Switch over to using new Boost.Math version of gcd/lcm.

Please refer to the Boost.Math revision log for details of changes, but in summary:
* New version of gcd/lcm internals by Jeremy Murphy include mixed-binary algorithm and better selection logic.
* Support is now included for gcd's of polynomials.
* Full C++14 constexpr support.
This commit is contained in:
jzmaddock
2017-04-23 13:01:09 +01:00
parent 162e48d14a
commit beb6871864
5 changed files with 773 additions and 482 deletions

View File

@ -1,32 +1,28 @@
// Boost common_factor_rt.hpp header file ----------------------------------//
// (C) Copyright Jeremy William Murphy 2016.
// (C) Copyright Daryle Walker and Paul Moore 2001-2002. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its suitability
// for any purpose.
// boostinspect:nolicense (don't complain about the lack of a Boost license)
// (Paul Moore hasn't been in contact for years, so there's no way to change the
// license.)
// See http://www.boost.org for updates, documentation, and revision history.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_INTEGER_COMMON_FACTOR_RT_HPP
#define BOOST_INTEGER_COMMON_FACTOR_RT_HPP
#include <boost/integer_fwd.hpp> // self include
#include <boost/assert.hpp>
#include <boost/core/enable_if.hpp>
#include <boost/config.hpp> // for BOOST_NESTED_TEMPLATE, etc.
#include <boost/limits.hpp> // for std::numeric_limits
#include <climits> // for CHAR_MIN
#include <boost/detail/workaround.hpp>
#include <iterator>
#include <algorithm>
#include <limits>
#ifndef BOOST_NO_CXX11_HDR_TYPE_TRAITS
#include <type_traits>
#endif
#if !defined(BOOST_NO_CXX11_NOEXCEPT) && !defined(BOOST_NO_CXX11_HDR_TYPE_TRAITS)
# include <type_traits>
# define BOOST_INT_NOEXCEPT(T) BOOST_NOEXCEPT_IF(std::is_arithmetic<T>::value)
#else
# define BOOST_INT_NOEXCEPT(T)
#if (defined(BOOST_MSVC) || (defined(__clang__) && defined(__c2__)) || (defined(BOOST_INTEL) && defined(_MSC_VER))) && (defined(_M_IX86) || defined(_M_X64))
#include <intrin.h>
#endif
#ifdef BOOST_MSVC
@ -34,427 +30,538 @@
#pragma warning(disable:4127 4244) // Conditional expression is constant
#endif
namespace boost
#if !defined(BOOST_NO_CXX11_HDR_TYPE_TRAITS) && !defined(BOOST_NO_CXX11_NOEXCEPT)
#define BOOST_GCD_NOEXCEPT(T) noexcept(std::is_arithmetic<T>::value)
#else
#define BOOST_GCD_NOEXCEPT(T)
#endif
namespace boost {
template <class I>
class rational;
namespace integer {
namespace gcd_detail{
//
// some helper functions which really should be constexpr already, but sadly aren't:
//
#ifndef BOOST_NO_CXX14_CONSTEXPR
template <class T>
inline constexpr T constexpr_min(T const& a, T const& b) BOOST_GCD_NOEXCEPT(T)
{
return a < b ? a : b;
}
template <class T>
inline constexpr auto constexpr_swap(T&a, T& b) BOOST_GCD_NOEXCEPT(T) -> decltype(a.swap(b))
{
return a.swap(b);
}
template <class T, class U>
inline constexpr void constexpr_swap(T&a, U& b...) BOOST_GCD_NOEXCEPT(T)
{
T t(static_cast<T&&>(a));
a = static_cast<T&&>(b);
b = static_cast<T&&>(t);
}
#else
template <class T>
inline T constexpr_min(T const& a, T const& b) BOOST_GCD_NOEXCEPT(T)
{
return a < b ? a : b;
}
template <class T>
inline void constexpr_swap(T&a, T& b) BOOST_GCD_NOEXCEPT(T)
{
using std::swap;
swap(a, b);
}
#endif
template <class T, bool a =
#ifndef BOOST_NO_CXX11_HDR_TYPE_TRAITS
std::is_unsigned<T>::value ||
#endif
(std::numeric_limits<T>::is_specialized && !std::numeric_limits<T>::is_signed)>
struct gcd_traits_abs_defaults
{
inline static BOOST_CXX14_CONSTEXPR const T& abs(const T& val) BOOST_GCD_NOEXCEPT(T) { return val; }
};
template <class T>
struct gcd_traits_abs_defaults<T, false>
{
inline static T BOOST_CXX14_CONSTEXPR abs(const T& val) BOOST_GCD_NOEXCEPT(T)
{
// This sucks, but std::abs is not constexpr :(
return val < 0 ? -val : val;
}
};
enum method_type
{
method_euclid = 0,
method_binary = 1,
method_mixed = 2,
};
struct any_convert
{
template <class T>
any_convert(const T&);
};
struct unlikely_size
{
char buf[9973];
};
unlikely_size operator <<= (any_convert, any_convert);
unlikely_size operator >>= (any_convert, any_convert);
template <class T>
struct gcd_traits_defaults : public gcd_traits_abs_defaults<T>
{
BOOST_FORCEINLINE static BOOST_CXX14_CONSTEXPR unsigned make_odd(T& val) BOOST_GCD_NOEXCEPT(T)
{
unsigned r = 0;
while(0 == (val & 1u))
{
#ifdef _MSC_VER // VC++ can't handle operator >>= in constexpr code for some reason
val = val >> 1;
#else
val >>= 1;
#endif
++r;
}
return r;
}
inline static BOOST_CXX14_CONSTEXPR bool less(const T& a, const T& b) BOOST_GCD_NOEXCEPT(T)
{
return a < b;
}
static T& get_value();
#ifndef BOOST_NO_SFINAE
static const bool has_operator_left_shift_equal = sizeof(get_value() <<= 2) != sizeof(unlikely_size);
static const bool has_operator_right_shift_equal = sizeof(get_value() >>= 2) != sizeof(unlikely_size);
#else
static const bool has_operator_left_shift_equal = true;
static const bool has_operator_right_shift_equal = true;
#endif
static const method_type method = std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer && has_operator_left_shift_equal && has_operator_right_shift_equal ? method_mixed : method_euclid;
};
//
// Default gcd_traits just inherits from defaults:
//
template <class T>
struct gcd_traits : public gcd_traits_defaults<T> {};
#ifdef BOOST_NO_CXX14_CONSTEXPR
//
// Some platforms have fast bitscan operations, that allow us to implement
// make_odd much more efficiently, unfortunately we can't use these if we want
// the functions to be constexpr as the compiler intrinsics aren't constexpr.
