Files
boost_intrusive/include/boost/intrusive/rbtree_algorithms.hpp

1161 lines
44 KiB
C++
Raw Normal View History

2007-05-04 21:22:02 +00:00
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Olaf Krzikalla 2004-2006.
// (C) Copyright Ion Gaztanaga 2006-2007.
2007-05-04 21:22:02 +00:00
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
// The internal implementation of red-black trees is based on that of SGI STL
// stl_tree.h file:
//
// Copyright (c) 1996,1997
// Silicon Graphics Computer Systems, Inc.
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. Silicon Graphics makes no
// representations about the suitability of this software for any
// purpose. It is provided "as is" without express or implied warranty.
//
//
// Copyright (c) 1994
// Hewlett-Packard Company
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. Hewlett-Packard Company makes no
// representations about the suitability of this software for any
// purpose. It is provided "as is" without express or implied warranty.
#ifndef BOOST_INTRUSIVE_RBTREE_ALGORITHMS_HPP
#define BOOST_INTRUSIVE_RBTREE_ALGORITHMS_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/assert.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <cstddef>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/interprocess/detail/utilities.hpp>
2007-05-04 21:22:02 +00:00
namespace boost {
namespace intrusive {
//! rbtree_algorithms provides basic algorithms to manipulate
//! nodes forming a red-black tree. The insertion and deletion algorithms are
//! based on those in Cormen, Leiserson, and Rivest, Introduction to Algorithms
//! (MIT Press, 1990), except that
//!
//! (1) the header node is maintained with links not only to the root
//! but also to the leftmost node of the tree, to enable constant time
//! begin(), and to the rightmost node of the tree, to enable linear time
//! performance when used with the generic set algorithms (set_union,
//! etc.);
//!
//! (2) when a node being deleted has two children its successor node is
//! relinked into its place, rather than copied, so that the only
//! pointers invalidated are those referring to the deleted node.
2007-05-04 21:22:02 +00:00
//!
//! rbtree_algorithms is configured with a NodeTraits class, which capsulates the
//! information about the node to be manipulated. NodeTraits must support the
//! following interface:
//!
//! <b>Typedefs</b>:
//!
//! <tt>node</tt>: The type of the node that forms the circular list
//!
//! <tt>node_ptr</tt>: A pointer to a node
//!
//! <tt>const_node_ptr</tt>: A pointer to a const node
//!
//! <tt>color</tt>: The type that can store the color of a node
//!
//! <b>Static functions</b>:
//!
//! <tt>static node_ptr get_parent(const_node_ptr n);</tt>
//!
//! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt>
//!
//! <tt>static node_ptr get_left(const_node_ptr n);</tt>
//!
//! <tt>static void set_left(node_ptr n, node_ptr left);</tt>
//!
//! <tt>static node_ptr get_right(const_node_ptr n);</tt>
//!
//! <tt>static void set_right(node_ptr n, node_ptr right);</tt>
//!
//! <tt>static color get_color(const_node_ptr n);</tt>
//!
//! <tt>static void set_color(node_ptr n, color c);</tt>
//!
//! <tt>static color black();</tt>
//!
//! <tt>static color red();</tt>
template<class NodeTraits>
class rbtree_algorithms
{
/// @cond
private:
typedef typename NodeTraits::node node;
/// @endcond
public:
typedef typename NodeTraits::node_ptr node_ptr;
typedef typename NodeTraits::const_node_ptr const_node_ptr;
typedef typename NodeTraits::color color;
//! This type is the information that will be filled by insert_unique_check
struct insert_commit_data
{
insert_commit_data()
: link_left(false)
, node(0)
{}
bool link_left;
node_ptr node;
};
//! <b>Requires</b>: header1 and header2 must be the header nodes
//! of two trees.
//!
