++

//
// Copyright (c) 2016-2017 Vinnie Falco (vinnie dot falco at gmail dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// Official repository: https://github.com/boostorg/beast
//
#ifndef BOOST_BEAST_WEBSOCKET_IMPL_WRITE_IPP
#define BOOST_BEAST_WEBSOCKET_IMPL_WRITE_IPP
#include <boost/beast/core/bind_handler.hpp>
#include <boost/beast/core/buffer_cat.hpp>
#include <boost/beast/core/buffer_prefix.hpp>
#include <boost/beast/core/consuming_buffers.hpp>
#include <boost/beast/core/handler_ptr.hpp>
#include <boost/beast/core/flat_static_buffer.hpp>
#include <boost/beast/core/type_traits.hpp>
#include <boost/beast/core/detail/clamp.hpp>
#include <boost/beast/core/detail/config.hpp>
#include <boost/beast/websocket/detail/frame.hpp>
#include <boost/asio/coroutine.hpp>
#include <boost/asio/handler_alloc_hook.hpp>
#include <boost/asio/handler_continuation_hook.hpp>
#include <boost/asio/handler_invoke_hook.hpp>
#include <boost/assert.hpp>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <algorithm>
#include <memory>
namespace boost {
namespace beast {
namespace websocket {
template<class NextLayer>
template<class Buffers, class Handler>
class stream<NextLayer>::write_some_op
: public boost::asio::coroutine
{
Handler h_;
stream<NextLayer>& ws_;
consuming_buffers<Buffers> cb_;
detail::frame_header fh_;
detail::prepared_key key_;
std::size_t remain_;
token tok_;
int how_;
bool fin_;
bool more_;
public:
write_some_op(write_some_op&&) = default;
write_some_op(write_some_op const&) = default;
template<class DeducedHandler>
write_some_op(
DeducedHandler&& h,
stream<NextLayer>& ws,
bool fin,
Buffers const& bs)
: h_(std::forward<DeducedHandler>(h))
, ws_(ws)
, cb_(bs)
, tok_(ws_.t_.unique())
, fin_(fin)
{
}
Handler&
handler()
{
return h_;
}
void operator()(
error_code ec,
std::size_t bytes_transferred,
bool)
{
(*this)(ec, bytes_transferred);
}
void operator()(
error_code ec = {},
std::size_t bytes_transferred = 0);
friend
void* asio_handler_allocate(
std::size_t size, write_some_op* op)
{
using boost::asio::asio_handler_allocate;
return asio_handler_allocate(
size, std::addressof(op->h_));
}
friend
void asio_handler_deallocate(
void* p, std::size_t size, write_some_op* op)
{
using boost::asio::asio_handler_deallocate;
asio_handler_deallocate(
p, size, std::addressof(op->h_));
}
friend
bool asio_handler_is_continuation(write_some_op* op)
{
using boost::asio::asio_handler_is_continuation;
return asio_handler_is_continuation(
std::addressof(op->h_));
}
template<class Function>
friend
void asio_handler_invoke(Function&& f, write_some_op* op)
{
using boost::asio::asio_handler_invoke;
asio_handler_invoke(
f, std::addressof(op->h_));
}
};
template<class NextLayer>
template<class Buffers, class Handler>
void
stream<NextLayer>::
write_some_op<Buffers, Handler>::
operator()(error_code ec,
std::size_t bytes_transferred)
{
using beast::detail::clamp;
using boost::asio::buffer;
using boost::asio::buffer_copy;
using boost::asio::buffer_size;
using boost::asio::mutable_buffers_1;
enum
{
do_nomask_nofrag,
do_nomask_frag,
do_mask_nofrag,
do_mask_frag,
do_deflate
};
std::size_t n;
boost::asio::mutable_buffer b;
BOOST_ASIO_CORO_REENTER(*this)
{
// Set up the outgoing frame header
if(! ws_.wr_.cont)
{
ws_.wr_begin();
fh_.rsv1 = ws_.wr_.compress;
}
else
{
fh_.rsv1 = false;
}
fh_.rsv2 = false;
fh_.rsv3 = false;
fh_.op = ws_.wr_.cont ?
