forked from boostorg/integer
Add template argument to green up build. Remove discrete log as we do not have an overflow-resistant mul_mod in boost.
This commit is contained in:
@ -1,171 +0,0 @@
|
||||
/*
|
||||
* (C) Copyright Nick Thompson 2018.
|
||||
* Use, modification and distribution are subject to the
|
||||
* Boost Software License, Version 1.0. (See accompanying file
|
||||
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
*
|
||||
* Two methods of computing the discrete logarithm over the multiplicative group of integers mod p.
|
||||
*/
|
||||
|
||||
#ifndef BOOST_INTEGER_DISCRETE_LOG_HPP
|
||||
#define BOOST_INTEGER_DISCRETE_LOG_HPP
|
||||
#include <stdexcept>
|
||||
#include <limits>
|
||||
#include <sstream>
|
||||
#include <unordered_map>
|
||||
#include <boost/throw_exception.hpp>
|
||||
#include <boost/optional.hpp>
|
||||
#include <boost/multiprecision/integer.hpp>
|
||||
#include <boost/integer/common_factor_rt.hpp>
|
||||
#include <boost/integer/mod_inverse.hpp>
|
||||
|
||||
namespace boost { namespace integer {
|
||||
|
||||
// base^^x = a mod p <-> x = log_base(a) mod p
|
||||
template<class Z>
|
||||
boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z modulus)
|
||||
{
|
||||
if (base <= 1)
|
||||
{
|
||||
std::ostringstream oss;
|
||||
oss << "The base b is " << base << ", but must be > 1.\n";
|
||||
BOOST_THROW_EXCEPTION(std::domain_error(oss.str()));
|
||||
}
|
||||
if (modulus < 3)
|
||||
{
|
||||
std::ostringstream oss;
|
||||
oss << "The modulus must be > 2, but is " << modulus << ".\n";
|
||||
BOOST_THROW_EXCEPTION(std::domain_error(oss.str()));
|
||||
}
|
||||
if (arg < 1)
|
||||
{
|
||||
std::ostringstream oss;
|
||||
oss << "The argument must be > 0, but is " << arg << ".\n";
|
||||
BOOST_THROW_EXCEPTION(std::domain_error(oss.str()));
|
||||
}
|
||||
if (base >= modulus || arg >= modulus)
|
||||
{
|
||||
if (base >= modulus)
|
||||
{
|
||||
std::ostringstream oss;
|
||||
oss << "Error computing the discrete log: The base " << base
|
||||
<< " is greater than the modulus " << modulus
|
||||
<< ". Are the arguments in the wrong order?";
|
||||
BOOST_THROW_EXCEPTION(std::domain_error(oss.str()));
|
||||
}
|
||||
if (arg >= modulus)
|
||||
{
|
||||
std::ostringstream oss;
|
||||
oss << "Error computing the discrete log: The argument " << arg
|
||||
<< " is greater than the modulus " << modulus
|
||||
<< ". Are the arguments in the wrong order?";
|
||||
BOOST_THROW_EXCEPTION(std::domain_error(oss.str()));
|
||||
}
|
||||
}
|
||||
|
||||
if (arg == 1)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
Z s = 1;
|
||||
for (Z i = 1; i < modulus; ++i)
|
||||
{
|
||||
s = (s * base) % modulus;
|
||||
if (s == arg)
|
||||
{
|
||||
// Maybe a bit trivial assertion. But still a negligible fraction of the total compute time.
|
||||
BOOST_ASSERT(arg == boost::multiprecision::powm(base, i, modulus));
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return {};
|
||||
}
|
||||
|
||||
template<class Z>
|
||||
class bsgs_discrete_log
|
||||
{
|
||||
public:
|
||||
bsgs_discrete_log(Z base, Z modulus) : m_p{modulus}, m_base{base}
|
||||
{
|
||||
using std::numeric_limits;
|
||||
static_assert(numeric_limits<Z>::is_integer,
|
||||
"The baby-step, giant-step discrete log works on integral types.\n");
|
||||
|
||||
if (base <= 1)
|
||||
{
|
||||
BOOST_THROW_EXCEPTION(std::logic_error("The base must be > 1.\n"));
|
||||
}
|
||||
if (modulus < 3)
|
||||
{
|
||||
BOOST_THROW_EXCEPTION(std::logic_error("The modulus must be > 2.\n"));
|
||||
}
|
||||
if (base >= modulus)
|
||||
{
|
||||
BOOST_THROW_EXCEPTION(std::logic_error("Error computing the discrete log: Are your arguments in the wrong order?\n"));
|
||||
}
|
||||
m_root_p = boost::multiprecision::sqrt(modulus);
|
||||
if (m_root_p*m_root_p != modulus)
|
||||
{
|
||||
m_root_p += 1;
|
||||
}
|
||||
|
||||
boost::optional<Z> x = mod_inverse(base, modulus);
|
||||
if (!x)
|
||||
{
|
||||
Z d = boost::integer::gcd(base, modulus);
|
||||
std::ostringstream oss;
|
||||
oss << "The gcd of the base " << base << " and the modulus " << modulus << " is " << d
|
||||
<< ", which is not equal 1; hence the discrete log is not guaranteed to exist.\n"
|
||||
<< "This breaks the baby-step giant step algorithm.\n"
|
||||
<< "If you don't require existence for all inputs, use trial multiplication.\n";
|
||||
BOOST_THROW_EXCEPTION(std::logic_error(oss.str()));
|
||||
}
|
||||
m_inv_base_pow_m = boost::multiprecision::powm(x.value(), m_root_p, modulus);
|
||||
|
||||
m_lookup_table.reserve(m_root_p);
|
||||
// Now the expensive part:
|
||||
Z k = 1;
|
||||
for (Z j = 0; j < m_root_p; ++j)
|
||||
{
|
||||
m_lookup_table.emplace(k, j);
|
||||
k = k*base % modulus;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
boost::optional<Z> operator()(Z arg) const
|
||||
{
|
||||
Z ami = m_inv_base_pow_m;
|
||||
Z k = arg % m_p;
|
||||
if(k == 0)
|
||||
{
|
||||
return {};
|
||||
}
|
||||
for (Z i = 0; i < m_lookup_table.size(); ++i)
|
||||
{
|
||||
auto it = m_lookup_table.find(k);
|
||||
if (it != m_lookup_table.end())
|
||||
{
|
||||
Z log_b_arg = (i*m_root_p + it->second) % m_p;
|
||||
// This computation of the modular exponentiation is laughably quick relative to computing the discrete log.
|
||||
// Why not put an assert here for our peace of mind?
|
||||
BOOST_ASSERT(arg == boost::multiprecision::powm(m_base, log_b_arg, m_p));
|
||||
return log_b_arg;
|
||||
}
|
||||
ami = (ami*m_inv_base_pow_m) % m_p;
|
||||
k = k * ami % m_p;
|
||||
}
|
||||
return {};
|
||||
}
|
||||
|
||||
private:
|
||||
Z m_p;
|
||||
Z m_base;
|
||||
Z m_root_p;
|
||||
Z m_inv_base_pow_m;
|
||||
std::unordered_map<Z, Z> m_lookup_table;
|
||||
};
|
||||
|
||||
|
||||
}}
|
||||
#endif
|
Reference in New Issue
Block a user