[ci skip] Modular exponentiation, modular multiplicative inverse, extended Euclidean algorithm, discrete logarithm.

This commit is contained in:
Nick Thompson
2018-01-28 14:47:14 -06:00
parent 919c5277c1
commit fc4d657201
14 changed files with 768 additions and 39 deletions

View File

@ -0,0 +1,140 @@
/*
* (C) Copyright Nick Thompson 2018.
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
* Two methods of computing the discrete logarithm over the multiplicative group of integers mod p.
*/
#ifndef BOOST_INTEGER_DISCRETE_LOG_HPP
#define BOOST_INTEGER_DISCRETE_LOG_HPP
#include <limits>
#include <unordered_map>
#include <boost/optional.hpp>
#include <boost/integer/floor_sqrt.hpp>
#include <boost/integer/modular_multiplicative_inverse.hpp>
#include <boost/integer/modular_exponentiation.hpp>
#include <boost/integer/common_factor.hpp>
namespace boost { namespace integer {
// base^^x = a mod p <-> x = log_base(a) mod p
template<class Z>
boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z p)
{
using std::numeric_limits;
static_assert(numeric_limits<Z>::is_integer,
"The discrete log works on integral types.\n");
if (base <= 1)
{
throw std::logic_error("The base must be > 1.\n");
}
if (p < 3)
{
throw std::logic_error("The modulus must be > 2.\n");
}
if (arg < 1)
{
throw std::logic_error("The argument must be > 0.\n");
}
if (base >= p || arg >= p)
{
throw std::logic_error("Error computing the discrete log: Are your arguments in the wrong order?\n");
}
if (arg == 1)
{
return 0;
}
Z s = 1;
for (Z i = 1; i < p; ++i)
{
s = (s * base) % p;
if (s == arg)
{
return i;
}
}
return {};
}
template<class Z>
class baby_step_giant_step_discrete_log
{
public:
baby_step_giant_step_discrete_log(Z base, Z p) : m_p{p}
{
using std::numeric_limits;
static_assert(numeric_limits<Z>::is_integer,
"The baby_step_giant_step discrete log works on integral types.\n");
if (base <= 1)
{
throw std::logic_error("The base must be > 1.\n");
}
if (p < 3)
{
throw std::logic_error("The modulus must be > 2.\n");
}
if (base >= p)
{
throw std::logic_error("Error computing the discrete log: Are your arguments in the wrong order?\n");
}
m_root_p = floor_sqrt(p);
if (m_root_p*m_root_p != p)
{
m_root_p += 1;
}
auto x = modular_multiplicative_inverse(base, p);
if (!x)
{
throw std::logic_error("The gcd of the b and the modulus is > 1, hence the discrete log is not guaranteed to exist. If you don't require an existence proof, use trial multiplication.\n");
}
m_inv_base_pow_m = modular_exponentiation(x.value(), m_root_p, p);
m_lookup_table.reserve(m_root_p);
// Now the expensive part:
Z k = 1;
for (Z j = 0; j < m_root_p; ++j)
{
m_lookup_table.emplace(k, j);
k = k*base % p;
}
}
Z operator()(Z arg) const
{
Z ami = m_inv_base_pow_m;
Z k = arg % m_p;
if(k == 0)
{
throw std::domain_error("Cannot take the logarithm of a number divisible by the modulus.\n");
}
for (Z i = 0; i < m_root_p; ++i)
{
auto it = m_lookup_table.find(k);
if (it != m_lookup_table.end())
{
return (i*m_root_p + it->second) % m_p;
}
ami = (ami*m_inv_base_pow_m) % m_p;
k = k * ami % m_p;
}
// never should get here . . .
return -1;
}
private:
Z m_p;
Z m_root_p;
Z m_inv_base_pow_m;
std::unordered_map<Z, Z> m_lookup_table;
};
}}
#endif