detail::opcode::cont : ws_.wr_opcode_;
fh_.mask =
ws_.role_ == role_type::client;
// Choose a write algorithm
if(ws_.wr_.compress)
{
how_ = do_deflate;
}
else if(! fh_.mask)
{
if(! ws_.wr_.autofrag)
{
how_ = do_nomask_nofrag;
}
else
{
BOOST_ASSERT(ws_.wr_.buf_size != 0);
remain_ = buffer_size(cb_);
if(remain_ > ws_.wr_.buf_size)
how_ = do_nomask_frag;
else
how_ = do_nomask_nofrag;
}
}
else
{
if(! ws_.wr_.autofrag)
{
how_ = do_mask_nofrag;
}
else
{
BOOST_ASSERT(ws_.wr_.buf_size != 0);
remain_ = buffer_size(cb_);
if(remain_ > ws_.wr_.buf_size)
how_ = do_mask_frag;
else
how_ = do_mask_nofrag;
}
}
do_maybe_suspend:
// Maybe suspend
if(! ws_.wr_block_)
{
// Acquire the write block
ws_.wr_block_ = tok_;
// Make sure the stream is open
if(ws_.failed_)
{
BOOST_ASIO_CORO_YIELD
ws_.get_io_service().post(
bind_handler(std::move(*this),
boost::asio::error::operation_aborted));
goto upcall;
}
}
else
{
// Suspend
BOOST_ASSERT(ws_.wr_block_ != tok_);
BOOST_ASIO_CORO_YIELD
ws_.wr_op_.save(std::move(*this));
// Acquire the write block
BOOST_ASSERT(! ws_.wr_block_);
ws_.wr_block_ = tok_;
// Resume
BOOST_ASIO_CORO_YIELD
ws_.get_io_service().post(std::move(*this));
BOOST_ASSERT(ws_.wr_block_ == tok_);
// Make sure the stream is open
if(ws_.failed_)
{
ec = boost::asio::error::operation_aborted;
goto upcall;
}
}
//------------------------------------------------------------------
if(how_ == do_nomask_nofrag)
{
fh_.fin = fin_;
fh_.len = buffer_size(cb_);
ws_.wr_.fb.reset();
detail::write<flat_static_buffer_base>(
ws_.wr_.fb, fh_);
ws_.wr_.cont = ! fin_;
// Send frame
BOOST_ASSERT(ws_.wr_block_ == tok_);
BOOST_ASIO_CORO_YIELD
boost::asio::async_write(ws_.stream_,
buffer_cat(ws_.wr_.fb.data(), cb_),
std::move(*this));
BOOST_ASSERT(ws_.wr_block_ == tok_);
if(ec)
ws_.failed_ = true;
goto upcall;
}
//------------------------------------------------------------------
else if(how_ == do_nomask_frag)
{
for(;;)
{
fh_.len = clamp(remain_, ws_.wr_.buf_size);
remain_ -= clamp(fh_.len);
fh_.fin = fin_ ? remain_ == 0 : false;
ws_.wr_.fb.reset();
detail::write<flat_static_buffer_base>(
ws_.wr_.fb, fh_);
ws_.wr_.cont = ! fin_;
// Send frame
BOOST_ASSERT(ws_.wr_block_ == tok_);
BOOST_ASIO_CORO_YIELD
boost::asio::async_write(
ws_.stream_, buffer_cat(
ws_.wr_.fb.data(), buffer_prefix(
clamp(fh_.len), cb_)),
std::move(*this));
BOOST_ASSERT(ws_.wr_block_ == tok_);
if(ec)
{
ws_.failed_ = true;
goto upcall;
}
if(remain_ == 0)
goto upcall;
cb_.consume(
bytes_transferred - ws_.wr_.fb.size());
fh_.op = detail::opcode::cont;
// Allow outgoing control frames to
// be sent in between message frames
ws_.wr_block_.reset();
if( ws_.close_op_.maybe_invoke() ||
ws_.rd_op_.maybe_invoke() ||
ws_.ping_op_.maybe_invoke())
{
BOOST_ASIO_CORO_YIELD
ws_.get_io_service().post(
std::move(*this));
goto do_maybe_suspend;
}
ws_.wr_block_ = tok_;
}
}
//------------------------------------------------------------------
