Added boost-wide <limits> woraround

[SVN r9688]
This commit is contained in:
John Maddock
2001-04-01 11:59:18 +00:00
parent b6858fcc5d
commit fa107d72bc
3 changed files with 9 additions and 408 deletions

View File

@ -237,7 +237,7 @@
# endif
# if __GNUC__ == 2 && __GNUC_MINOR__ <= 97
# include <iterator> // not sure this is the right way to do this -JGS
# if !defined(_CXXRT_STD) && !defined(__SGI_STL) // need to ask Dietmar about this -JGS
# if defined(__STL_CONFIG_H) && !defined(__SGI_STL_INTERNAL_ITERATOR_H) && !defined(__GLIBCPP__) && !defined(_CXXRT_STD) && !defined(__SGI_STL) // need to ask Dietmar about this -JGS
# define BOOST_NO_STD_ITERATOR
# define BOOST_NO_LIMITS
# endif

View File

@ -1,7 +1,13 @@
// (C) Copyright Boost.org 1999. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// use this header as a workaround for missing <limits>
#ifndef BOOST_LIMITS
#define BOOST_LIMITS
#include <boost/config.hpp>
@ -9,4 +15,6 @@
#include <boost/detail/limits.hpp>
#else
#include <limits>
#endif
#endif

View File

@ -1,407 +0,0 @@
/** -*- C++ -*-
** KAI C++ Compiler
**
** Copyright (C) 1996-1997, Kuck & Associates, Inc. All rights reserved.
** This is an almost complete rewrite of Modena version.
**/
/**
** Lib++ : The Modena C++ Standard Library,
** Version 2.4, August 27th 1997
**
** Copyright (c) 1994-1997 Modena Software Inc.
**/
#ifndef BOOST_GRAPH_DETAIL_LIMITS_HPP
#define BOOST_GRAPH_DETAIL_LIMITS_HPP
#include <boost/config.hpp>
#ifdef BOOST_NO_LIMITS
#define MSIPL_THROW
#include <float.h>
#include <limits.h>
namespace std {
enum float_round_style {
round_indeterminate = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3
};
template <class T>
class numeric_limits {
public:
static const bool is_specialized = false;
static T min() throw() {return T();}
static T max() throw() {return T();}
static const int digits = 0;
static const int digits10 = 0;
static const bool is_signed = false;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = 0;
static T epsilon() throw() {return T();}
static T round_error() throw() {return T();}
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const bool has_denorm = false;
static const bool has_denorm_loss = false;
// Sept. 1996 draft is vague on how these can be guaranteed to return
// value without throwing an exception.
static T infinity() throw() {return T();};
static T quiet_NaN() throw() {return T();}
static T signaling_NaN() throw() {return T();}
static T denorm_min() throw() {return T();}
static const bool is_iec559 = false;
static const bool is_bounded = false;
static const bool is_modulo = false;
static const bool traps = false;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
template<class T> const bool numeric_limits<T>::is_specialized;
template<class T> const int numeric_limits<T>::digits;
template<class T> const int numeric_limits<T>::digits10;
template<class T> const bool numeric_limits<T>::is_signed;
template<class T> const bool numeric_limits<T>::is_integer;
template<class T> const bool numeric_limits<T>::is_exact;
template<class T> const int numeric_limits<T>::radix;
template<class T> const int numeric_limits<T>::min_exponent;
template<class T> const int numeric_limits<T>::min_exponent10;
template<class T> const int numeric_limits<T>::max_exponent;
template<class T> const int numeric_limits<T>::max_exponent10;
template<class T> const bool numeric_limits<T>::has_infinity;
template<class T> const bool numeric_limits<T>::has_quiet_NaN;
template<class T> const bool numeric_limits<T>::has_signaling_NaN;
template<class T> const bool numeric_limits<T>::has_denorm;
template<class T> const bool numeric_limits<T>::has_denorm_loss;
template<class T> const bool numeric_limits<T>::is_iec559;
template<class T> const bool numeric_limits<T>::is_bounded;
template<class T> const bool numeric_limits<T>::is_modulo;
template<class T> const bool numeric_limits<T>::traps;
template<class T> const bool numeric_limits<T>::tinyness_before;
template<class T> const float_round_style numeric_limits<T>::round_style;
// The specializations for floating-point types use the following macro
// to factor out commonality. They presume IEEE arithmetic.
#define __KAI_NUMERIC_LIMITS_FLOAT(T) \
static const bool is_specialized = true; \
static const int radix = 2; \
\
static const bool is_signed = true; \
static const bool is_integer = false; \
static const bool is_exact = false; \
\
static const bool has_infinity = true; \
static const bool has_quiet_NaN = true; \