//
#if (defined(BOOST_MSVC) || (defined(__clang__) && defined(__c2__)) || (defined(BOOST_INTEL) && defined(_MSC_VER))) && (defined(_M_IX86) || defined(_M_X64))
#pragma intrinsic(_BitScanForward,)
template <>
struct gcd_traits<unsigned long> : public gcd_traits_defaults<unsigned long>
{
BOOST_FORCEINLINE static unsigned find_lsb(unsigned long val) BOOST_NOEXCEPT
{
unsigned long result;
_BitScanForward(&result, val);
return result;
}
BOOST_FORCEINLINE static unsigned make_odd(unsigned long& val) BOOST_NOEXCEPT
{
unsigned result = find_lsb(val);
val >>= result;
return result;
}
};
#ifdef _M_X64
#pragma intrinsic(_BitScanForward64)
template <>
struct gcd_traits<unsigned __int64> : public gcd_traits_defaults<unsigned __int64>
{
BOOST_FORCEINLINE static unsigned find_lsb(unsigned __int64 mask) BOOST_NOEXCEPT
{
unsigned long result;
_BitScanForward64(&result, mask);
return result;
}
BOOST_FORCEINLINE static unsigned make_odd(unsigned __int64& val) BOOST_NOEXCEPT
{
unsigned result = find_lsb(val);
val >>= result;
return result;
}
};
#endif
//
// Other integer type are trivial adaptations of the above,
// this works for signed types too, as by the time these functions
// are called, all values are > 0.
//
template <> struct gcd_traits<long> : public gcd_traits_defaults<long>
{ BOOST_FORCEINLINE static unsigned make_odd(long& val)BOOST_NOEXCEPT{ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
template <> struct gcd_traits<unsigned int> : public gcd_traits_defaults<unsigned int>
{ BOOST_FORCEINLINE static unsigned make_odd(unsigned int& val)BOOST_NOEXCEPT{ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
template <> struct gcd_traits<int> : public gcd_traits_defaults<int>
{ BOOST_FORCEINLINE static unsigned make_odd(int& val)BOOST_NOEXCEPT{ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
template <> struct gcd_traits<unsigned short> : public gcd_traits_defaults<unsigned short>
{ BOOST_FORCEINLINE static unsigned make_odd(unsigned short& val)BOOST_NOEXCEPT{ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
template <> struct gcd_traits<short> : public gcd_traits_defaults<short>
{ BOOST_FORCEINLINE static unsigned make_odd(short& val)BOOST_NOEXCEPT{ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
template <> struct gcd_traits<unsigned char> : public gcd_traits_defaults<unsigned char>
{ BOOST_FORCEINLINE static unsigned make_odd(unsigned char& val)BOOST_NOEXCEPT{ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
template <> struct gcd_traits<signed char> : public gcd_traits_defaults<signed char>
{ BOOST_FORCEINLINE static signed make_odd(signed char& val)BOOST_NOEXCEPT{ signed result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
template <> struct gcd_traits<char> : public gcd_traits_defaults<char>
{ BOOST_FORCEINLINE static unsigned make_odd(char& val)BOOST_NOEXCEPT{ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
#ifndef BOOST_NO_INTRINSIC_WCHAR_T
template <> struct gcd_traits<wchar_t> : public gcd_traits_defaults<wchar_t>
{ BOOST_FORCEINLINE static unsigned make_odd(wchar_t& val)BOOST_NOEXCEPT{ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
#endif
#ifdef _M_X64
template <> struct gcd_traits<__int64> : public gcd_traits_defaults<__int64>
{ BOOST_FORCEINLINE static unsigned make_odd(__int64& val)BOOST_NOEXCEPT{ unsigned result = gcd_traits<unsigned __int64>::find_lsb(val); val >>= result; return result; } };
#endif
#elif defined(BOOST_GCC) || defined(__clang__) || (defined(BOOST_INTEL) && defined(__GNUC__))
template <>
struct gcd_traits<unsigned> : public gcd_traits_defaults<unsigned>
{
BOOST_FORCEINLINE static unsigned find_lsb(unsigned mask)BOOST_NOEXCEPT
{
return __builtin_ctz(mask);
}
BOOST_FORCEINLINE static unsigned make_odd(unsigned& val)BOOST_NOEXCEPT
{
unsigned result = find_lsb(val);
val >>= result;
return result;
}
};
template <>
struct gcd_traits<unsigned long> : public gcd_traits_defaults<unsigned long>
{
BOOST_FORCEINLINE static unsigned find_lsb(unsigned long mask)BOOST_NOEXCEPT
{
return __builtin_ctzl(mask);
}
BOOST_FORCEINLINE static unsigned make_odd(unsigned long& val)BOOST_NOEXCEPT
{
unsigned result = find_lsb(val);
val >>= result;
return result;
}
};
template <>
struct gcd_traits<boost::ulong_long_type> : public gcd_traits_defaults<boost::ulong_long_type>
{
BOOST_FORCEINLINE static unsigned find_lsb(boost::ulong_long_type mask)BOOST_NOEXCEPT
{
return __builtin_ctzll(mask);
}
BOOST_FORCEINLINE static unsigned make_odd(boost::ulong_long_type& val)BOOST_NOEXCEPT
{
unsigned result = find_lsb(val);
val >>= result;
return result;
}
};
//
// Other integer type are trivial adaptations of the above,
// this works for signed types too, as by the time these functions
// are called, all values are > 0.