else if(how_ == do_mask_nofrag)
{
remain_ = buffer_size(cb_);
fh_.fin = fin_;
fh_.len = remain_;
fh_.key = ws_.maskgen_();
detail::prepare_key(key_, fh_.key);
ws_.wr_.fb.reset();
detail::write<flat_static_buffer_base>(
ws_.wr_.fb, fh_);
n = clamp(remain_, ws_.wr_.buf_size);
buffer_copy(buffer(
ws_.wr_.buf.get(), n), cb_);
detail::mask_inplace(buffer(
ws_.wr_.buf.get(), n), key_);
remain_ -= n;
ws_.wr_.cont = ! fin_;
// Send frame header and partial payload
BOOST_ASSERT(ws_.wr_block_ == tok_);
BOOST_ASIO_CORO_YIELD
boost::asio::async_write(
ws_.stream_, buffer_cat(ws_.wr_.fb.data(),
buffer(ws_.wr_.buf.get(), n)),
std::move(*this));
BOOST_ASSERT(ws_.wr_block_ == tok_);
if(ec)
{
ws_.failed_ = true;
goto upcall;
}
while(remain_ > 0)
{
cb_.consume(ws_.wr_.buf_size);
n = clamp(remain_, ws_.wr_.buf_size);
buffer_copy(buffer(
ws_.wr_.buf.get(), n), cb_);
detail::mask_inplace(buffer(
ws_.wr_.buf.get(), n), key_);
remain_ -= n;
// Send partial payload
BOOST_ASSERT(ws_.wr_block_ == tok_);
BOOST_ASIO_CORO_YIELD
boost::asio::async_write(ws_.stream_,
buffer(ws_.wr_.buf.get(), n),
std::move(*this));
BOOST_ASSERT(ws_.wr_block_ == tok_);
if(ec)
{
ws_.failed_ = true;
goto upcall;
}
}
goto upcall;
}
//------------------------------------------------------------------
else if(how_ == do_mask_frag)
{
for(;;)
{
n = clamp(remain_, ws_.wr_.buf_size);
remain_ -= n;
fh_.len = n;
fh_.key = ws_.maskgen_();
fh_.fin = fin_ ? remain_ == 0 : false;
detail::prepare_key(key_, fh_.key);
buffer_copy(buffer(
ws_.wr_.buf.get(), n), cb_);
detail::mask_inplace(buffer(
ws_.wr_.buf.get(), n), key_);
ws_.wr_.fb.reset();
detail::write<flat_static_buffer_base>(
ws_.wr_.fb, fh_);
ws_.wr_.cont = ! fin_;
// Send frame
BOOST_ASSERT(ws_.wr_block_ == tok_);
BOOST_ASIO_CORO_YIELD
boost::asio::async_write(ws_.stream_,
buffer_cat(ws_.wr_.fb.data(),
buffer(ws_.wr_.buf.get(), n)),
std::move(*this));
BOOST_ASSERT(ws_.wr_block_ == tok_);
if(ec)
{
ws_.failed_ = true;
goto upcall;
}
if(remain_ == 0)
goto upcall;
cb_.consume(
bytes_transferred - ws_.wr_.fb.size());
fh_.op = detail::opcode::cont;
// Allow outgoing control frames to
// be sent in between message frames:
ws_.wr_block_.reset();
if( ws_.close_op_.maybe_invoke() ||
ws_.rd_op_.maybe_invoke() ||
ws_.ping_op_.maybe_invoke())
{
BOOST_ASIO_CORO_YIELD
ws_.get_io_service().post(
std::move(*this));
goto do_maybe_suspend;
}
ws_.wr_block_ = tok_;
}
}
//------------------------------------------------------------------
else if(how_ == do_deflate)
{
for(;;)
{
b = buffer(ws_.wr_.buf.get(),
ws_.wr_.buf_size);
more_ = detail::deflate(
ws_.pmd_->zo, b, cb_, fin_, ec);
ws_.failed_ = !!ec;
if(ws_.failed_)
{
// Always dispatching is easiest
BOOST_ASIO_CORO_YIELD
ws_.get_io_service().post(
bind_handler(std::move(*this), ec));
goto upcall;
}
n = buffer_size(b);
if(n == 0)
{
// The input was consumed, but there
// is no output due to compression
// latency.