static const bool has_signaling_NaN = true; \
static const bool has_denorm = false; \
static const bool has_denorm_loss = false; \
\
static const bool is_iec559 = sizeof(T)<=8; \
static const bool is_bounded = true; \
static const bool is_modulo = false; \
static const bool traps = true; \
static const bool tinyness_before = true; \
\
static T round_error () MSIPL_THROW { return (T)0.5F; } \
static const float_round_style round_style = round_to_nearest; \
static T infinity () MSIPL_THROW {return *(T*)(void*)data.value[0];}\
static T quiet_NaN () MSIPL_THROW {return *(T*)(void*)data.value[1];}\
static T signaling_NaN () MSIPL_THROW {return *(T*)(void*)data.value[2];}\
private: \
static const struct data_t { \
T align; \
int value[3][sizeof(T)/sizeof(int)]; \
} data; \
public: \
template<>
class numeric_limits <float> {
public:
static const int digits = FLT_MANT_DIG;
static const int digits10 = FLT_DIG;
static const int min_exponent = FLT_MIN_EXP;
static const int max_exponent = FLT_MAX_EXP;
static const int min_exponent10 = FLT_MIN_10_EXP;
static const int max_exponent10 = FLT_MAX_10_EXP;
__KAI_NUMERIC_LIMITS_FLOAT(float)
static float min () MSIPL_THROW { return FLT_MIN; }
static float max () MSIPL_THROW { return FLT_MAX; }
static float epsilon () MSIPL_THROW { return FLT_EPSILON; }
static float denorm_min () MSIPL_THROW { return FLT_MIN; }
};
template<>
class numeric_limits <double> {
public:
static const int digits = DBL_MANT_DIG;
static const int digits10 = DBL_DIG;
static const int min_exponent = DBL_MIN_EXP;
static const int max_exponent = DBL_MAX_EXP;
static const int min_exponent10 = DBL_MIN_10_EXP;
static const int max_exponent10 = DBL_MAX_10_EXP;
__KAI_NUMERIC_LIMITS_FLOAT(double)
static double min () MSIPL_THROW { return DBL_MIN; }
static double max () MSIPL_THROW { return DBL_MAX; }
static double epsilon () MSIPL_THROW { return DBL_EPSILON; }
static double denorm_min () MSIPL_THROW { return min (); }
};
template<>
class numeric_limits <long double> {
public:
static const int digits = LDBL_MANT_DIG;
static const int digits10 = LDBL_DIG;
static const int min_exponent = LDBL_MIN_EXP;
static const int max_exponent = LDBL_MAX_EXP;
static const int min_exponent10 = LDBL_MIN_10_EXP;
static const int max_exponent10 = LDBL_MAX_10_EXP;
__KAI_NUMERIC_LIMITS_FLOAT(long double)
static long double min () MSIPL_THROW { return LDBL_MIN; }
static long double max () MSIPL_THROW { return LDBL_MAX; }
static long double epsilon () MSIPL_THROW { return LDBL_EPSILON; }
static long double denorm_min () MSIPL_THROW { return min (); }
};
// The specializations for integral types use three macros to factor out
// commonality.
//
// __KAI_NUMERIC_LIMITS_INTEGRAL declares members of numeric_limits<T>
// whose value does not depend on the signdness of T.
//
// __KAI_NUMERIC_LIMITS_SIGNED(T) declares members dependent on
// knowing that T is signed.
//
// __KAI_NUMERIC_LIMITS_UNSIGNED(T) declares members dependent on
// knowing that T is unsigned.
//
// We could have been real cutesy and come up with definitions that would
// work for both signed and unsigned types, but doing so does not seem
// to be worth the additional obfuscation and overhead for constant folding.
//
// The definitions are not intended to be universally portable.
// They are designed with KAI C++ targets in mind. -ADR
#define __KAI_NUMERIC_LIMITS_INTEGRAL(T) \
static const bool is_specialized = true; \
\
static const int radix = 2; \
static const int min_exponent = 0; \
static const int max_exponent = 0; \
static const int min_exponent10 = 0; \
static const int max_exponent10 = 0; \
\
static const bool is_integer = true; \
static const bool is_exact = true; \
\
static const bool has_infinity = false; \
static const bool has_quiet_NaN = false; \
static const bool has_signaling_NaN = false; \
static const bool has_denorm = false; \
static const bool has_denorm_loss = false; \
\
static const bool is_iec559 = false; \
static const bool is_bounded = true; \
static const bool is_modulo = true; \
static const bool traps = false; \
static const bool tinyness_before = false; \
\
static T infinity () MSIPL_THROW { return 0; } \
static T quiet_NaN () MSIPL_THROW { return 0; } \
static T signaling_NaN () MSIPL_THROW { return 0; } \
static T epsilon () MSIPL_THROW { return 1; } \
static T denorm_min () MSIPL_THROW { return min (); } \
static T round_error () MSIPL_THROW { return 0; } \
\
static const float_round_style round_style = round_toward_zero;
#define __KAI_NUMERIC_LIMITS_SIGNED(T) \