//
template <> struct gcd_traits<boost::long_long_type> : public gcd_traits_defaults<boost::long_long_type>
{
BOOST_FORCEINLINE static unsigned make_odd(boost::long_long_type& val)BOOST_NOEXCEPT { unsigned result = gcd_traits<boost::ulong_long_type>::find_lsb(val); val >>= result; return result; }
};
template <> struct gcd_traits<long> : public gcd_traits_defaults<long>
{
BOOST_FORCEINLINE static unsigned make_odd(long& val)BOOST_NOEXCEPT { unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; }
};
template <> struct gcd_traits<int> : public gcd_traits_defaults<int>
{
BOOST_FORCEINLINE static unsigned make_odd(int& val)BOOST_NOEXCEPT { unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; }
};
template <> struct gcd_traits<unsigned short> : public gcd_traits_defaults<unsigned short>
{
BOOST_FORCEINLINE static unsigned make_odd(unsigned short& val)BOOST_NOEXCEPT { unsigned result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
};
template <> struct gcd_traits<short> : public gcd_traits_defaults<short>
{
BOOST_FORCEINLINE static unsigned make_odd(short& val)BOOST_NOEXCEPT { unsigned result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
};
template <> struct gcd_traits<unsigned char> : public gcd_traits_defaults<unsigned char>
{
BOOST_FORCEINLINE static unsigned make_odd(unsigned char& val)BOOST_NOEXCEPT { unsigned result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
};
template <> struct gcd_traits<signed char> : public gcd_traits_defaults<signed char>
{
BOOST_FORCEINLINE static signed make_odd(signed char& val)BOOST_NOEXCEPT { signed result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
};
template <> struct gcd_traits<char> : public gcd_traits_defaults<char>
{
BOOST_FORCEINLINE static unsigned make_odd(char& val)BOOST_NOEXCEPT { unsigned result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
};
#ifndef BOOST_NO_INTRINSIC_WCHAR_T
template <> struct gcd_traits<wchar_t> : public gcd_traits_defaults<wchar_t>
{
BOOST_FORCEINLINE static unsigned make_odd(wchar_t& val)BOOST_NOEXCEPT { unsigned result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
};
#endif
#endif
#endif // BOOST_NO_CXX14_CONSTEXPR
//
// The Mixed Binary Euclid Algorithm
// Sidi Mohamed Sedjelmaci
// Electronic Notes in Discrete Mathematics 35 (2009) 169-176
//
template <class T>
BOOST_CXX14_CONSTEXPR T mixed_binary_gcd(T u, T v) BOOST_GCD_NOEXCEPT(T)
{
if(gcd_traits<T>::less(u, v))
constexpr_swap(u, v);
unsigned shifts = 0;
if(!u)
return v;
if(!v)
return u;
shifts = constexpr_min(gcd_traits<T>::make_odd(u), gcd_traits<T>::make_odd(v));
while(gcd_traits<T>::less(1, v))
{
u %= v;
v -= u;
if(!u)
return v << shifts;
if(!v)
return u << shifts;
gcd_traits<T>::make_odd(u);
gcd_traits<T>::make_odd(v);
if(gcd_traits<T>::less(u, v))
constexpr_swap(u, v);
}
return (v == 1 ? v : u) << shifts;
}
/** Stein gcd (aka 'binary gcd')
*
* From Mathematics to Generic Programming, Alexander Stepanov, Daniel Rose
*/
template <typename SteinDomain>
BOOST_CXX14_CONSTEXPR SteinDomain Stein_gcd(SteinDomain m, SteinDomain n) BOOST_GCD_NOEXCEPT(SteinDomain)
{
BOOST_ASSERT(m >= 0);
BOOST_ASSERT(n >= 0);
if (m == SteinDomain(0))
return n;
if (n == SteinDomain(0))
return m;
// m > 0 && n > 0
int d_m = gcd_traits<SteinDomain>::make_odd(m);
int d_n = gcd_traits<SteinDomain>::make_odd(n);
// odd(m) && odd(n)
while (m != n)
{
if (n > m)
constexpr_swap(n, m);
m -= n;
gcd_traits<SteinDomain>::make_odd(m);
}
// m == n
m <<= constexpr_min(d_m, d_n);
return m;
}
/** Euclidean algorithm
*
* From Mathematics to Generic Programming, Alexander Stepanov, Daniel Rose
*
*/
template <typename EuclideanDomain>
inline BOOST_CXX14_CONSTEXPR EuclideanDomain Euclid_gcd(EuclideanDomain a, EuclideanDomain b) BOOST_GCD_NOEXCEPT(EuclideanDomain)
{
while (b != EuclideanDomain(0))
{
a %= b;
constexpr_swap(a, b);
}
return a;
}
template <typename T>
inline BOOST_CXX14_CONSTEXPR BOOST_DEDUCED_TYPENAME enable_if_c<gcd_traits<T>::method == method_mixed, T>::type
optimal_gcd_select(T const &a, T const &b) BOOST_GCD_NOEXCEPT(T)
{
return gcd_detail::mixed_binary_gcd(a, b);
}
template <typename T>
inline BOOST_CXX14_CONSTEXPR BOOST_DEDUCED_TYPENAME enable_if_c<gcd_traits<T>::method == method_binary, T>::type
optimal_gcd_select(T const &a, T const &b) BOOST_GCD_NOEXCEPT(T)
{
return gcd_detail::Stein_gcd(a, b);
}
template <typename T>
inline BOOST_CXX14_CONSTEXPR BOOST_DEDUCED_TYPENAME enable_if_c<gcd_traits<T>::method == method_euclid, T>::type
optimal_gcd_select(T const &a, T const &b) BOOST_GCD_NOEXCEPT(T)
{
return gcd_detail::Euclid_gcd(a, b);
}
template <class T>
inline BOOST_CXX14_CONSTEXPR T lcm_imp(const T& a, const T& b) BOOST_GCD_NOEXCEPT(T)
{
T temp = boost::integer::gcd_detail::optimal_gcd_select(a, b);
#if BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40500)
return (temp != T(0)) ? T(a / temp * b) : T(0);
#else
return temp != T(0) ? T(a / temp * b) : T(0);
#endif
}
} // namespace detail
template <typename Integer>
inline BOOST_CXX14_CONSTEXPR Integer gcd(Integer const &a, Integer const &b) BOOST_GCD_NOEXCEPT(Integer)
{
namespace integer
if(a == (std::numeric_limits<Integer>::min)())
return a == static_cast<Integer>(0) ? b : gcd(static_cast<Integer>(a % b), b);
else if (b == (std::numeric_limits<Integer>::min)())
return b == static_cast<Integer>(0) ? a : gcd(a, static_cast<Integer>(b % a));
return gcd_detail::optimal_gcd_select(static_cast<Integer>(gcd_detail::gcd_traits<Integer>::abs(a)), static_cast<Integer>(gcd_detail::gcd_traits<Integer>::abs(b)));
}
template <typename Integer>
inline BOOST_CXX14_CONSTEXPR Integer lcm(Integer const &a, Integer const &b) BOOST_GCD_NOEXCEPT(Integer)
{
return gcd_detail::lcm_imp(static_cast<Integer>(gcd_detail::gcd_traits<Integer>::abs(a)), static_cast<Integer>(gcd_detail::gcd_traits<Integer>::abs(b)));
}
#ifndef BOOST_NO_CXX11_VARIADIC_TEMPLATES
template <typename Integer, typename... Args>
inline BOOST_CXX14_CONSTEXPR Integer gcd(Integer const &a, Integer const &b, Args const&... args) BOOST_GCD_NOEXCEPT(Integer)
{
Integer t = gcd(b, args...);
return t == 1 ? 1 : gcd(a, t);
}
// Forward declarations for function templates -----------------------------//
template <typename Integer, typename... Args>
inline BOOST_CXX14_CONSTEXPR Integer lcm(Integer const &a, Integer const &b, Args const&... args) BOOST_GCD_NOEXCEPT(Integer)
{
return lcm(a, lcm(b, args...));
}
#endif
//
// Special handling for rationals:
//
template <typename Integer>
inline typename boost::enable_if_c<std::numeric_limits<Integer>::is_specialized, boost::rational<Integer> >::type gcd(boost::rational<Integer> const &a, boost::rational<Integer> const &b)
{
return boost::rational<Integer>(static_cast<Integer>(gcd(a.numerator(), b.numerator())), static_cast<Integer>(lcm(a.denominator(), b.denominator())));
}
template < typename IntegerType >
BOOST_CXX14_CONSTEXPR IntegerType gcd( IntegerType const &a, IntegerType const &b )BOOST_INT_NOEXCEPT(IntegerType);
template <typename Integer>
inline typename boost::enable_if_c<std::numeric_limits<Integer>::is_specialized, boost::rational<Integer> >::type lcm(boost::rational<Integer> const &a, boost::rational<Integer> const &b)
{
return boost::rational<Integer>(static_cast<Integer>(lcm(a.numerator(), b.numerator())), static_cast<Integer>(gcd(a.denominator(), b.denominator())));
}
/**
* Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
* Chapter 4.5.2, Algorithm C: Greatest common divisor of n integers.