BOOST_ASSERT(! fin_);
BOOST_ASSERT(buffer_size(cb_) == 0);
// We can skip the dispatch if the
// asynchronous initiation function is
// not on call stack but its hard to
// figure out so be safe and dispatch.
BOOST_ASIO_CORO_YIELD
ws_.get_io_service().post(
std::move(*this));
goto upcall;
}
if(fh_.mask)
{
fh_.key = ws_.maskgen_();
detail::prepared_key key;
detail::prepare_key(key, fh_.key);
detail::mask_inplace(b, key);
}
fh_.fin = ! more_;
fh_.len = n;
ws_.wr_.fb.reset();
detail::write<
flat_static_buffer_base>(ws_.wr_.fb, fh_);
ws_.wr_.cont = ! fin_;
// Send frame
BOOST_ASSERT(ws_.wr_block_ == tok_);
BOOST_ASIO_CORO_YIELD
boost::asio::async_write(ws_.stream_,
buffer_cat(ws_.wr_.fb.data(),
mutable_buffers_1{b}), std::move(*this));
BOOST_ASSERT(ws_.wr_block_ == tok_);
if(ec)
{
ws_.failed_ = true;
goto upcall;
}
if(more_)
{
fh_.op = detail::opcode::cont;
fh_.rsv1 = false;
// Allow outgoing control frames to
// be sent in between message frames:
ws_.wr_block_.reset();
if( ws_.close_op_.maybe_invoke() ||
ws_.rd_op_.maybe_invoke() ||
ws_.ping_op_.maybe_invoke())
{
BOOST_ASIO_CORO_YIELD
ws_.get_io_service().post(
std::move(*this));
goto do_maybe_suspend;
}
ws_.wr_block_ = tok_;
}
else
{
BOOST_ASSERT(ws_.wr_block_ == tok_);
if(fh_.fin && (
(ws_.role_ == role_type::client &&
ws_.pmd_config_.client_no_context_takeover) ||
(ws_.role_ == role_type::server &&
ws_.pmd_config_.server_no_context_takeover)))
ws_.pmd_->zo.reset();
goto upcall;
}
}
}
//--------------------------------------------------------------------------
upcall:
BOOST_ASSERT(ws_.wr_block_ == tok_);
ws_.wr_block_.reset();
ws_.close_op_.maybe_invoke() ||
ws_.rd_op_.maybe_invoke() ||
ws_.ping_op_.maybe_invoke();
h_(ec);
}
}
//------------------------------------------------------------------------------
template<class NextLayer>
template<class ConstBufferSequence>
void
stream<NextLayer>::
write_some(bool fin, ConstBufferSequence const& buffers)
{
static_assert(is_sync_stream<next_layer_type>::value,
"SyncStream requirements not met");
static_assert(beast::is_const_buffer_sequence<
ConstBufferSequence>::value,
"ConstBufferSequence requirements not met");
error_code ec;
write_some(fin, buffers, ec);
if(ec)
BOOST_THROW_EXCEPTION(system_error{ec});
}
template<class NextLayer>
template<class ConstBufferSequence>
void
stream<NextLayer>::
write_some(bool fin,
ConstBufferSequence const& buffers, error_code& ec)
{
static_assert(is_sync_stream<next_layer_type>::value,
"SyncStream requirements not met");
static_assert(beast::is_const_buffer_sequence<
ConstBufferSequence>::value,
"ConstBufferSequence requirements not met");
using beast::detail::clamp;
using boost::asio::buffer;
using boost::asio::buffer_copy;
using boost::asio::buffer_size;
// Make sure the stream is open
if(failed_)
{
ec = boost::asio::error::operation_aborted;
return;
}
detail::frame_header fh;
if(! wr_.cont)
{
wr_begin();
fh.rsv1 = wr_.compress;
}
else
{
fh.rsv1 = false;
}
fh.rsv2 = false;
fh.rsv3 = false;
fh.op = wr_.cont ?