static const int digits = 8*sizeof(T)-1; \
/* Following presumes 8, 16, 32, or 64-bit T. */ \
static const int digits10 = 7*sizeof(T)/3; \
static const bool is_signed = true;
#define __KAI_NUMERIC_LIMITS_UNSIGNED(T) \
static const int digits = 8*sizeof(T); \
/* Following presumes 8, 16, 32, or 64-bit T. */ \
static const int digits10 = 12*sizeof(T)/5; \
static const bool is_signed = false;
template<>
class numeric_limits <int> {
public:
__KAI_NUMERIC_LIMITS_INTEGRAL(int)
__KAI_NUMERIC_LIMITS_SIGNED(int)
static int min() MSIPL_THROW { return INT_MIN; }
static int max() MSIPL_THROW { return INT_MAX; }
};
template<>
class numeric_limits <unsigned int> {
public:
__KAI_NUMERIC_LIMITS_INTEGRAL(unsigned int)
__KAI_NUMERIC_LIMITS_UNSIGNED(unsigned int)
static unsigned int min() MSIPL_THROW { return 0; }
static unsigned int max() MSIPL_THROW { return UINT_MAX; }
};
template<>
class numeric_limits <long> {
public:
__KAI_NUMERIC_LIMITS_INTEGRAL(long)
__KAI_NUMERIC_LIMITS_SIGNED(long)
static long min() MSIPL_THROW { return LONG_MIN; }
static long max() MSIPL_THROW { return LONG_MAX; }
};
template<>
class numeric_limits <unsigned long> {
public:
__KAI_NUMERIC_LIMITS_INTEGRAL(unsigned long)
__KAI_NUMERIC_LIMITS_UNSIGNED(unsigned long)
static unsigned long min() MSIPL_THROW { return 0; }
static unsigned long max() MSIPL_THROW { return ULONG_MAX; }
};
template<>
class numeric_limits <short> {
public:
__KAI_NUMERIC_LIMITS_INTEGRAL(short)
__KAI_NUMERIC_LIMITS_SIGNED(short)
static short min () MSIPL_THROW { return SHRT_MIN; }
static short max () MSIPL_THROW { return SHRT_MAX; }
};
template<>
class numeric_limits <unsigned short> {
public:
__KAI_NUMERIC_LIMITS_INTEGRAL(unsigned short)
__KAI_NUMERIC_LIMITS_UNSIGNED(unsigned short)
static unsigned short min () MSIPL_THROW { return 0; }
static unsigned short max () MSIPL_THROW { return USHRT_MAX; }
};
template<>
class numeric_limits <char> {
public:
__KAI_NUMERIC_LIMITS_INTEGRAL(char)
static const int digits = CHAR_MIN<0 ? 7 : 8;
static const int digits10 = 2;
static const bool is_signed = CHAR_MIN<0;
static char min () MSIPL_THROW { return CHAR_MIN; }
static char max () MSIPL_THROW { return CHAR_MAX; }
};
template<>
class numeric_limits <signed char> {
public:
__KAI_NUMERIC_LIMITS_INTEGRAL(signed char)
__KAI_NUMERIC_LIMITS_SIGNED(signed char)
static signed char min () MSIPL_THROW { return SCHAR_MIN; }
static signed char max () MSIPL_THROW { return SCHAR_MAX; }
};
template<>
class numeric_limits <unsigned char> {
public:
__KAI_NUMERIC_LIMITS_INTEGRAL(unsigned char)
__KAI_NUMERIC_LIMITS_UNSIGNED(unsigned char)
static unsigned char min () MSIPL_THROW { return 0; }
static unsigned char max () MSIPL_THROW { return UCHAR_MAX; }
};
#if 0
#ifdef MSIPL_WCHART
template<>
class numeric_limits <wchar_t> {
public:
__KAI_NUMERIC_LIMITS_INTEGRAL(wchar_t)
static const bool is_signed = (wchar_t)-1<0;
static const int digits = 8*sizeof(wchar_t) - is_signed;
// Following assumes that wchar_t is 8, 16, or 32-bit,
// either signed or unsigned.
static const int digits10 = 7*sizeof(T)/3;
static char min () MSIPL_THROW { return CHAR_MIN; }
static char max () MSIPL_THROW { return CHAR_MAX; }
};
#endif /* MSIPL_WCHART */
#ifdef _BOOL
template<>
class numeric_limits <bool> {
public:
static const bool is_specialized = true;
static const int radix = 2;
static const int min_exponent = 0;
static const int max_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent10 = 0;
static const bool is_integer = false;
static const bool is_exact = true;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const bool has_denorm = false;
static const bool has_denorm_loss = false;
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = false;
static const bool tinyness_before = false;
static bool infinity () MSIPL_THROW { return false; }
static bool quiet_NaN () MSIPL_THROW { return false; }
static bool signaling_NaN () MSIPL_THROW { return false; }
static bool epsilon () MSIPL_THROW { return false; }
static bool denorm_min () MSIPL_THROW { return min (); }
static bool round_error () MSIPL_THROW { return false; }
static const float_round_style round_style = round_toward_zero;
static const int digits = 1;
static const int digits10 = 0;
static const bool is_signed = false;
static bool min () MSIPL_THROW { return false; }
static bool max () MSIPL_THROW { return true; }
};
#endif /* _BOOL */
#endif
} /* namespace std */
#else
#include <limits>
#endif /* BOOST_GRAPH_DETAIL_HAVE_LIMITS */
#endif /* BOOST_GRAPH_DETAIL_LIMIT_H */