*
* Knuth counts down from n to zero but we naturally go from first to last.
* We also return the termination position because it might be useful to know.
*
* Partly by quirk, partly by design, this algorithm is defined for n = 1,
* because the gcd of {x} is x. It is not defined for n = 0.
*
* @tparam I Input iterator.
* @return The gcd of the range and the iterator position at termination.
*/
template <typename I>
std::pair<typename std::iterator_traits<I>::value_type, I>
gcd_range(I first, I last) BOOST_GCD_NOEXCEPT(I)
{
BOOST_ASSERT(first != last);
typedef typename std::iterator_traits<I>::value_type T;
template < typename IntegerType >
BOOST_CXX14_CONSTEXPR IntegerType lcm( IntegerType const &a, IntegerType const &b )BOOST_INT_NOEXCEPT(IntegerType);
T d = *first++;
while (d != T(1) && first != last)
{
d = gcd(d, *first);
first++;
}
return std::make_pair(d, first);
}
template <typename I>
std::pair<typename std::iterator_traits<I>::value_type, I>
lcm_range(I first, I last) BOOST_GCD_NOEXCEPT(I)
{
BOOST_ASSERT(first != last);
typedef typename std::iterator_traits<I>::value_type T;
// Greatest common divisor evaluator class declaration ---------------------//
T d = *first++;
while (d != T(1) && first != last)
{
d = lcm(d, *first);
first++;
}
return std::make_pair(d, first);
}
template < typename IntegerType >
class gcd_evaluator
#ifdef BOOST_NO_CXX11_HDR_FUNCTIONAL
: public std::binary_function<IntegerType, IntegerType, IntegerType>
#endif
{
public:
// Types
typedef IntegerType result_type, first_argument_type, second_argument_type;
// Function object interface
BOOST_CXX14_CONSTEXPR result_type operator ()( first_argument_type const &a,
second_argument_type const &b )const BOOST_INT_NOEXCEPT(IntegerType) ;
}; // boost::integer::gcd_evaluator
// Least common multiple evaluator class declaration -----------------------//
#ifndef BOOST_NO_CXX11_HDR_FUNCTIONAL
typedef IntegerType first_argument_type;
typedef IntegerType second_argument_type;
typedef IntegerType result_type;
#endif
IntegerType operator()(IntegerType const &a, IntegerType const &b)const
{
return boost::integer::gcd(a, b);
}
};
template < typename IntegerType >
class lcm_evaluator
#ifdef BOOST_NO_CXX11_HDR_FUNCTIONAL
: public std::binary_function<IntegerType, IntegerType, IntegerType>
#endif
{
public:
// Types
typedef IntegerType result_type, first_argument_type, second_argument_type;
// Function object interface
BOOST_CXX14_CONSTEXPR result_type operator ()( first_argument_type const &a,
second_argument_type const &b )const BOOST_INT_NOEXCEPT(IntegerType) ;
}; // boost::integer::lcm_evaluator
// Implementation details --------------------------------------------------//
namespace detail
{
// Greatest common divisor for rings (including unsigned integers)
template < typename RingType >
BOOST_CXX14_CONSTEXPR RingType
gcd_euclidean
(
RingType a,
RingType b
)BOOST_INT_NOEXCEPT(RingType)
{
// Avoid repeated construction
#ifndef __BORLANDC__
RingType const zero = static_cast<RingType>( 0 );
#else
RingType zero = static_cast<RingType>( 0 );
#endif
// Reduce by GCD-remainder property [GCD(a,b) == GCD(b,a MOD b)]
while ( true )
{
if ( a == zero )
return b;
b %= a;
if ( b == zero )
return a;
a %= b;
}
}
// Greatest common divisor for (signed) integers
template < typename IntegerType >
inline
BOOST_CXX14_CONSTEXPR IntegerType
gcd_integer
(
IntegerType const & a,
IntegerType const & b
)BOOST_INT_NOEXCEPT(IntegerType)
{
// Avoid repeated construction
IntegerType const zero = static_cast<IntegerType>( 0 );
IntegerType const result = gcd_euclidean( a, b );
return ( result < zero ) ? static_cast<IntegerType>(-result) : result;
}
// Greatest common divisor for unsigned binary integers
template < typename BuiltInUnsigned >
BOOST_CXX14_CONSTEXPR BuiltInUnsigned
gcd_binary
(
BuiltInUnsigned u,
BuiltInUnsigned v
)BOOST_INT_NOEXCEPT(BuiltInUnsigned)
{
if ( u && v )
{
// Shift out common factors of 2
unsigned shifts = 0;
while ( !(u & 1u) && !(v & 1u) )
{
++shifts;
u >>= 1;
v >>= 1;
}
// Start with the still-even one, if any
BuiltInUnsigned r[] = { u, v };
unsigned which = static_cast<bool>( u & 1u );
// Whittle down the values via their differences
do
{
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
while ( !(r[ which ] & 1u) )
{
r[ which ] = (r[which] >> 1);
}
#else
// Remove factors of two from the even one
while ( !(r[ which ] & 1u) )
{
r[ which ] >>= 1;
}
#ifndef BOOST_NO_CXX11_HDR_FUNCTIONAL
typedef IntegerType first_argument_type;
typedef IntegerType second_argument_type;
typedef IntegerType result_type;
#endif
// Replace the larger of the two with their difference
if ( r[!which] > r[which] )
{
which ^= 1u;
}
r[ which ] -= r[ !which ];
}
while ( r[which] );
// Shift-in the common factor of 2 to the residues' GCD
return r[ !which ] << shifts;
}
else
{
// At least one input is zero, return the other
// (adding since zero is the additive identity)
// or zero if both are zero.
