forked from boostorg/integer
a*p % m may overflow, do not perform naive multiplication in unit tests or undefined behavior may result. [CI SKIP]
This commit is contained in:
@ -6,12 +6,9 @@
|
||||
*/
|
||||
#ifndef BOOST_INTEGER_EXTENDED_EUCLIDEAN_HPP
|
||||
#define BOOST_INTEGER_EXTENDED_EUCLIDEAN_HPP
|
||||
#include <tuple>
|
||||
#include <limits>
|
||||
#include <stdexcept>
|
||||
#include <boost/throw_exception.hpp>
|
||||
#include <boost/assert.hpp>
|
||||
#include <iostream>
|
||||
|
||||
namespace boost { namespace integer {
|
||||
|
||||
@ -71,14 +68,8 @@ euclidean_result_t<Z> extended_euclidean(Z m, Z n)
|
||||
|
||||
if (swapped)
|
||||
{
|
||||
std::swap(u1, u2);
|
||||
BOOST_ASSERT(u2*m+u1*n==u0);
|
||||
return {u0, u2, u2};
|
||||
}
|
||||
else
|
||||
{
|
||||
BOOST_ASSERT(u1*m+u2*n==u0);
|
||||
}
|
||||
|
||||
return {u0, u1, u2};
|
||||
}
|
||||
|
||||
|
@ -35,20 +35,19 @@ boost::optional<Z> mod_inverse(Z a, Z modulus)
|
||||
return {};
|
||||
}
|
||||
euclidean_result_t<Z> u = extended_euclidean(a, modulus);
|
||||
Z gcd = u.gcd;
|
||||
if (gcd > 1)
|
||||
if (u.gcd > 1)
|
||||
{
|
||||
return {};
|
||||
}
|
||||
Z x = u.x;
|
||||
x = x % modulus;
|
||||
// x might not be in the range 0 < x < m, let's fix that:
|
||||
while (x <= 0)
|
||||
while (u.x <= 0)
|
||||
{
|
||||
x += modulus;
|
||||
u.x += modulus;
|
||||
}
|
||||
BOOST_ASSERT(x*a % modulus == 1);
|
||||
return x;
|
||||
// While indeed this is an inexpensive and comforting check,
|
||||
// the multiplication overflows and hence makes the check itself buggy.
|
||||
//BOOST_ASSERT(u.x*a % modulus == 1);
|
||||
return u.x;
|
||||
}
|
||||
|
||||
}}
|
||||
|
@ -11,6 +11,7 @@
|
||||
#include <boost/integer/extended_euclidean.hpp>
|
||||
|
||||
using boost::multiprecision::int128_t;
|
||||
using boost::multiprecision::int256_t;
|
||||
using boost::integer::extended_euclidean;
|
||||
using boost::integer::gcd;
|
||||
|
||||
@ -18,26 +19,29 @@ template<class Z>
|
||||
void test_extended_euclidean()
|
||||
{
|
||||
std::cout << "Testing the extended Euclidean algorithm on type " << boost::typeindex::type_id<Z>().pretty_name() << "\n";
|
||||
// Stress test:
|
||||
//Z max_arg = std::numeric_limits<Z>::max();
|
||||
Z max_arg = 500;
|
||||
for (Z m = 1; m < max_arg; ++m)
|
||||
for (Z m = max_arg; m > 0; --m)
|
||||
{
|
||||
for (Z n = 1; n < max_arg; ++n)
|
||||
for (Z n = m; n > 0; --n)
|
||||
{
|
||||
boost::integer::euclidean_result_t u = extended_euclidean(m, n);
|
||||
Z gcdmn = gcd(m, n);
|
||||
Z x = u.x;
|
||||
Z y = u.y;
|
||||
int256_t gcdmn = gcd(m, n);
|
||||
int256_t x = u.x;
|
||||
int256_t y = u.y;
|
||||
BOOST_CHECK_EQUAL(u.gcd, gcdmn);
|
||||
BOOST_CHECK_EQUAL(m*x + n*y, gcdmn);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(extended_euclidean_test)
|
||||
{
|
||||
test_extended_euclidean<short int>();
|
||||
test_extended_euclidean<int>();
|
||||
test_extended_euclidean<long>();
|
||||
test_extended_euclidean<long long>();
|
||||
test_extended_euclidean<int16_t>();
|
||||
test_extended_euclidean<int32_t>();
|
||||
test_extended_euclidean<int64_t>();
|
||||
test_extended_euclidean<int128_t>();
|
||||
}
|
||||
|
@ -19,10 +19,15 @@ template<class Z>
|
||||
void test_mod_inverse()
|
||||
{
|
||||
std::cout << "Testing the modular multiplicative inverse on type " << boost::typeindex::type_id<Z>().pretty_name() << "\n";
|
||||
//Z max_arg = std::numeric_limits<Z>::max();
|
||||
Z max_arg = 500;
|
||||
for (Z modulus = 2; modulus < max_arg; ++modulus)
|
||||
{
|
||||
for (Z a = 1; a < max_arg; ++a)
|
||||
if (modulus % 1000 == 0)
|
||||
{
|
||||
std::cout << "Testing all inverses modulo " << modulus << std::endl;
|
||||
}
|
||||
for (Z a = 1; a < modulus; ++a)
|
||||
{
|
||||
Z gcdam = gcd(a, modulus);
|
||||
boost::optional<Z> inv_a = mod_inverse(a, modulus);
|
||||
@ -34,7 +39,11 @@ void test_mod_inverse()
|
||||
else
|
||||
{
|
||||
BOOST_CHECK(inv_a.value() > 0);
|
||||
Z outta_be_one = (inv_a.value()*a) % modulus;
|
||||
// Cast to a bigger type so the multiplication won't overflow.
|
||||
int256_t a_inv = inv_a.value();
|
||||
int256_t big_a = a;
|
||||
int256_t m = modulus;
|
||||
int256_t outta_be_one = (a_inv*big_a) % m;
|
||||
BOOST_CHECK_EQUAL(outta_be_one, 1);
|
||||
}
|
||||
}
|
||||
@ -43,10 +52,8 @@ void test_mod_inverse()
|
||||
|
||||
BOOST_AUTO_TEST_CASE(mod_inverse_test)
|
||||
{
|
||||
test_mod_inverse<short int>();
|
||||
test_mod_inverse<int>();
|
||||
test_mod_inverse<long>();
|
||||
test_mod_inverse<long long>();
|
||||
test_mod_inverse<int16_t>();
|
||||
test_mod_inverse<int32_t>();
|
||||
test_mod_inverse<int64_t>();
|
||||
test_mod_inverse<int128_t>();
|
||||
test_mod_inverse<int256_t>();
|
||||
}
|
||||
|
Reference in New Issue
Block a user