//! <b>Effects</b>: Swaps two trees. After the function header1 will contain
//! links to the second tree and header2 will have links to the first tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static void swap_tree(node_ptr header1, node_ptr header2)
{
if(header1 == header2)
return;
node_ptr tmp;
//Parent swap
tmp = NodeTraits::get_parent(header1);
NodeTraits::set_parent(header1, NodeTraits::get_parent(header2));
NodeTraits::set_parent(header2, tmp);
//Left swap
tmp = NodeTraits::get_left(header1);
NodeTraits::set_left(header1, NodeTraits::get_left(header2));
NodeTraits::set_left(header2, tmp);
//Right swap
tmp = NodeTraits::get_right(header1);
NodeTraits::set_right(header1, NodeTraits::get_right(header2));
NodeTraits::set_right(header2, tmp);
//Now test parent
node_ptr h1_parent(NodeTraits::get_parent(header1));
if(h1_parent){
NodeTraits::set_parent(h1_parent, header1);
}
else{
NodeTraits::set_left(header1, header1);
NodeTraits::set_right(header1, header1);
}
node_ptr h2_parent(NodeTraits::get_parent(header2));
if(NodeTraits::get_parent(header2)){
NodeTraits::set_parent(h2_parent, header2);
}
else{
NodeTraits::set_left(header2, header2);
NodeTraits::set_right(header2, header2);
}
}
//! <b>Requires</b>: node is a tree node but not the header.
//!
//! <b>Effects</b>: Unlinks the node and rebalances the tree.
//!
//! <b>Complexity</b>: Average complexity is constant time.
//!
//! <b>Throws</b>: Nothing.
static void unlink_and_rebalance(node_ptr node)
{
if(NodeTraits::get_parent(node)){
node_ptr x = NodeTraits::get_parent(node);
while(!is_header(x))
x = NodeTraits::get_parent(x);
erase(x, node);
}
}
//! <b>Requires</b>: header is the header of a tree.
//!
//! <b>Effects</b>: Unlinks the leftmost node from the tree, and
//! updates the header link to the new leftmost node.
//!
//! <b>Complexity</b>: Average complexity is constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function breaks the tree and the tree can
//! only be used for more unlink_leftmost_without_rebalance calls.
//! This function is normally used to achieve a step by step
//! controlled destruction of the tree.
static node_ptr unlink_leftmost_without_rebalance(node_ptr header)
{
node_ptr leftmost = NodeTraits::get_left(header);
if (leftmost == header)
return 0;
node_ptr leftmost_parent(NodeTraits::get_parent(leftmost));
node_ptr leftmost_right (NodeTraits::get_right(leftmost));
bool is_root = leftmost_parent == header;
if (leftmost_right){
NodeTraits::set_parent(leftmost_right, leftmost_parent);
NodeTraits::set_left(header, minimum(leftmost_right));
if (is_root)
NodeTraits::set_parent(header, leftmost_right);
else
NodeTraits::set_left(NodeTraits::get_parent(header), leftmost_right);
}
else if (is_root){
NodeTraits::set_parent(header, 0);
NodeTraits::set_left(header, header);
NodeTraits::set_right(header, header);
}
else{
NodeTraits::set_left(leftmost_parent, 0);
NodeTraits::set_left(header, leftmost_parent);
}
return leftmost;
}
//! <b>Requires</b>: node is a node of the tree or an node initialized
//! by init(...).
//!
//! <b>Effects</b>: Returns true if the node is initialized by init().
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
static bool unique(const_node_ptr node)
{ return NodeTraits::get_parent(node) == 0; }
//! <b>Requires</b>: node is a node of the tree but it's not the header.
//!
//! <b>Effects</b>: Returns the number of nodes of the subtree.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
static std::size_t count(const_node_ptr node)
{
std::size_t result = 1;
if(NodeTraits::get_left(node))
result += count(NodeTraits::get_left(node));
if(NodeTraits::get_right(node))
result += count(NodeTraits::get_right(node));
return result;
}
//! <b>Requires</b>: p is a node from the tree except the header.
//!
//! <b>Effects</b>: Returns the next node of the tree.
//!
//! <b>Complexity</b>: Average constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr next_node(node_ptr p)
{
node_ptr p_right(NodeTraits::get_right(p));
if(p_right){
return minimum(p_right);
}
else {
node_ptr x = NodeTraits::get_parent(p);
while(p == NodeTraits::get_right(x)){
p = x;
x = NodeTraits::get_parent(x);
}
return NodeTraits::get_right(p) != x ? x : uncast(p);
}
}
//! <b>Requires</b>: p is a node from the tree except the leftmost node.
//!
//! <b>Effects</b>: Returns the previous node of the tree.
//!