return u + v;
}
}
// Least common multiple for rings (including unsigned integers)
template < typename RingType >
inline
BOOST_CXX14_CONSTEXPR RingType
lcm_euclidean
(
RingType const & a,
RingType const & b
)BOOST_INT_NOEXCEPT(RingType)
{
RingType const zero = static_cast<RingType>( 0 );
RingType const temp = gcd_euclidean( a, b );
return ( temp != zero ) ? ( a / temp * b ) : zero;
}
// Least common multiple for (signed) integers
template < typename IntegerType >
inline BOOST_CXX14_CONSTEXPR
IntegerType
lcm_integer
(
IntegerType const & a,
IntegerType const & b
)BOOST_INT_NOEXCEPT(IntegerType)
{
// Avoid repeated construction
IntegerType const zero = static_cast<IntegerType>( 0 );
IntegerType const result = lcm_euclidean( a, b );
return ( result < zero ) ? static_cast<IntegerType>(-result) : result;
}
// Function objects to find the best way of computing GCD or LCM
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
template < typename T, bool IsSpecialized, bool IsSigned >
struct gcd_optimal_evaluator_helper_t
{
BOOST_CXX14_CONSTEXPR T operator ()( T const &a, T const &b )BOOST_INT_NOEXCEPT(T)
{
return gcd_euclidean( a, b );
}
};
template < typename T >
struct gcd_optimal_evaluator_helper_t< T, true, true >
{
BOOST_CXX14_CONSTEXPR T operator ()( T const &a, T const &b )BOOST_INT_NOEXCEPT(T)
{
return gcd_integer( a, b );
}
};
template < typename T >
struct gcd_optimal_evaluator
{
BOOST_CXX14_CONSTEXPR T operator ()( T const &a, T const &b )BOOST_INT_NOEXCEPT(T)
{
typedef ::std::numeric_limits<T> limits_type;
typedef gcd_optimal_evaluator_helper_t<T,
limits_type::is_specialized, limits_type::is_signed> helper_type;
helper_type solver;
return solver( a, b );
}
};
#else // BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
template < typename T >
struct gcd_optimal_evaluator
{
BOOST_CXX14_CONSTEXPR T operator ()( T const &a, T const &b )BOOST_INT_NOEXCEPT(T)
{
return gcd_integer( a, b );
}
};
#endif
// Specialize for the built-in integers
#define BOOST_PRIVATE_GCD_UF( Ut ) \
template < > struct gcd_optimal_evaluator<Ut> \
{ BOOST_CXX14_CONSTEXPR Ut operator ()( Ut a, Ut b ) const BOOST_INT_NOEXCEPT(Ut) { return gcd_binary( a, b ); } }
BOOST_PRIVATE_GCD_UF( unsigned char );
BOOST_PRIVATE_GCD_UF( unsigned short );
BOOST_PRIVATE_GCD_UF( unsigned );
BOOST_PRIVATE_GCD_UF( unsigned long );
#ifdef BOOST_HAS_LONG_LONG
BOOST_PRIVATE_GCD_UF( boost::ulong_long_type );
#elif defined(BOOST_HAS_MS_INT64)
BOOST_PRIVATE_GCD_UF( unsigned __int64 );
#endif
#if CHAR_MIN == 0
BOOST_PRIVATE_GCD_UF( char ); // char is unsigned
#endif
#undef BOOST_PRIVATE_GCD_UF
#define BOOST_PRIVATE_GCD_SF( St, Ut ) \
template < > struct gcd_optimal_evaluator<St> \
{ BOOST_CXX14_CONSTEXPR St operator ()( St a, St b ) const BOOST_INT_NOEXCEPT(St) { Ut const a_abs = \
static_cast<Ut>( a < 0 ? -a : +a ), b_abs = static_cast<Ut>( \
b < 0 ? -b : +b ); return static_cast<St>( \
gcd_optimal_evaluator<Ut>()(a_abs, b_abs) ); } }
BOOST_PRIVATE_GCD_SF( signed char, unsigned char );
BOOST_PRIVATE_GCD_SF( short, unsigned short );
BOOST_PRIVATE_GCD_SF( int, unsigned );
BOOST_PRIVATE_GCD_SF( long, unsigned long );
#if CHAR_MIN < 0
BOOST_PRIVATE_GCD_SF( char, unsigned char ); // char is signed
#endif
#ifdef BOOST_HAS_LONG_LONG
BOOST_PRIVATE_GCD_SF( boost::long_long_type, boost::ulong_long_type );
#elif defined(BOOST_HAS_MS_INT64)
BOOST_PRIVATE_GCD_SF( __int64, unsigned __int64 );
#endif
#undef BOOST_PRIVATE_GCD_SF
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
template < typename T, bool IsSpecialized, bool IsSigned >
struct lcm_optimal_evaluator_helper_t
{
BOOST_CXX14_CONSTEXPR T operator ()( T const &a, T const &b )BOOST_INT_NOEXCEPT(T)
{
return lcm_euclidean( a, b );
}
};
template < typename T >
struct lcm_optimal_evaluator_helper_t< T, true, true >
{
BOOST_CXX14_CONSTEXPR T operator ()( T const &a, T const &b )BOOST_INT_NOEXCEPT(T)
{
return lcm_integer( a, b );
}
};
template < typename T >
struct lcm_optimal_evaluator
{
BOOST_CXX14_CONSTEXPR T operator ()( T const &a, T const &b )BOOST_INT_NOEXCEPT(T)
{
typedef ::std::numeric_limits<T> limits_type;
typedef lcm_optimal_evaluator_helper_t<T,
limits_type::is_specialized, limits_type::is_signed> helper_type;
helper_type solver;
return solver( a, b );
}
};
#else // BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
template < typename T >
struct lcm_optimal_evaluator
{
BOOST_CXX14_CONSTEXPR T operator ()( T const &a, T const &b )BOOST_INT_NOEXCEPT(T)
{
return lcm_integer( a, b );
}
};
#endif
// Functions to find the GCD or LCM in the best way
template < typename T >
inline BOOST_CXX14_CONSTEXPR
T
gcd_optimal
(
T const & a,
T const & b
)BOOST_INT_NOEXCEPT(T)
{
gcd_optimal_evaluator<T> solver;
return solver( a, b );
}
template < typename T >
inline BOOST_CXX14_CONSTEXPR
T
lcm_optimal
(
T const & a,
T const & b
)BOOST_INT_NOEXCEPT(T)
{
lcm_optimal_evaluator<T> solver;
return solver( a, b );
}
} // namespace detail
// Greatest common divisor evaluator member function definition ------------//
template < typename IntegerType >
inline BOOST_CXX14_CONSTEXPR
typename gcd_evaluator<IntegerType>::result_type
gcd_evaluator<IntegerType>::operator ()
(
first_argument_type const & a,
second_argument_type const & b
) const BOOST_INT_NOEXCEPT(IntegerType)
{
return detail::gcd_optimal( a, b );
}
// Least common multiple evaluator member function definition --------------//
template < typename IntegerType >
inline BOOST_CXX14_CONSTEXPR
typename lcm_evaluator<IntegerType>::result_type
lcm_evaluator<IntegerType>::operator ()
(
first_argument_type const & a,
second_argument_type const & b
) const BOOST_INT_NOEXCEPT(IntegerType)
{
return detail::lcm_optimal( a, b );
}
// Greatest common divisor and least common multiple function definitions --//
template < typename IntegerType >
inline BOOST_CXX14_CONSTEXPR
IntegerType
gcd
(
IntegerType const & a,
IntegerType const & b
) BOOST_INT_NOEXCEPT(IntegerType)
{
gcd_evaluator<IntegerType> solver;
return solver( a, b );
}
template < typename IntegerType >
inline BOOST_CXX14_CONSTEXPR
IntegerType
lcm
(
IntegerType const & a,
IntegerType const & b
) BOOST_INT_NOEXCEPT(IntegerType)
{
lcm_evaluator<IntegerType> solver;
return solver( a, b );
}
IntegerType operator()(IntegerType const &a, IntegerType const &b)const
{
return boost::integer::lcm(a, b);
}
};
} // namespace integer
} // namespace boost

View File

@ -20,6 +20,7 @@ test-suite integer
[ compile static_min_max_include_test.cpp ]
[ compile integer_fwd_include_test.cpp ]
[ compile gcd_constexpr14_test.cpp ]
[ compile gcd_noexcept_test.cpp ]
[ compile-fail fail_int_exact.cpp ]
[ compile-fail fail_int_fast.cpp ]
[ compile-fail fail_int_least.cpp ]

View File

@ -15,14 +15,17 @@
// 02 Nov 2006 Change to Boost.Test's unit test system (Daryle Walker)
// 07 Nov 2001 Initial version (Daryle Walker)
#define BOOST_TEST_MAIN "Boost.Math GCD & LCM unit tests"
#define BOOST_TEST_MAIN "Boost.integer GCD & LCM unit tests"
#include <boost/integer/common_factor.hpp>
#include <boost/config.hpp> // for BOOST_MSVC, etc.