View File

@ -0,0 +1,67 @@
/*
* (C) Copyright Nick Thompson 2018.
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_INTEGER_EXTENDED_EUCLIDEAN_HPP
#define BOOST_INTEGER_EXTENDED_EUCLIDEAN_HPP
#include <tuple>
#include <limits>
namespace boost { namespace integer {
// From "The Joy of Factoring", Algorithm 2.7.
// Should the tuple be a named tuple? Is that possible?
// Solves mx + ny = gcd(m,n). Returns tuple with (gcd(m,n), x, y).
template<class Z>
std::tuple<Z, Z, Z> extended_euclidean(Z m, Z n)
{
using std::numeric_limits;
static_assert(numeric_limits<Z>::is_integer,
"The extended Euclidean algorithm works on integral types.\n");
static_assert(numeric_limits<Z>::is_signed,
"The extended Euclidean algorithm only works on signed integer types.\n");
if (m < 1 || n < 1)
{
throw std::domain_error("Arguments must be strictly positive.\n");
}
bool swapped = false;
if (m < n)
{
swapped = true;
std::swap(m, n);
}
Z u0 = m;
Z u1 = 1;
Z u2 = 0;
Z v0 = n;
Z v1 = 0;
Z v2 = 1;
Z w0;
Z w1;
Z w2;
while(v0 > 0)
{
Z q = u0/v0;
w0 = u0 - q*v0;
w1 = u1 - q*v1;
w2 = u2 - q*v2;
u0 = v0;
u1 = v1;
u2 = v2;
v0 = w0;
v1 = w1;
v2 = w2;
}
if (swapped)
{
std::swap(u1, u2);
}
return std::make_tuple(u0, u1, u2);
}
}}
#endif

View File

@ -0,0 +1,34 @@
/*
* (C) Copyright Nick Thompson 2017.
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
* The integer floor_sqrt doesn't lose precision like a cast does.
* Based on Algorithm 5.9 of "The Joy of Factoring".
*/
#ifndef BOOST_INTEGER_FLOOR_SQRT_HPP
#define BOOST_INTEGER_FLOOR_SQRT_HPP
#include <limits>
namespace boost { namespace integer {
template<class Z>
Z floor_sqrt(Z N)
{
static_assert(std::numeric_limits<Z>::is_integer,
"The floor_sqrt function is for taking square roots of integers.\n");
Z x = N;
Z y = x/2 + (x&1);
while (y < x) {
x = y;
y = (x + N / x)/2;
}
return x;
}
}}
#endif

View File

@ -0,0 +1,39 @@
/*
* (C) Copyright Nick Thompson 2018.
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_INTEGER_MODULAR_EXPONENTIATION_HPP
#define BOOST_INTEGER_MODULAR_EXPONENTIATION_HPP
#include <limits>
namespace boost { namespace integer {
template<class Z>
Z modular_exponentiation(Z base, Z exponent, Z modulus)
{
using std::numeric_limits;
static_assert(numeric_limits<Z>::is_integer,
"Modular exponentiation works on integral types.\n");
Z result = 1;
if (exponent < 0 || modulus < 0)
{
throw std::domain_error("Both the exponent and the modulus must be > 0.\n");
}
while (exponent > 0)
{
if (exponent & 1)
{
result = (result*base) % modulus;
}
base = (base*base) % modulus;
exponent >>= 1;
}
return result;
}
}}
#endif

View File

@ -0,0 +1,50 @@
/*
* (C) Copyright Nick Thompson 2018.
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_INTEGER_MODULAR_MULTIPLICATIVE_INVERSE_HPP
#define BOOST_INTEGER_MODULAR_MULTIPLICATIVE_INVERSE_HPP
#include <limits>
#include <boost/optional.hpp>
#include <boost/integer/extended_euclidean.hpp>
namespace boost { namespace integer {
// From "The Joy of Factoring", Algorithm 2.7.
template<class Z>
boost::optional<Z> modular_multiplicative_inverse(Z a, Z modulus)
{
using std::numeric_limits;
static_assert(numeric_limits<Z>::is_integer,
"The modular multiplicative inverse works on integral types.\n");
if (modulus < 2)
{
throw std::domain_error("Modulus must be > 1.\n");
}
// make sure a < modulus:
a = a % modulus;
if (a == 0)
{
// a doesn't have a modular multiplicative inverse:
return {};
}
auto u = extended_euclidean(a, modulus);
Z gcd = std::get<0>(u);
if (gcd > 1)
{
return {};
}
Z x = std::get<1>(u);
// x might not be in the range 0 < x < m, let's fix that:
x = x % modulus;
while (x <= 0)
{
x += modulus;
}
return x;
}
}}
#endif