//! <b>Complexity</b>: Average constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr prev_node(node_ptr p)
{
if(is_header(p)){
return NodeTraits::get_right(p); // p is header, return rightmost
}
else if(NodeTraits::get_left(p)){
return maximum(NodeTraits::get_left(p));
}
else {
node_ptr x = NodeTraits::get_parent(p);
while(p == NodeTraits::get_left(x)){
p = x;
x = NodeTraits::get_parent(x);
}
return x;
}
}
//! <b>Requires</b>: node must not be part of any tree.
//!
//! <b>Effects</b>: After the function unique(node) == true.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
static void init(node_ptr node)
{
NodeTraits::set_parent(node, 0);
NodeTraits::set_left(node, 0);
NodeTraits::set_right(node, 0);
NodeTraits::set_color(node, NodeTraits::black());
};
//! <b>Requires</b>: node must not be part of any tree.
//!
//! <b>Effects</b>: Initializes the header to represent an empty tree.
//! unique(header) == true.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
static void init_header(node_ptr header)
{
NodeTraits::set_parent(header, 0);
NodeTraits::set_left(header, header);
NodeTraits::set_right(header, header);
NodeTraits::set_color(header, NodeTraits::red());
};
//! <b>Requires</b>: header must be the header of a tree, z a node
//! of that tree and z != header.
//!
//! <b>Effects</b>: Erases node "z" from the tree with header "header".
//!
//! <b>Complexity</b>: Amortized constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr erase(node_ptr header, node_ptr z)
{
node_ptr y(z);
node_ptr x(0);
node_ptr x_parent(0);
node_ptr y_left(NodeTraits::get_left(y));
node_ptr y_right(NodeTraits::get_right(y));
if(!y_left){
x = y_right; // x might be null.
}
else if(!y_right){ // z has exactly one non-null child. y == z.
x = y_left; // x is not null.
}
else{
y = minimum (y_right);
x = NodeTraits::get_right(y); // x might be null.
}
if(y != z){
// relink y in place of z. y is z's successor
NodeTraits::set_parent(NodeTraits::get_left(z), y);
NodeTraits::set_left(y, NodeTraits::get_left(z));
if(y != NodeTraits::get_right(z)){
x_parent = NodeTraits::get_parent(y);
if(x)
NodeTraits::set_parent(x, NodeTraits::get_parent(y));
NodeTraits::set_left(NodeTraits::get_parent(y), x); // y must be a child of left_
NodeTraits::set_right(y, NodeTraits::get_right(z));
NodeTraits::set_parent(NodeTraits::get_right(z), y);
}
else
x_parent = y;
replace_own (z, y, header);
NodeTraits::set_parent(y, NodeTraits::get_parent(z));
color tmp(NodeTraits::get_color(y));
tmp = NodeTraits::get_color(y);
NodeTraits::set_color(y, NodeTraits::get_color(z));
NodeTraits::set_color(z, tmp);
// std::swap(NodeTraits::get_color(y), NodeTraits::get_color(z));
y = z;
// y now points to node to be actually deleted
}
else { // y == z
x_parent = NodeTraits::get_parent(y);
if(x)
NodeTraits::set_parent(x, NodeTraits::get_parent(y));
replace_own (z, x, header);
if(NodeTraits::get_left(header) == z){
NodeTraits::set_left(header, NodeTraits::get_right(z) == 0 ? // z->get_left() must be null also
NodeTraits::get_parent(z) : // makes leftmost == header if z == root
minimum (x));
}
if(NodeTraits::get_right(header) == z){
NodeTraits::set_right(header, NodeTraits::get_left(z) == 0 ? // z->get_right() must be null also
NodeTraits::get_parent(z) : // makes rightmost == header if z == root
maximum(x));
}
}
if(NodeTraits::get_color(y) != NodeTraits::red()){
while(x != NodeTraits::get_parent(header) && (x == 0 || NodeTraits::get_color(x) == NodeTraits::black())){
if(x == NodeTraits::get_left(x_parent)){
node_ptr w = NodeTraits::get_right(x_parent);
if(NodeTraits::get_color(w) == NodeTraits::red()){
NodeTraits::set_color(w, NodeTraits::black());
NodeTraits::set_color(x_parent, NodeTraits::red());
rotate_left(x_parent, header);
w = NodeTraits::get_right(x_parent);
}
if((NodeTraits::get_left(w) == 0 || NodeTraits::get_color(NodeTraits::get_left(w)) == NodeTraits::black()) &&
(NodeTraits::get_right(w) == 0 || NodeTraits::get_color(NodeTraits::get_right(w)) == NodeTraits::black())){
NodeTraits::set_color(w, NodeTraits::red());
x = x_parent;
x_parent = NodeTraits::get_parent(x_parent);
}
else {
if(NodeTraits::get_right(w) == 0 || NodeTraits::get_color(NodeTraits::get_right(w)) == NodeTraits::black()){
NodeTraits::set_color(NodeTraits::get_left(w), NodeTraits::black());
NodeTraits::set_color(w, NodeTraits::red());
rotate_right(w, header);
w = NodeTraits::get_right(x_parent);
}
NodeTraits::set_color(w, NodeTraits::get_color(x_parent));
NodeTraits::set_color(x_parent, NodeTraits::black());
if(NodeTraits::get_right(w))
NodeTraits::set_color(NodeTraits::get_right(w), NodeTraits::black());
rotate_left(x_parent, header);
break;
}
}
else {
// same as above, with right_ <-> left_.