detail::opcode::cont : wr_opcode_;
fh.mask = role_ == role_type::client;
auto remain = buffer_size(buffers);
if(wr_.compress)
{
consuming_buffers<
ConstBufferSequence> cb{buffers};
for(;;)
{
auto b = buffer(
wr_.buf.get(), wr_.buf_size);
auto const more = detail::deflate(
pmd_->zo, b, cb, fin, ec);
failed_ = !!ec;
if(failed_)
return;
auto const n = buffer_size(b);
if(n == 0)
{
// The input was consumed, but there
// is no output due to compression
// latency.
BOOST_ASSERT(! fin);
BOOST_ASSERT(buffer_size(cb) == 0);
fh.fin = false;
break;
}
if(fh.mask)
{
fh.key = maskgen_();
detail::prepared_key key;
detail::prepare_key(key, fh.key);
detail::mask_inplace(b, key);
}
fh.fin = ! more;
fh.len = n;
detail::fh_buffer fh_buf;
detail::write<
flat_static_buffer_base>(fh_buf, fh);
wr_.cont = ! fin;
boost::asio::write(stream_,
buffer_cat(fh_buf.data(), b), ec);
failed_ = !!ec;
if(failed_)
return;
if(! more)
break;
fh.op = detail::opcode::cont;
fh.rsv1 = false;
}
if(fh.fin && (
(role_ == role_type::client &&
pmd_config_.client_no_context_takeover) ||
(role_ == role_type::server &&
pmd_config_.server_no_context_takeover)))
pmd_->zo.reset();
return;
}
if(! fh.mask)
{
if(! wr_.autofrag)
{
// no mask, no autofrag
fh.fin = fin;
fh.len = remain;
detail::fh_buffer fh_buf;
detail::write<
flat_static_buffer_base>(fh_buf, fh);
wr_.cont = ! fin;
boost::asio::write(stream_,
buffer_cat(fh_buf.data(), buffers), ec);
failed_ = !!ec;
if(failed_)
return;
}
else
{
// no mask, autofrag
BOOST_ASSERT(wr_.buf_size != 0);
consuming_buffers<
ConstBufferSequence> cb{buffers};
for(;;)
{
auto const n = clamp(remain, wr_.buf_size);
remain -= n;
fh.len = n;
fh.fin = fin ? remain == 0 : false;
detail::fh_buffer fh_buf;
detail::write<
flat_static_buffer_base>(fh_buf, fh);
wr_.cont = ! fin;
boost::asio::write(stream_,
buffer_cat(fh_buf.data(),
buffer_prefix(n, cb)), ec);
failed_ = !!ec;
if(failed_)
return;
if(remain == 0)
break;
fh.op = detail::opcode::cont;
cb.consume(n);
}
}
return;
}
if(! wr_.autofrag)
{
// mask, no autofrag
fh.fin = fin;
fh.len = remain;
fh.key = maskgen_();
detail::prepared_key key;
detail::prepare_key(key, fh.key);
detail::fh_buffer fh_buf;
detail::write<
flat_static_buffer_base>(fh_buf, fh);
consuming_buffers<
ConstBufferSequence> cb{buffers};
{
auto const n = clamp(remain, wr_.buf_size);
auto const b = buffer(wr_.buf.get(), n);
buffer_copy(b, cb);
cb.consume(n);
remain -= n;
detail::mask_inplace(b, key);
wr_.cont = ! fin;
boost::asio::write(stream_,
buffer_cat(fh_buf.data(), b), ec);
failed_ = !!ec;
if(failed_)
return;
}
while(remain > 0)
{
auto const n = clamp(remain, wr_.buf_size);
auto const b = buffer(wr_.buf.get(), n);
buffer_copy(b, cb);
cb.consume(n);
remain -= n;
detail::mask_inplace(b, key);
boost::asio::write(stream_, b, ec);
failed_ = !!ec;
if(failed_)
return;
}
return;
}
{
// mask, autofrag
BOOST_ASSERT(wr_.buf_size != 0);