#include <boost/config.hpp> // for BOOST_MSVC, etc.
#include <boost/detail/workaround.hpp>
#include <boost/integer/common_factor.hpp> // for boost::integer::gcd, etc.
#include <boost/mpl/list.hpp> // for boost::mpl::list
#include <boost/operators.hpp>
#include <boost/core/lightweight_test.hpp>
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/random.hpp>
#include <boost/rational.hpp>
#include <istream> // for std::basic_istream
#include <limits> // for std::numeric_limits
@ -109,6 +112,25 @@ MyUnsigned1 dummy2;
MyInt2 dummy3;
MyUnsigned2 dummy4;
// Various types to test with each GCD/LCM
typedef ::boost::mpl::list<signed char, short, int, long,
#if BOOST_WORKAROUND(BOOST_MSVC, <= 1500)
#elif defined(BOOST_HAS_LONG_LONG)
boost::long_long_type,
#elif defined(BOOST_HAS_MS_INT64)
__int64,
#endif
MyInt1, boost::multiprecision::cpp_int> signed_test_types;
typedef ::boost::mpl::list<unsigned char, unsigned short, unsigned,
unsigned long,
#if BOOST_WORKAROUND(BOOST_MSVC, <= 1500)
#elif defined(BOOST_HAS_LONG_LONG)
boost::ulong_long_type,
#elif defined(BOOST_HAS_MS_INT64)
unsigned __int64,
#endif
MyUnsigned1, MyUnsigned2 /*, boost::multiprecision::uint256_t*/> unsigned_test_types;
} // namespace
#define BOOST_NO_MACRO_EXPAND /**/
@ -246,7 +268,12 @@ inline ostream& operator<<(ostream& os, unsigned __int64 i)
// GCD on signed integer types
template< class T > void gcd_int_test() // signed_test_types
{
#ifndef BOOST_MSVC
using boost::integer::gcd;
using boost::integer::gcd_evaluator;
#else
using namespace boost::integer;
#endif
// Originally from Boost.Rational tests
BOOST_TEST_EQ( gcd<T>( 1, -1), static_cast<T>( 1) );
@ -265,12 +292,33 @@ template< class T > void gcd_int_test() // signed_test_types
BOOST_TEST_EQ( gcd<T>( 3, 7), static_cast<T>( 1) );
BOOST_TEST_EQ( gcd<T>( 8, 9), static_cast<T>( 1) );
BOOST_TEST_EQ( gcd<T>( 7, 49), static_cast<T>( 7) );
// Again with function object:
BOOST_TEST_EQ(gcd_evaluator<T>()(1, -1), static_cast<T>(1));
BOOST_TEST_EQ(gcd_evaluator<T>()(-1, 1), static_cast<T>(1));
BOOST_TEST_EQ(gcd_evaluator<T>()(1, 1), static_cast<T>(1));
BOOST_TEST_EQ(gcd_evaluator<T>()(-1, -1), static_cast<T>(1));
BOOST_TEST_EQ(gcd_evaluator<T>()(0, 0), static_cast<T>(0));
BOOST_TEST_EQ(gcd_evaluator<T>()(7, 0), static_cast<T>(7));
BOOST_TEST_EQ(gcd_evaluator<T>()(0, 9), static_cast<T>(9));
BOOST_TEST_EQ(gcd_evaluator<T>()(-7, 0), static_cast<T>(7));
BOOST_TEST_EQ(gcd_evaluator<T>()(0, -9), static_cast<T>(9));
BOOST_TEST_EQ(gcd_evaluator<T>()(42, 30), static_cast<T>(6));
BOOST_TEST_EQ(gcd_evaluator<T>()(6, -9), static_cast<T>(3));
BOOST_TEST_EQ(gcd_evaluator<T>()(-10, -10), static_cast<T>(10));
BOOST_TEST_EQ(gcd_evaluator<T>()(-25, -10), static_cast<T>(5));
BOOST_TEST_EQ(gcd_evaluator<T>()(3, 7), static_cast<T>(1));
BOOST_TEST_EQ(gcd_evaluator<T>()(8, 9), static_cast<T>(1));
BOOST_TEST_EQ(gcd_evaluator<T>()(7, 49), static_cast<T>(7));
}
// GCD on unmarked signed integer type
void gcd_unmarked_int_test()
{
#ifndef BOOST_MSVC
using boost::integer::gcd;
#else
using namespace boost::integer;
#endif
// The regular signed-integer GCD function performs the unsigned version,
// then does an absolute-value on the result. Signed types that are not
@ -297,7 +345,11 @@ void gcd_unmarked_int_test()
// GCD on unsigned integer types
template< class T > void gcd_unsigned_test() // unsigned_test_types
{
#ifndef BOOST_MSVC
using boost::integer::gcd;
#else
using namespace boost::integer;
#endif
// Note that unmarked types (i.e. have no std::numeric_limits
// specialization) are treated like non/unsigned types
@ -314,29 +366,53 @@ template< class T > void gcd_unsigned_test() // unsigned_test_types
// GCD at compile-time
void gcd_static_test()
{
#ifndef BOOST_MSVC
using boost::integer::static_gcd;
#else
using namespace boost::integer;
#endif
BOOST_TEST_EQ( (static_gcd< 1, 1>::value), 1 );
BOOST_TEST_EQ( (static_gcd< 0, 0>::value), 0 );
BOOST_TEST_EQ( (static_gcd< 7, 0>::value), 7 );
BOOST_TEST_EQ( (static_gcd< 0, 9>::value), 9 );
BOOST_TEST_EQ( (static_gcd<42, 30>::value), 6 );
BOOST_TEST_EQ( (static_gcd< 3, 7>::value), 1 );
BOOST_TEST_EQ( (static_gcd< 8, 9>::value), 1 );
BOOST_TEST_EQ( (static_gcd< 7, 49>::value), 7 );
// Can't use "BOOST_TEST_EQ", otherwise the "value" member will be
// disqualified as compile-time-only constant, needing explicit definition
BOOST_TEST( (static_gcd< 1, 1>::value) == 1 );
BOOST_TEST( (static_gcd< 0, 0>::value) == 0 );
BOOST_TEST( (static_gcd< 7, 0>::value) == 7 );
BOOST_TEST( (static_gcd< 0, 9>::value) == 9 );
BOOST_TEST( (static_gcd<42, 30>::value) == 6 );
BOOST_TEST( (static_gcd< 3, 7>::value) == 1 );
BOOST_TEST( (static_gcd< 8, 9>::value) == 1 );
BOOST_TEST( (static_gcd< 7, 49>::value) == 7 );
}
// TODO: non-built-in signed and unsigned integer tests, with and without
// numeric_limits specialization; polynominal tests; note any changes if
// built-ins switch to binary-GCD algorithm
void gcd_method_test()
{
// Verify that the 3 different methods all yield the same result:
boost::random::mt19937 gen;
boost::random::uniform_int_distribution<int> d(0, ((std::numeric_limits<int>::max)() / 2));
for (unsigned int i = 0; i < 10000; ++i)
{
