/* * (C) Copyright Nick Thompson 2018. * Use, modification and distribution are subject to the * Boost Software License, Version 1.0. (See accompanying file * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) * * Two methods of computing the discrete logarithm over the multiplicative group of integers mod p. */ #ifndef BOOST_INTEGER_DISCRETE_LOG_HPP #define BOOST_INTEGER_DISCRETE_LOG_HPP #include #include #include #include #include #include #include namespace boost { namespace integer { // base^^x = a mod p <-> x = log_base(a) mod p template boost::optional trial_multiplication_discrete_log(Z base, Z arg, Z p) { using std::numeric_limits; static_assert(numeric_limits::is_integer, "The discrete log works on integral types.\n"); if (base <= 1) { throw std::domain_error("The base must be > 1.\n"); } if (p < 3) { throw std::domain_error("The modulus must be > 2.\n"); } if (arg < 1) { throw std::domain_error("The argument must be > 0.\n"); } if (base >= p || arg >= p) { if (base >= p) { auto e = boost::format("Error computing the discrete log: The base %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % base % p; throw std::domain_error(e.str()); } if (arg >= p) { auto e = boost::format("Error computing the discrete log: The argument %1% is greater than the modulus %2%. Are the arguments in the wrong order?") % arg % p; throw std::domain_error(e.str()); } } if (arg == 1) { return 0; } Z s = 1; for (Z i = 1; i < p; ++i) { s = (s * base) % p; if (s == arg) { // Maybe a bit trivial assertion. But still a negligible fraction of the total compute time. BOOST_ASSERT(arg == boost::multiprecision::powm(base, i, p)); return i; } } return {}; } template class bsgs_discrete_log { public: bsgs_discrete_log(Z base, Z p) : m_p{p}, m_base{base} { using std::numeric_limits; static_assert(numeric_limits::is_integer, "The baby-step, giant-step discrete log works on integral types.\n"); if (base <= 1) { throw std::logic_error("The base must be > 1.\n"); } if (p < 3) { throw std::logic_error("The modulus must be > 2.\n"); } if (base >= p) { throw std::logic_error("Error computing the discrete log: Are your arguments in the wrong order?\n"); } m_root_p = boost::multiprecision::sqrt(p); if (m_root_p*m_root_p != p) { m_root_p += 1; } auto x = mod_inverse(base, p); if (!x) { auto d = boost::integer::gcd(base, p); auto e = boost::format("The gcd of the base %1% and the modulus %2% is %3% != 1, hence the discrete log is not guaranteed to exist, which breaks the baby-step giant step algorithm. If you don't require existence proof for all inputs, use trial multiplication.\n") % base % p % d; throw std::logic_error(e.str()); } m_inv_base_pow_m = boost::multiprecision::powm(x.value(), m_root_p, p); m_lookup_table.reserve(m_root_p); // Now the expensive part: Z k = 1; for (Z j = 0; j < m_root_p; ++j) { m_lookup_table.emplace(k, j); k = k*base % p; } } Z operator()(Z arg) const { Z ami = m_inv_base_pow_m; Z k = arg % m_p; if(k == 0) { throw std::domain_error("Cannot take the logarithm of a number divisible by the modulus.\n"); } for (Z i = 0; i < m_root_p; ++i) { auto it = m_lookup_table.find(k); if (it != m_lookup_table.end()) { Z log_b_arg = (i*m_root_p + it->second) % m_p; // This computation of the modular exponentiation is laughably quick relative to computing the discrete log. // Why not put an assert here for our peace of mind? BOOST_ASSERT(arg == boost::multiprecision::powm(m_base, log_b_arg, m_p)); return log_b_arg; } ami = (ami*m_inv_base_pow_m) % m_p; k = k * ami % m_p; } // never should get here . . . BOOST_ASSERT(false); // Suppress compiler warnings. return -1; } private: Z m_p; Z m_base; Z m_root_p; Z m_inv_base_pow_m; std::unordered_map m_lookup_table; }; }} #endif