consuming_buffers<
ConstBufferSequence> cb{buffers};
for(;;)
{
fh.key = maskgen_();
detail::prepared_key key;
detail::prepare_key(key, fh.key);
auto const n = clamp(remain, wr_.buf_size);
auto const b = buffer(wr_.buf.get(), n);
buffer_copy(b, cb);
detail::mask_inplace(b, key);
fh.len = n;
remain -= n;
fh.fin = fin ? remain == 0 : false;
wr_.cont = ! fh.fin;
detail::fh_buffer fh_buf;
detail::write<
flat_static_buffer_base>(fh_buf, fh);
boost::asio::write(stream_,
buffer_cat(fh_buf.data(), b), ec);
failed_ = !!ec;
if(failed_)
return;
if(remain == 0)
break;
fh.op = detail::opcode::cont;
cb.consume(n);
}
return;
}
}
template<class NextLayer>
template<class ConstBufferSequence, class WriteHandler>
async_return_type<
WriteHandler, void(error_code)>
stream<NextLayer>::
async_write_some(bool fin,
ConstBufferSequence const& bs, WriteHandler&& handler)
{
static_assert(is_async_stream<next_layer_type>::value,
"AsyncStream requirements not met");
static_assert(beast::is_const_buffer_sequence<
ConstBufferSequence>::value,
"ConstBufferSequence requirements not met");
async_completion<WriteHandler,
void(error_code)> init{handler};
write_some_op<ConstBufferSequence, handler_type<
WriteHandler, void(error_code)>>{init.completion_handler,
*this, fin, bs}();
return init.result.get();
}
//------------------------------------------------------------------------------
template<class NextLayer>
template<class ConstBufferSequence>
void
stream<NextLayer>::
write(ConstBufferSequence const& buffers)
{
static_assert(is_sync_stream<next_layer_type>::value,
"SyncStream requirements not met");
static_assert(beast::is_const_buffer_sequence<
ConstBufferSequence>::value,
"ConstBufferSequence requirements not met");
error_code ec;
write(buffers, ec);
if(ec)
BOOST_THROW_EXCEPTION(system_error{ec});
}
template<class NextLayer>
template<class ConstBufferSequence>
void
stream<NextLayer>::
write(ConstBufferSequence const& buffers, error_code& ec)
{
static_assert(is_sync_stream<next_layer_type>::value,
"SyncStream requirements not met");
static_assert(beast::is_const_buffer_sequence<
ConstBufferSequence>::value,
"ConstBufferSequence requirements not met");
write_some(true, buffers, ec);
}
template<class NextLayer>
template<class ConstBufferSequence, class WriteHandler>
async_return_type<
WriteHandler, void(error_code)>
stream<NextLayer>::
async_write(
ConstBufferSequence const& bs, WriteHandler&& handler)
{
static_assert(is_async_stream<next_layer_type>::value,
"AsyncStream requirements not met");
static_assert(beast::is_const_buffer_sequence<
ConstBufferSequence>::value,
"ConstBufferSequence requirements not met");
async_completion<WriteHandler,
void(error_code)> init{handler};
write_some_op<ConstBufferSequence, handler_type<
WriteHandler, void(error_code)>>{init.completion_handler,
*this, true, bs}();
return init.result.get();
}
} // websocket
} // beast
} // boost
#endif