int v1 = d(gen);
int v2 = d(gen);
int g = boost::integer::gcd_detail::Euclid_gcd(v1, v2);
BOOST_TEST(v1 % g == 0);
BOOST_TEST(v2 % g == 0);
BOOST_TEST_EQ(g, boost::integer::gcd_detail::mixed_binary_gcd(v1, v2));
BOOST_TEST_EQ(g, boost::integer::gcd_detail::Stein_gcd(v1, v2));
}
}
// LCM tests
// LCM on signed integer types
template< class T > void lcm_int_test() // signed_test_types
{
#ifndef BOOST_MSVC
using boost::integer::lcm;
using boost::integer::lcm_evaluator;
#else
using namespace boost::integer;
#endif
// Originally from Boost.Rational tests
BOOST_TEST_EQ( lcm<T>( 1, -1), static_cast<T>( 1) );
@ -355,12 +431,33 @@ template< class T > void lcm_int_test() // signed_test_types
BOOST_TEST_EQ( lcm<T>( 3, 7), static_cast<T>(21) );
BOOST_TEST_EQ( lcm<T>( 8, 9), static_cast<T>(72) );
BOOST_TEST_EQ( lcm<T>( 7, 49), static_cast<T>(49) );
// Again with function object:
BOOST_TEST_EQ(lcm_evaluator<T>()(1, -1), static_cast<T>(1));
BOOST_TEST_EQ(lcm_evaluator<T>()(-1, 1), static_cast<T>(1));
BOOST_TEST_EQ(lcm_evaluator<T>()(1, 1), static_cast<T>(1));
BOOST_TEST_EQ(lcm_evaluator<T>()(-1, -1), static_cast<T>(1));
BOOST_TEST_EQ(lcm_evaluator<T>()(0, 0), static_cast<T>(0));
BOOST_TEST_EQ(lcm_evaluator<T>()(6, 0), static_cast<T>(0));
BOOST_TEST_EQ(lcm_evaluator<T>()(0, 7), static_cast<T>(0));
BOOST_TEST_EQ(lcm_evaluator<T>()(-5, 0), static_cast<T>(0));
BOOST_TEST_EQ(lcm_evaluator<T>()(0, -4), static_cast<T>(0));
BOOST_TEST_EQ(lcm_evaluator<T>()(18, 30), static_cast<T>(90));
BOOST_TEST_EQ(lcm_evaluator<T>()(-6, 9), static_cast<T>(18));
BOOST_TEST_EQ(lcm_evaluator<T>()(-10, -10), static_cast<T>(10));
BOOST_TEST_EQ(lcm_evaluator<T>()(25, -10), static_cast<T>(50));
BOOST_TEST_EQ(lcm_evaluator<T>()(3, 7), static_cast<T>(21));
BOOST_TEST_EQ(lcm_evaluator<T>()(8, 9), static_cast<T>(72));
BOOST_TEST_EQ(lcm_evaluator<T>()(7, 49), static_cast<T>(49));
}
// LCM on unmarked signed integer type
void lcm_unmarked_int_test()
{
#ifndef BOOST_MSVC
using boost::integer::lcm;
#else
using namespace boost::integer;
#endif
// The regular signed-integer LCM function performs the unsigned version,
// then does an absolute-value on the result. Signed types that are not
@ -387,7 +484,11 @@ void lcm_unmarked_int_test()
// LCM on unsigned integer types
template< class T > void lcm_unsigned_test() // unsigned_test_types
{
#ifndef BOOST_MSVC
using boost::integer::lcm;
#else
using namespace boost::integer;
#endif
// Note that unmarked types (i.e. have no std::numeric_limits
// specialization) are treated like non/unsigned types
@ -404,23 +505,46 @@ template< class T > void lcm_unsigned_test() // unsigned_test_types
// LCM at compile-time
void lcm_static_test()
{
#ifndef BOOST_MSVC
using boost::integer::static_lcm;
#else
using namespace boost::integer;
#endif
BOOST_TEST_EQ( (static_lcm< 1, 1>::value), 1 );
BOOST_TEST_EQ( (static_lcm< 0, 0>::value), 0 );
BOOST_TEST_EQ( (static_lcm< 6, 0>::value), 0 );
BOOST_TEST_EQ( (static_lcm< 0, 7>::value), 0 );
BOOST_TEST_EQ( (static_lcm<18, 30>::value), 90 );
BOOST_TEST_EQ( (static_lcm< 3, 7>::value), 21 );
BOOST_TEST_EQ( (static_lcm< 8, 9>::value), 72 );
BOOST_TEST_EQ( (static_lcm< 7, 49>::value), 49 );
// Can't use "BOOST_TEST_EQ", otherwise the "value" member will be
// disqualified as compile-time-only constant, needing explicit definition
BOOST_TEST( (static_lcm< 1, 1>::value) == 1 );
BOOST_TEST( (static_lcm< 0, 0>::value) == 0 );
BOOST_TEST( (static_lcm< 6, 0>::value) == 0 );
BOOST_TEST( (static_lcm< 0, 7>::value) == 0 );
BOOST_TEST( (static_lcm<18, 30>::value) == 90 );
BOOST_TEST( (static_lcm< 3, 7>::value) == 21 );
BOOST_TEST( (static_lcm< 8, 9>::value) == 72 );
BOOST_TEST( (static_lcm< 7, 49>::value) == 49 );
}
// TODO: see GCD to-do
void variadics()
{
unsigned i[] = { 44, 56, 76, 88 };
BOOST_TEST_EQ(boost::integer::gcd_range(i, i + 4).first, 4);
BOOST_TEST_EQ(boost::integer::gcd_range(i, i + 4).second, i + 4);
BOOST_TEST_EQ(boost::integer::lcm_range(i, i + 4).first, 11704);
BOOST_TEST_EQ(boost::integer::lcm_range(i, i + 4).second, i + 4);
#ifndef BOOST_NO_CXX11_VARIADIC_TEMPLATES
BOOST_TEST_EQ(boost::integer::gcd(i[0], i[1], i[2], i[3]), 4);
BOOST_TEST_EQ(boost::integer::lcm(i[0], i[1], i[2], i[3]), 11704);
#endif
}
// main
// Various types to test with each GCD/LCM
// Test case from Boost.Rational, need to make sure we don't break the rational lib:
template <class T> void gcd_and_lcm_on_rationals()
{
typedef boost::rational<T> rational;
BOOST_TEST_EQ(boost::integer::gcd(rational(1, 4), rational(1, 3)),
rational(1, 12));
BOOST_TEST_EQ(boost::integer::lcm(rational(1, 4), rational(1, 3)),
rational(1));
}
#define TEST_SIGNED_( test ) \
test<signed char>(); \
@ -459,15 +583,18 @@ void lcm_static_test()
int main()
{
TEST_SIGNED( gcd_int_test )
gcd_unmarked_int_test();
TEST_UNSIGNED( gcd_unsigned_test )
gcd_static_test();
TEST_SIGNED(gcd_int_test)
gcd_unmarked_int_test();
TEST_UNSIGNED(gcd_unsigned_test)
gcd_static_test();
gcd_method_test();
TEST_SIGNED( lcm_int_test )
lcm_unmarked_int_test();
TEST_UNSIGNED( lcm_unsigned_test )
lcm_static_test();
TEST_SIGNED(lcm_int_test)
lcm_unmarked_int_test();
TEST_UNSIGNED(lcm_unsigned_test)
lcm_static_test();
variadics();