node_ptr w = NodeTraits::get_left(x_parent);
if(NodeTraits::get_color(w) == NodeTraits::red()){
NodeTraits::set_color(w, NodeTraits::black());
NodeTraits::set_color(x_parent, NodeTraits::red());
rotate_right(x_parent, header);
w = NodeTraits::get_left(x_parent);
}
if((NodeTraits::get_right(w) == 0 || NodeTraits::get_color(NodeTraits::get_right(w)) == NodeTraits::black()) &&
(NodeTraits::get_left(w) == 0 || NodeTraits::get_color(NodeTraits::get_left(w)) == NodeTraits::black())){
NodeTraits::set_color(w, NodeTraits::red());
x = x_parent;
x_parent = NodeTraits::get_parent(x_parent);
}
else {
if(NodeTraits::get_left(w) == 0 || NodeTraits::get_color(NodeTraits::get_left(w)) == NodeTraits::black()){
NodeTraits::set_color(NodeTraits::get_right(w), NodeTraits::black());
NodeTraits::set_color(w, NodeTraits::red());
rotate_left(w, header);
w = NodeTraits::get_left(x_parent);
}
NodeTraits::set_color(w, NodeTraits::get_color(x_parent));
NodeTraits::set_color(x_parent, NodeTraits::black());
if(NodeTraits::get_left(w))
NodeTraits::set_color(NodeTraits::get_left(w), NodeTraits::black());
rotate_right(x_parent, header);
break;
}
}
}
if(x)
NodeTraits::set_color(x, NodeTraits::black());
}
return y;
}
//! <b>Requires</b>: "cloner" must be a function
//! object taking a node_ptr and returning a new cloned node of it. "destroyer" must
//! take a node_ptr and shouldn't throw.
//!
//! <b>Effects</b>: First empties target tree calling
//! <tt>void destroyer::operator()(node_ptr)</tt> for every node of the tree
//! except the header.
//!
//! Then, duplicates the entire tree pointed by "source_header" cloning each
//! source node with <tt>node_ptr Cloner::operator()(node_ptr)</tt> to obtain
//! the nodes of the target tree. If "cloner" throws, the cloned target nodes
//! are destroyed using <tt>void destroyer(node_ptr)</tt>.
//!
//! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
//! number of elements of tree target tree when calling this function.
//!
//! <b>Throws</b>: If cloner functor throws. If this happens target nodes are destroyed.
