Files
boost_function/include/boost/function/function_base.hpp

417 lines
12 KiB
C++
Raw Normal View History

// Boost.Function library
// Copyright (C) 2001-2003 Doug Gregor (gregod@cs.rpi.edu)
2001-06-21 16:19:33 +00:00
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
2001-06-21 16:19:33 +00:00
// For more information, see http://www.boost.org
#ifndef BOOST_FUNCTION_BASE_HEADER
#define BOOST_FUNCTION_BASE_HEADER
#include <stdexcept>
#include <string>
2001-06-21 16:19:33 +00:00
#include <memory>
#include <new>
2001-06-21 16:19:33 +00:00
#include <boost/config.hpp>
#include <boost/assert.hpp>
#include <boost/type_traits/arithmetic_traits.hpp>
#include <boost/type_traits/composite_traits.hpp>
#include <boost/type_traits/is_stateless.hpp>
#include <boost/ref.hpp>
#include <boost/pending/ct_if.hpp>
#include <boost/detail/workaround.hpp>
2001-06-21 16:19:33 +00:00
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300 || defined(__ICL) && __ICL <= 600 || defined(__MWERKS__) && __MWERKS__ < 0x2406 && !defined(BOOST_STRICT_CONFIG)
# define BOOST_FUNCTION_TARGET_FIX(x) x
#else
# define BOOST_FUNCTION_TARGET_FIX(x)
#endif // not MSVC
#if defined(__sgi) && defined(_COMPILER_VERSION) && _COMPILER_VERSION <= 730 && !defined(BOOST_STRICT_CONFIG)
// Work around a compiler bug.
// boost::python::objects::function has to be seen by the compiler before the
// boost::function class template.
namespace boost { namespace python { namespace objects {
class function;
}}}
#endif
// GCC 2.95.3 (or earlier) doesn't support enable_if
#if BOOST_WORKAROUND(__GNUC__, < 3)
# define BOOST_FUNCTION_NO_ENABLE_IF
#endif
// MIPSpro 7.3.1.3m doesn't support enable_if
#if defined(__sgi) && defined(_COMPILER_VERSION) && _COMPILER_VERSION <= 730 && !defined(BOOST_STRICT_CONFIG)
# define BOOST_FUNCTION_NO_ENABLE_IF
#endif
// MSVC 7.0 doesn't support enable_if
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300 && !defined(BOOST_STRICT_CONFIG)
# define BOOST_FUNCTION_NO_ENABLE_IF
#endif
// Borland C++ 5.6.0 doesn't support enable_if
#if BOOST_WORKAROUND(__BORLANDC__, <= 0x564)
# define BOOST_FUNCTION_NO_ENABLE_IF
#endif
// Metrowerks 7.2 doesn't support enable_if
#if BOOST_WORKAROUND(__MWERKS__, <= 0x2407)
# define BOOST_FUNCTION_NO_ENABLE_IF
#endif
#if BOOST_WORKAROUND(__SUNPRO_CC, <= 0x540)
# define BOOST_FUNCTION_NO_ENABLE_IF
#endif
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
namespace boost {
#if defined(__sgi) && defined(_COMPILER_VERSION) && _COMPILER_VERSION <= 730 && !defined(BOOST_STRICT_CONFIG)
// The library shipping with MIPSpro 7.3.1.3m has a broken allocator<void>
class function_base;
template<typename Signature,
typename Allocator = std::allocator<function_base> >
class function;
#else
template<typename Signature, typename Allocator = std::allocator<void> >
class function;
#endif
template<typename Signature, typename Allocator>
inline void swap(function<Signature, Allocator>& f1,
function<Signature, Allocator>& f2)
{
f1.swap(f2);
}
} // end namespace boost
#endif // have partial specialization
2001-06-21 16:19:33 +00:00
namespace boost {
namespace detail {
namespace function {
/**
* A union of a function pointer and a void pointer. This is necessary
* because 5.2.10/6 allows reinterpret_cast<> to safely cast between
2001-06-21 16:19:33 +00:00
* function pointer types and 5.2.9/10 allows static_cast<> to safely
* cast between a void pointer and an object pointer. But it is not legal
* to cast between a function pointer and a void* (in either direction),
* so function requires a union of the two. */
union any_pointer
2001-06-21 16:19:33 +00:00
{
void* obj_ptr;
const void* const_obj_ptr;
2001-06-21 16:19:33 +00:00
void (*func_ptr)();
char data[1];
2001-06-21 16:19:33 +00:00
};
inline any_pointer make_any_pointer(void* o)
{
any_pointer p;
p.obj_ptr = o;
return p;
}
inline any_pointer make_any_pointer(const void* o)
{
any_pointer p;
p.const_obj_ptr = o;
return p;
}
inline any_pointer make_any_pointer(void (*f)())
{
any_pointer p;
p.func_ptr = f;
return p;
}
2001-06-21 16:19:33 +00:00
/**
* The unusable class is a placeholder for unused function arguments
* It is also completely unusable except that it constructable from
* anything. This helps compilers without partial specialization to
* handle Boost.Function objects returning void.