TEST_SIGNED(gcd_and_lcm_on_rationals)
return boost::report_errors();
return boost::report_errors();
}

View File

@ -8,7 +8,7 @@
#ifndef BOOST_NO_CXX14_CONSTEXPR
void test_constexpr()
void test_constexpr1()
{
constexpr const boost::int64_t i = 347 * 463 * 727;
constexpr const boost::int64_t j = 191 * 347 * 281;
@ -16,30 +16,51 @@ void test_constexpr()
constexpr const boost::int64_t k = boost::integer::gcd(i, j);
constexpr const boost::int64_t l = boost::integer::lcm(i, j);
static_assert(k == 347, "Expected result not found in constexpr gcd.");
static_assert(l == 6268802158037, "Expected result not found in constexpr lcm.");
static_assert(k == 347, "Expected result not integer in constexpr gcd.");
static_assert(l == 6268802158037, "Expected result not integer in constexpr lcm.");
}
#endif
#ifndef BOOST_NO_CXX11_NOEXCEPT
void test_noexcept()
void test_constexpr2()
{
static_assert(noexcept(boost::integer::gcd(static_cast<unsigned char>(2), static_cast<unsigned char>(4))), "Expected a noexcept function.");
#ifndef _MSC_VER
// This generates an internal compiler error if enabled as well as the following test:
static_assert(noexcept(boost::integer::gcd(static_cast<char>(2), static_cast<char>(4))), "Expected a noexcept function.");
#endif
static_assert(noexcept(boost::integer::gcd(static_cast<signed char>(2), static_cast<signed char>(4))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<short>(2), static_cast<short>(4))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<unsigned short>(2), static_cast<unsigned short>(4))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<int>(2), static_cast<int>(4))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<unsigned int>(2), static_cast<unsigned int>(4))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<long>(2), static_cast<long>(4))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<unsigned long>(2), static_cast<unsigned long>(4))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<long long>(2), static_cast<long long>(4))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<unsigned long long>(2), static_cast<unsigned long long>(4))), "Expected a noexcept function.");
constexpr const boost::uint64_t i = 347 * 463 * 727;
constexpr const boost::uint64_t j = 191 * 347 * 281;
constexpr const boost::uint64_t k = boost::integer::gcd(i, j);
constexpr const boost::uint64_t l = boost::integer::lcm(i, j);
static_assert(k == 347, "Expected result not integer in constexpr gcd.");
static_assert(l == 6268802158037, "Expected result not integer in constexpr lcm.");
}
void test_constexpr3()
{
constexpr const boost::uint64_t i = 347 * 463 * 727;
constexpr const boost::uint64_t j = 191 * 347 * 281;
constexpr const boost::uint64_t k = boost::integer::gcd_detail::Euclid_gcd(i, j);
static_assert(k == 347, "Expected result not integer in constexpr gcd.");
}
void test_constexpr4()
{
constexpr const boost::uint64_t i = 347 * 463 * 727;
constexpr const boost::uint64_t j = 191 * 347 * 281;
constexpr const boost::uint64_t k = boost::integer::gcd_detail::mixed_binary_gcd(i, j);
static_assert(k == 347, "Expected result not integer in constexpr gcd.");
}
void test_constexpr5()
{
constexpr const boost::uint64_t i = 347 * 463 * 727;
constexpr const boost::uint64_t j = 191 * 347 * 281;
constexpr const boost::uint64_t k = boost::integer::gcd_detail::Stein_gcd(i, j);
static_assert(k == 347, "Expected result not integer in constexpr gcd.");
}
#endif

View File

@ -0,0 +1,35 @@
// (C) Copyright John Maddock 2017.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/integer/common_factor.hpp>
#if !defined(BOOST_NO_CXX11_NOEXCEPT) && !defined(BOOST_NO_CXX11_HDR_TYPE_TRAITS)
//
// These tests don't pass with GCC-4.x:
//
#if !defined(BOOST_GCC) || (BOOST_GCC >= 50000)
void test_noexcept(unsigned char a, unsigned char b)
{
static_assert(noexcept(boost::integer::gcd(static_cast<unsigned char>(a), static_cast<unsigned char>(b))), "Expected a noexcept function.");
#ifndef _MSC_VER
// This generates an internal compiler error if enabled as well as the following test:
static_assert(noexcept(boost::integer::gcd(static_cast<char>(a), static_cast<char>(b))), "Expected a noexcept function.");
#endif
static_assert(noexcept(boost::integer::gcd(static_cast<signed char>(a), static_cast<signed char>(b))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<short>(a), static_cast<short>(b))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<unsigned short>(a), static_cast<unsigned short>(b))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<int>(a), static_cast<int>(b))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<unsigned int>(a), static_cast<unsigned int>(b))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<long>(a), static_cast<long>(b))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<unsigned long>(a), static_cast<unsigned long>(b))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<long long>(a), static_cast<long long>(b))), "Expected a noexcept function.");
static_assert(noexcept(boost::integer::gcd(static_cast<unsigned long long>(a), static_cast<unsigned long long>(b))), "Expected a noexcept function.");
}
#endif
#endif