template <class Cloner, class Destroyer>
static void clone_tree
(const_node_ptr source_header, node_ptr target_header, Cloner cloner, Destroyer destroyer)
{
if(!unique(target_header)){
node_ptr p;
while((p = unlink_leftmost_without_rebalance(target_header))){
destroyer(p);
}
}
node_ptr source_root = NodeTraits::get_parent(source_header);
if(!source_root)
return;
NodeTraits::set_parent
( target_header
, deep_clone_node(source_root, target_header, cloner, destroyer));
NodeTraits::set_left(target_header, minimum(NodeTraits::get_parent(target_header)));
NodeTraits::set_right(target_header, maximum(NodeTraits::get_parent(target_header)));
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an node_ptr to the first element that is
//! not less than "key" according to "comp" or "header" if that element does
//! not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr lower_bound
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
{
node_ptr y = uncast(header);
node_ptr x = NodeTraits::get_parent(header);
while(x){
if(comp(x, key)){
x = NodeTraits::get_right(x);
}
else {
y = x;
x = NodeTraits::get_left(x);
}
}
return y;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an node_ptr to the first element that is greater
//! than "key" according to "comp" or "header" if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr upper_bound
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
{
node_ptr y = uncast(header);
node_ptr x = NodeTraits::get_parent(header);
while(x){
if(comp(key, x)){
y = x;
x = NodeTraits::get_left(x);
}
else {
x = NodeTraits::get_right(x);
}
}
return y;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an node_ptr to the element that is equivalent to
//! "key" according to "comp" or "header" if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr find
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
{
node_ptr end = uncast(header);
node_ptr y = lower_bound(header, key, comp);
return (y == end || comp(key, y)) ? end : y;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
//! all elements that are equivalent to "key" according to "comp" or an
//! empty range that indicates the position where those elements would be
//! if they there are no equivalent elements.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, node_ptr> equal_range
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
{
node_ptr y = uncast(header);
node_ptr x = NodeTraits::get_parent(header);
while(x){
if(comp(x, key)){
x = NodeTraits::get_right(x);
}
else if(comp(key, x)){
y = x;
x = NodeTraits::get_left(x);
}
else{
node_ptr xu(x), yu(y);
y = x, x = NodeTraits::get_left(x);
xu = NodeTraits::get_right(xu);
while(x){
if(comp(x, key)){
x = NodeTraits::get_right(x);
}
else {
y = x;
x = NodeTraits::get_left(x);
}
}
while(xu){
if(comp(key, xu)){
yu = xu;
xu = NodeTraits::get_left(xu);
}
else {
xu = NodeTraits::get_right(xu);
}
}
return std::pair<node_ptr,node_ptr>(y, yu);
}
}
return std::pair<node_ptr,node_ptr>(y, y);
}
//! <b>Requires</b>: "h" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs.
//!
//! <b>Effects</b>: Inserts new_node into the tree before the upper bound
//! according to "comp".
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal_upper_bound
(node_ptr h, node_ptr new_node, NodePtrCompare comp)
{
node_ptr y(h);
node_ptr x(NodeTraits::get_parent(y));
while(x){
y = x;
x = comp(new_node, x) ?
NodeTraits::get_left(x) : NodeTraits::get_right(x);
}
bool link_left = (y == h) ||
comp(new_node, y);
link_and_balance(new_node, y, link_left, h);
return new_node;
}
//! <b>Requires</b>: "h" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs.
//!
//! <b>Effects</b>: Inserts new_node into the tree before the lower bound
//! according to "comp".
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal_lower_bound
(node_ptr h, node_ptr new_node, NodePtrCompare comp)
{
node_ptr y(h);
node_ptr x(NodeTraits::get_parent(y));
while(x){
y = x;
x = !comp(x, new_node) ?
NodeTraits::get_left(x) : NodeTraits::get_right(x);
}
bool link_left = (y == h) ||
!comp(y, new_node);
link_and_balance(new_node, y, link_left, h);
return new_node;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs. "hint" is node from
//! the "header"'s tree.
//!
//! <b>Effects</b>: Inserts new_node into the tree, using "hint" as a hint to
//! where it will be inserted. If "hint" is the upper_bound
//! the insertion takes constant time (two comparisons in the worst case).
//!
//! <b>Complexity</b>: Logarithmic in general, but it is amortized
//! constant time if new_node is inserted immediately before "hint".
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal
(node_ptr header, node_ptr hint, node_ptr new_node, NodePtrCompare comp)
{
if(hint == header || !comp(hint, new_node)){
node_ptr prev(hint);
if(hint == NodeTraits::get_left(header) ||
!comp(new_node, (prev = prev_node(hint)))){
bool link_left = unique(header) || !NodeTraits::get_left(hint);
link_and_balance(new_node, link_left ? hint : prev, link_left, header);
return new_node;
}
else{
return insert_equal_upper_bound(header, new_node, comp);
}
}
else{
return insert_equal_lower_bound(header, new_node, comp);
}
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares KeyType with a node_ptr.
//!
//! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
//! tree according to "comp" and obtains the needed information to realize
//! a constant-time node insertion if there is no equivalent node.
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing a node_ptr to the already present node
//! and false. If there is not equivalent key can be inserted returns true
//! in the returned pair's boolean and fills "commit_data" that is meant to
//! be used with the "insert_commit" function to achieve a constant-time
//! insertion function.
//!
//! <b>Complexity</b>: Average complexity is at most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a node is expensive and the user does not want to have two equivalent nodes
//! in the tree: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! node that is used to impose the order is much cheaper to construct
//! than the node and this function offers the possibility to use that part
//! to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the node and use
//! "insert_commit" to insert the node in constant-time. This gives a total
//! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
//!
//! "commit_data" remains valid for a subsequent "insert_unique_commit" only
//! if no more objects are inserted or erased from the set.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, bool> insert_unique_check
(const_node_ptr header, const KeyType &key
,KeyNodePtrCompare comp, insert_commit_data &commit_data)
{
node_ptr h(uncast(header));
node_ptr y(h);
node_ptr x(NodeTraits::get_parent(y));
node_ptr prev(0);
//Find the upper bound, cache the previous value and if we should
//store it in the left or right node
bool left_child = true;
while(x){
y = x;
x = (left_child = comp(key, x)) ?
NodeTraits::get_left(x) : (prev = y, NodeTraits::get_right(x));
}
//Since we've found the upper bound there is no other value with the same key if:
// - There is no previous node
// - The previous node is less than the key
if(!prev || comp(prev, key)){
commit_data.link_left = left_child;
commit_data.node = y;
return std::pair<node_ptr, bool>(node_ptr(), true);
}
//If the previous value was not less than key, it means that it's equal
//(because we've checked the upper bound)
else{
return std::pair<node_ptr, bool>(prev, false);
}
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares KeyType with a node_ptr.
//! "hint" is node from the "header"'s tree.
//!
//! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
//! tree according to "comp" using "hint" as a hint to where it should be
//! inserted and obtains the needed information to realize
//! a constant-time node insertion if there is no equivalent node.
//! If "hint" is the upper_bound the function has constant time
//! complexity (two comparisons in the worst case).
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing a node_ptr to the already present node
//! and false. If there is not equivalent key can be inserted returns true
//! in the returned pair's boolean and fills "commit_data" that is meant to
//! be used with the "insert_commit" function to achieve a constant-time
//! insertion function.
//!
//! <b>Complexity</b>: Average complexity is at most logarithmic, but it is
//! amortized constant time if new_node should be inserted immediately before "hint".
//!
//! <b>Throws</b>: If "comp" throws.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a node is expensive and the user does not want to have two equivalent nodes
//! in the tree: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! node that is used to impose the order is much cheaper to construct
//! than the node and this function offers the possibility to use that part
//! to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the node and use
//! "insert_commit" to insert the node in constant-time. This gives a total
//! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
//!
//! "commit_data" remains valid for a subsequent "insert_unique_commit" only
//! if no more objects are inserted or erased from the set.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, bool> insert_unique_check
(const_node_ptr header, node_ptr hint, const KeyType &key
,KeyNodePtrCompare comp, insert_commit_data &commit_data)
{
//hint must be bigger than the key
if(hint == header || comp(key, hint)){
node_ptr prev = hint;
//The previous value should be less than the key
if(prev == NodeTraits::get_left(header) || comp((prev = prev_node(hint)), key)){
commit_data.link_left = unique(header) || !NodeTraits::get_left(hint);
commit_data.node = commit_data.link_left ? hint : prev;
return std::pair<node_ptr, bool>(node_ptr(), true);
}
else{
return insert_unique_check(header, key, comp, commit_data);
//return std::pair<node_ptr, bool>(prev, false);
}
}
//The hint was wrong, use hintless insert
else{
return insert_unique_check(header, key, comp, commit_data);
}
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! "commit_data" must have been obtained from a previous call to
//! "insert_unique_check". No objects should have been inserted or erased
//! from the set between the "insert_unique_check" that filled "commit_data"
//! and the call to "insert_commit".
//!
//!
