forked from boostorg/integer
141 lines
3.7 KiB
C++
141 lines
3.7 KiB
C++
![]() |
/*
|
||
|
* (C) Copyright Nick Thompson 2018.
|
||
|
* Use, modification and distribution are subject to the
|
||
|
* Boost Software License, Version 1.0. (See accompanying file
|
||
|
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
*
|
||
|
* Two methods of computing the discrete logarithm over the multiplicative group of integers mod p.
|
||
|
*/
|
||
|
|
||
|
#ifndef BOOST_INTEGER_DISCRETE_LOG_HPP
|
||
|
#define BOOST_INTEGER_DISCRETE_LOG_HPP
|
||
|
#include <limits>
|
||
|
#include <unordered_map>
|
||
|
#include <boost/optional.hpp>
|
||
|
#include <boost/integer/floor_sqrt.hpp>
|
||
|
#include <boost/integer/modular_multiplicative_inverse.hpp>
|
||
|
#include <boost/integer/modular_exponentiation.hpp>
|
||
|
#include <boost/integer/common_factor.hpp>
|
||
|
|
||
|
namespace boost { namespace integer {
|
||
|
|
||
|
// base^^x = a mod p <-> x = log_base(a) mod p
|
||
|
template<class Z>
|
||
|
boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z p)
|
||
|
{
|
||
|
using std::numeric_limits;
|
||
|
static_assert(numeric_limits<Z>::is_integer,
|
||
|
"The discrete log works on integral types.\n");
|
||
|
|
||
|
if (base <= 1)
|
||
|
{
|
||
|
throw std::logic_error("The base must be > 1.\n");
|
||
|
}
|
||
|
if (p < 3)
|
||
|
{
|
||
|
throw std::logic_error("The modulus must be > 2.\n");
|
||
|
}
|
||
|
if (arg < 1)
|
||
|
{
|
||
|
throw std::logic_error("The argument must be > 0.\n");
|
||
|
}
|
||
|
if (base >= p || arg >= p)
|
||
|
{
|
||
|
throw std::logic_error("Error computing the discrete log: Are your arguments in the wrong order?\n");
|
||
|
}
|
||
|
|
||
|
if (arg == 1)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
Z s = 1;
|
||
|
for (Z i = 1; i < p; ++i)
|
||
|
{
|
||
|
s = (s * base) % p;
|
||
|
if (s == arg)
|
||
|
{
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
return {};
|
||
|
}
|
||
|
|
||
|
template<class Z>
|
||
|
class baby_step_giant_step_discrete_log
|
||
|
{
|
||
|
public:
|
||
|
baby_step_giant_step_discrete_log(Z base, Z p) : m_p{p}
|
||
|
{
|
||
|
using std::numeric_limits;
|
||
|
static_assert(numeric_limits<Z>::is_integer,
|
||
|
"The baby_step_giant_step discrete log works on integral types.\n");
|
||
|
|
||
|
if (base <= 1)
|
||
|
{
|
||
|
throw std::logic_error("The base must be > 1.\n");
|
||
|
}
|
||
|
if (p < 3)
|
||
|
{
|
||
|
throw std::logic_error("The modulus must be > 2.\n");
|
||
|
}
|
||
|
if (base >= p)
|
||
|
{
|
||
|
throw std::logic_error("Error computing the discrete log: Are your arguments in the wrong order?\n");
|
||
|
}
|
||
|
m_root_p = floor_sqrt(p);
|
||
|
if (m_root_p*m_root_p != p)
|
||
|
{
|
||
|
m_root_p += 1;
|
||
|
}
|
||
|
|
||
|
auto x = modular_multiplicative_inverse(base, p);
|
||
|
if (!x)
|
||
|
{
|
||
|
throw std::logic_error("The gcd of the b and the modulus is > 1, hence the discrete log is not guaranteed to exist. If you don't require an existence proof, use trial multiplication.\n");
|
||
|
}
|
||
|
m_inv_base_pow_m = modular_exponentiation(x.value(), m_root_p, p);
|
||
|
|
||
|
m_lookup_table.reserve(m_root_p);
|
||
|
// Now the expensive part:
|
||
|
Z k = 1;
|
||
|
for (Z j = 0; j < m_root_p; ++j)
|
||
|
{
|
||
|
m_lookup_table.emplace(k, j);
|
||
|
k = k*base % p;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
Z operator()(Z arg) const
|
||
|
{
|
||
|
Z ami = m_inv_base_pow_m;
|
||
|
Z k = arg % m_p;
|
||
|
if(k == 0)
|
||
|
{
|
||
|
throw std::domain_error("Cannot take the logarithm of a number divisible by the modulus.\n");
|
||
|
}
|
||
|
for (Z i = 0; i < m_root_p; ++i)
|
||
|
{
|
||
|
auto it = m_lookup_table.find(k);
|
||
|
if (it != m_lookup_table.end())
|
||
|
{
|
||
|
return (i*m_root_p + it->second) % m_p;
|
||
|
}
|
||
|
ami = (ami*m_inv_base_pow_m) % m_p;
|
||
|
k = k * ami % m_p;
|
||
|
}
|
||
|
// never should get here . . .
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
Z m_p;
|
||
|
Z m_root_p;
|
||
|
Z m_inv_base_pow_m;
|
||
|
std::unordered_map<Z, Z> m_lookup_table;
|
||
|
};
|
||
|
|
||
|
|
||
|
}}
|
||
|
#endif
|