*/
struct unusable
2001-06-21 16:19:33 +00:00
{
unusable() {}
template<typename T> unusable(const T&) {}
};
/* Determine the return type. This supports compilers that do not support
* void returns or partial specialization by silently changing the return
* type to "unusable".
2001-06-21 16:19:33 +00:00
*/
template<typename T> struct function_return_type { typedef T type; };
template<>
struct function_return_type<void>
2001-06-21 16:19:33 +00:00
{
typedef unusable type;
};
// The operation type to perform on the given functor/function pointer
enum functor_manager_operation_type {
clone_functor_tag,
2001-11-27 23:11:44 +00:00
destroy_functor_tag
};
2001-06-21 16:19:33 +00:00
// Tags used to decide between different types of functions
2001-06-21 16:19:33 +00:00
struct function_ptr_tag {};
struct function_obj_tag {};
struct member_ptr_tag {};
struct function_obj_ref_tag {};
struct stateless_function_obj_tag {};
template<typename F>
class get_function_tag
{
typedef typename ct_if<(is_pointer<F>::value),
function_ptr_tag,
function_obj_tag>::type ptr_or_obj_tag;
typedef typename ct_if<(is_member_pointer<F>::value),
2002-01-17 15:57:13 +00:00
member_ptr_tag,
ptr_or_obj_tag>::type ptr_or_obj_or_mem_tag;
typedef typename ct_if<(is_reference_wrapper<F>::value),
2002-01-17 15:57:13 +00:00
function_obj_ref_tag,
ptr_or_obj_or_mem_tag>::type or_ref_tag;
public:
typedef typename ct_if<(is_stateless<F>::value),
stateless_function_obj_tag,
or_ref_tag>::type type;
};
2001-06-21 16:19:33 +00:00
// The trivial manager does nothing but return the same pointer (if we
// are cloning) or return the null pointer (if we are deleting).
inline any_pointer trivial_manager(any_pointer f,
2002-05-10 17:54:40 +00:00
functor_manager_operation_type op)
{
2002-01-17 15:57:13 +00:00
if (op == clone_functor_tag)
return f;
else
return make_any_pointer(reinterpret_cast<void*>(0));
}
2001-06-21 16:19:33 +00:00
/**
* The functor_manager class contains a static function "manage" which
* can clone or destroy the given function/function object pointer.
2001-06-21 16:19:33 +00:00
*/
template<typename Functor, typename Allocator>
struct functor_manager
{
private:
typedef Functor functor_type;
// For function pointers, the manager is trivial
static inline any_pointer
manager(any_pointer function_ptr,
2002-05-10 17:54:40 +00:00
functor_manager_operation_type op,
2001-06-21 16:19:33 +00:00
function_ptr_tag)
{
2001-11-27 23:11:44 +00:00
if (op == clone_functor_tag)
2001-06-21 16:19:33 +00:00
return function_ptr;
else
return make_any_pointer(static_cast<void (*)()>(0));
}
// For function object pointers, we clone the pointer to each
2001-06-21 16:19:33 +00:00
// function has its own version.