//! <b>Effects</b>: Inserts new_node in the set using the information obtained
//! from the "commit_data" that a previous "insert_check" filled.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been
//! previously executed to fill "commit_data". No value should be inserted or
//! erased between the "insert_check" and "insert_commit" calls.
static void insert_unique_commit
(node_ptr header, node_ptr new_value, const insert_commit_data &commit_data)
{
//Check if commit_data has not been initialized by a insert_unique_check call.
BOOST_ASSERT(commit_data.node != 0);
link_and_balance(new_value, commit_data.node, commit_data.link_left, header);
}
/// @cond
private:
static node_ptr uncast(const_node_ptr ptr)
{
return node_ptr(const_cast<node*>(detail::get_pointer(ptr)));
2007-05-04 21:22:02 +00:00
}
//! <b>Requires</b>: z is the node to be inserted, par is its parent,
//! left, indicates if z should be a left node of par and header is the header
//! of the tree.
//!
//! <b>Effects</b>: If left is true links z as a left child of par or as a right
//! child otherwise. After that rebalances the tree.
//!
//! <b>Complexity</b>: Average constant time.???
//!
//! <b>Throws</b>: Nothing.
static void link_and_balance (node_ptr z, node_ptr par, bool left, node_ptr header)
{
if(par == header){
NodeTraits::set_parent(header, z);
NodeTraits::set_right(header, z);
NodeTraits::set_left(header, z);
}
else if(left){
NodeTraits::set_left(par, z);
if(par == NodeTraits::get_left(header))
NodeTraits::set_left(header, z);
}
else{
NodeTraits::set_right(par, z);
if(par == NodeTraits::get_right(header))
NodeTraits::set_right(header, z);
}
NodeTraits::set_parent(z, par);
NodeTraits::set_right(z, 0);
NodeTraits::set_left(z, 0);
rebalance(z, header);
}
//! <b>Requires</b>: p is a node of a tree but not the header.
//!
//! <b>Effects</b>: Returns the minimum node of the subtree starting at p.
//!
//! <b>Complexity</b>: Logarithmic to the size of the subtree.
//!
//! <b>Throws</b>: Nothing.
static node_ptr minimum (node_ptr p)
{
for(node_ptr p_left = NodeTraits::get_left(p)
;p_left
;p_left = NodeTraits::get_left(p)){
p = p_left;
}
return p;
}
//! <b>Requires</b>: p is a node of a tree but not the header.
//!
//! <b>Effects</b>: Returns the maximum node of the subtree starting at p.
//!
//! <b>Complexity</b>: Logarithmic to the size of the subtree.
//!
//! <b>Throws</b>: Nothing.
static node_ptr maximum(node_ptr p)
{
for(node_ptr p_right = NodeTraits::get_right(p)
;p_right
;p_right = NodeTraits::get_right(p)){
p = p_right;
}
return p;
}
//! <b>Requires</b>: p is a node of a tree.
//!
//! <b>Effects</b>: Returns true if p is the header of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static bool is_header(const_node_ptr p)
{
return NodeTraits::get_color(p) == NodeTraits::red() &&
NodeTraits::get_parent(NodeTraits::get_parent(p)) == p;
}
//! <b>Requires</b>: p is a node of a tree.
//!
//! <b>Effects</b>: Returns true if p is a left child.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static bool is_left_child(node_ptr p)
{ return NodeTraits::get_left(NodeTraits::get_parent(p)) == p; }
//! <b>Requires</b>: p is a node of a tree.
//!