static inline any_pointer
manager(any_pointer function_obj_ptr,
2001-06-21 16:19:33 +00:00
functor_manager_operation_type op,
function_obj_tag)
{
#ifndef BOOST_NO_STD_ALLOCATOR
typedef typename Allocator::template rebind<functor_type>::other
allocator_type;
typedef typename allocator_type::pointer pointer_type;
#else
typedef functor_type* pointer_type;
#endif // BOOST_NO_STD_ALLOCATOR
2001-06-21 16:19:33 +00:00
# ifndef BOOST_NO_STD_ALLOCATOR
allocator_type allocator;
# endif // BOOST_NO_STD_ALLOCATOR
2001-11-27 23:11:44 +00:00
if (op == clone_functor_tag) {
functor_type* f =
2001-06-21 16:19:33 +00:00
static_cast<functor_type*>(function_obj_ptr.obj_ptr);
// Clone the functor
# ifndef BOOST_NO_STD_ALLOCATOR
pointer_type copy = allocator.allocate(1);
allocator.construct(copy, *f);
// Get back to the original pointer type
functor_type* new_f = static_cast<functor_type*>(copy);
# else
functor_type* new_f = new functor_type(*f);
# endif // BOOST_NO_STD_ALLOCATOR
return make_any_pointer(static_cast<void*>(new_f));
2001-06-21 16:19:33 +00:00
}
else {
2001-06-21 16:19:33 +00:00
/* Cast from the void pointer to the functor pointer type */
functor_type* f =
reinterpret_cast<functor_type*>(function_obj_ptr.obj_ptr);
2001-06-21 16:19:33 +00:00
# ifndef BOOST_NO_STD_ALLOCATOR
/* Cast from the functor pointer type to the allocator's pointer
type */
pointer_type victim = static_cast<pointer_type>(f);
2001-06-21 16:19:33 +00:00
// Destroy and deallocate the functor
allocator.destroy(victim);
allocator.deallocate(victim, 1);
2001-06-21 16:19:33 +00:00
# else
delete f;
2001-06-21 16:19:33 +00:00
# endif // BOOST_NO_STD_ALLOCATOR
return make_any_pointer(static_cast<void*>(0));
2001-06-21 16:19:33 +00:00
}
}
public:
/* Dispatch to an appropriate manager based on whether we have a
function pointer or a function object pointer. */
static any_pointer
manage(any_pointer functor_ptr, functor_manager_operation_type op)
{
typedef typename get_function_tag<functor_type>::type tag_type;
2001-06-21 16:19:33 +00:00
return manager(functor_ptr, op, tag_type());
}
};
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
2003-01-21 13:54:27 +00:00
template<bool cond, typename T> struct enable_if;
template<typename T> struct enable_if<true, T> { typedef T type; };
template<typename T> struct enable_if<false, T> {};
template<bool x>
struct enabled
{
template<typename T>
struct base
{
typedef T type;
};
};
template<>
struct enabled<false>
{
template<typename T>
struct base
{
};
};
template<bool Enabled, typename T>
struct enable_if : public enabled<Enabled>::template base<T>
{
};
#endif
// A type that is only used for comparisons against zero
struct useless_clear_type {};
2001-06-21 16:19:33 +00:00
} // end namespace function
} // end namespace detail
/**
* The function_base class contains the basic elements needed for the
* function1, function2, function3, etc. classes. It is common to all
* functions (and as such can be used to tell if we have one of the
* functionN objects).
*/
class function_base
{
public:
function_base() : manager(0)
2001-06-21 16:19:33 +00:00
{
functor.obj_ptr = 0;
}
// Is this function empty?
bool empty() const { return !manager; }
public: // should be protected, but GCC 2.95.3 will fail to allow access
detail::function::any_pointer (*manager)(
detail::function::any_pointer,
detail::function::functor_manager_operation_type);
detail::function::any_pointer functor;
};
/**
* The bad_function_call exception class is thrown when a boost::function
* object is invoked
*/
class bad_function_call : public std::runtime_error
{
public:
bad_function_call() : std::runtime_error("call to empty boost::function") {}
};
/* Poison comparison between Boost.Function objects (because it is
* meaningless). The comparisons would otherwise be allowed because of the
* conversion required to allow syntax such as:
* boost::function<int, int> f;
* if (f) { f(5); }
*/
void operator==(const function_base&, const function_base&);
void operator!=(const function_base&, const function_base&);
#if BOOST_WORKAROUND(BOOST_MSVC, <= 1300)
inline bool operator==(const function_base& f,
detail::function::useless_clear_type*)
{
return f.empty();
}
inline bool operator!=(const function_base& f,
detail::function::useless_clear_type*)
{
return !f.empty();
}
inline bool operator==(detail::function::useless_clear_type*,
const function_base& f)
{
return f.empty();
}
inline bool operator!=(detail::function::useless_clear_type*,
const function_base& f)
{
return !f.empty();
}
#endif
namespace detail {
namespace function {
inline bool has_empty_target(const function_base* f)
{
return f->empty();
}
inline bool has_empty_target(...)
{
return false;
}
} // end namespace function
} // end namespace detail
} // end namespace boost
2001-06-21 16:19:33 +00:00
#endif // BOOST_FUNCTION_BASE_HEADER