//! <b>Effects</b>: Returns true if p is a right child.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static bool is_right_child (node_ptr p)
{ return NodeTraits::get_right(NodeTraits::get_parent(p)) == p; }
static void replace_own (node_ptr own, node_ptr x, node_ptr header)
{
if(NodeTraits::get_parent(header) == own)
NodeTraits::set_parent(header, x);
else if(is_left_child(own))
NodeTraits::set_left(NodeTraits::get_parent(own), x);
else
NodeTraits::set_right(NodeTraits::get_parent(own), x);
}
static void rotate_left(node_ptr p, node_ptr header)
{
node_ptr x = NodeTraits::get_right(p);
NodeTraits::set_right(p, NodeTraits::get_left(x));
if(NodeTraits::get_left(x) != 0)
NodeTraits::set_parent(NodeTraits::get_left(x), p);
NodeTraits::set_parent(x, NodeTraits::get_parent(p));
replace_own (p, x, header);
NodeTraits::set_left(x, p);
NodeTraits::set_parent(p, x);
}
static void rotate_right(node_ptr p, node_ptr header)
{
node_ptr x(NodeTraits::get_left(p));
node_ptr x_right(NodeTraits::get_right(x));
NodeTraits::set_left(p, x_right);
if(x_right)
NodeTraits::set_parent(x_right, p);
NodeTraits::set_parent(x, NodeTraits::get_parent(p));
replace_own (p, x, header);
NodeTraits::set_right(x, p);
NodeTraits::set_parent(p, x);
}
static void rebalance(node_ptr p, node_ptr header)
{
NodeTraits::set_color(p, NodeTraits::red());
while(p != NodeTraits::get_parent(header) && NodeTraits::get_color(NodeTraits::get_parent(p)) == NodeTraits::red()){
node_ptr p_parent(NodeTraits::get_parent(p));
node_ptr p_parent_parent(NodeTraits::get_parent(p_parent));
if(is_left_child(p_parent)){
node_ptr x = NodeTraits::get_right(p_parent_parent);
if(x && NodeTraits::get_color(x) == NodeTraits::red()){
NodeTraits::set_color(p_parent, NodeTraits::black());
NodeTraits::set_color(p_parent_parent, NodeTraits::red());
NodeTraits::set_color(x, NodeTraits::black());
p = p_parent_parent;
}
else {
if(!is_left_child(p)){
p = p_parent;
rotate_left(p, header);
}
node_ptr new_p_parent(NodeTraits::get_parent(p));
node_ptr new_p_parent_parent(NodeTraits::get_parent(new_p_parent));
NodeTraits::set_color(new_p_parent, NodeTraits::black());
NodeTraits::set_color(new_p_parent_parent, NodeTraits::red());
rotate_right(new_p_parent_parent, header);
}
}
else{
node_ptr x = NodeTraits::get_left(p_parent_parent);
if(x && NodeTraits::get_color(x) == NodeTraits::red()){
NodeTraits::set_color(p_parent, NodeTraits::black());
NodeTraits::set_color(p_parent_parent, NodeTraits::red());
NodeTraits::set_color(x, NodeTraits::black());
p = p_parent_parent;
}
else{
if(is_left_child(p)){
p = p_parent;
rotate_right(p, header);
}
node_ptr new_p_parent(NodeTraits::get_parent(p));
node_ptr new_p_parent_parent(NodeTraits::get_parent(new_p_parent));
NodeTraits::set_color(new_p_parent, NodeTraits::black());
NodeTraits::set_color(new_p_parent_parent, NodeTraits::red());
rotate_left(new_p_parent_parent, header);
}
}
}
NodeTraits::set_color(NodeTraits::get_parent(header), NodeTraits::black());
}
template <class Cloner, class Destroyer>
static node_ptr deep_clone_node
(node_ptr source_root, node_ptr new_parent, Cloner cloner, Destroyer destroyer)
{
// structural copy. source_root and new_parent must be non-null.
node_ptr top = cloner(source_root);
NodeTraits::set_parent(top, new_parent);
BOOST_TRY {
if(NodeTraits::get_right(source_root)){
NodeTraits::set_right
(top, deep_clone_node(NodeTraits::get_right(source_root), top
,cloner, destroyer));
}
new_parent = top;
source_root = NodeTraits::get_left(source_root);
while(source_root){
node_ptr y = cloner(source_root);
NodeTraits::set_left(new_parent, y);
NodeTraits::set_parent(y, new_parent);
if(NodeTraits::get_right(source_root)){
NodeTraits::set_right(y, deep_clone_node(NodeTraits::get_right(source_root), y
,cloner, destroyer));
}
new_parent = y;
source_root = NodeTraits::get_left(source_root);
}
}
BOOST_CATCH(...){
deep_destroy_node(top, destroyer);
BOOST_RETHROW;
}
BOOST_CATCH_END
return top;
}
template<class Destroyer>
static void deep_destroy_node(node_ptr x, Destroyer destroyer)
{
// erase without rebalancing
while(x){
deep_destroy_node(NodeTraits::get_right(x), destroyer);
node_ptr y = NodeTraits::get_left(x);
destroyer(x);
x = y;
}
}
/// @endcond
};
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_RBTREE_ALGORITHMS_HPP