Files
boost_intrusive/include/boost/intrusive/list.hpp

1213 lines
43 KiB
C++
Raw Normal View History

2007-05-04 21:22:02 +00:00
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Olaf Krzikalla 2004-2006.
// (C) Copyright Ion Gaztanaga 2006-2007
2007-05-04 21:22:02 +00:00
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_LIST_HPP
#define BOOST_INTRUSIVE_LIST_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/utility.hpp>
#include <boost/assert.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/list_hook.hpp>
#include <boost/intrusive/circular_list_algorithms.hpp>
#include <boost/intrusive/detail/pointer_to_other.hpp>
#include <boost/intrusive/linking_policy.hpp>
#include <boost/static_assert.hpp>
#include <iterator>
#include <algorithm>
#include <functional>
#include <cstddef>
#include <iterator>
namespace boost {
namespace intrusive {
//! The class template list is an intrusive container that mimics most of the
//! interface of std::list as described in the C++ standard.
//!
//! The template parameter ValueTraits is called "value traits". It stores
//! information and operations about the type to be stored in the container.
//!
//! If the user specifies ConstantTimeSize as "true", a member of type SizeType
//! will be embedded in the class, that will keep track of the number of stored objects.
//! This will allow constant-time O(1) size() member, instead of default O(N) size.
template< class ValueTraits
, bool ConstantTimeSize //= true
, class SizeType //= std::size_t
>
class list
: private detail::size_holder<ConstantTimeSize, SizeType>
, private ValueTraits::node_traits::node
{
/// @cond
private:
typedef list<ValueTraits, ConstantTimeSize, SizeType> this_type;
typedef typename ValueTraits::node_traits node_traits;
typedef detail::size_holder<ConstantTimeSize, SizeType> size_traits;
//! This class is
//! non-copyable
list (const list&);
//! This class is
//! non-assignable
list &operator =(const list&);
/// @endcond
//Public typedefs
public:
typedef ValueTraits value_traits;
typedef typename ValueTraits::value_type value_type;
typedef typename ValueTraits::pointer pointer;
typedef typename ValueTraits::const_pointer const_pointer;
typedef typename std::iterator_traits<pointer>::reference reference;
typedef typename std::iterator_traits<const_pointer>::reference const_reference;
typedef typename std::iterator_traits<pointer>::difference_type difference_type;
typedef SizeType size_type;
typedef detail::list_iterator<value_type, ValueTraits> iterator;
typedef detail::list_iterator<const value_type, ValueTraits> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
/// @cond
private:
typedef typename node_traits::node node;
typedef typename node_traits::node_ptr node_ptr;
typedef typename node_traits::const_node_ptr const_node_ptr;
typedef circular_list_algorithms<node_traits> node_algorithms;
enum { safemode_or_autounlink =
(int)ValueTraits::linking_policy == (int)auto_unlink ||
(int)ValueTraits::linking_policy == (int)safe_link };
//Constant-time size is incompatible with auto-unlink hooks!
BOOST_STATIC_ASSERT(!(ConstantTimeSize && ((int)ValueTraits::linking_policy == (int)auto_unlink)));
//Const cast emulation for smart pointers
static node_ptr uncast(const_node_ptr ptr)
{
//return node_ptr(detail::get_pointer(ptr)));
return const_cast<node*>(detail::get_pointer(ptr));
2007-05-04 21:22:02 +00:00
}
node_ptr get_root_node()
{ return node_ptr(&static_cast<node&>(*this)); }
const_node_ptr get_root_node() const
{ return const_node_ptr(&static_cast<const node&>(*this)); }
/// @endcond
public:
//! <b>Effects</b>: constructs an empty list.
//!
//! <b>Complexity</b>: Constant
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks).
list()
{
size_traits::set_size(size_type(0));
node_algorithms::init(get_root_node());
}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue of type value_type.
//!
//! <b>Effects</b>: Constructs a list equal to the range [first,last).
//!
//! <b>Complexity</b>: Linear in std::distance(b, e). No copy constructors are called.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks).
template<class Iterator>
list(Iterator b, Iterator e)
{
size_traits::set_size(size_type(0));
node_algorithms::init(get_root_node());
this->insert(this->end(), b, e);
}
//! <b>Effects</b>: If it's not a safe-mode or an auto-unlink value_type
//! the destructor does nothing
//! (ie. no code is generated). Otherwise it detaches all elements from this.
//! In this case the objects in the list are not deleted (i.e. no destructors
//! are called), but the hooks according to the ValueTraits template parameter
//! are set to their default value.
//!
//! <b>Complexity</b>: Linear to the number of elements in the list, if
//! it's a safe-mode or auto-unlink value . Otherwise constant.
~list()
{
if(safemode_or_autounlink){
this->clear();
}
}
//! <b>Requires</b>: value must be an lvalue.
//!
//! <b>Effects</b>: Inserts the value in the back of the list.
//! No copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void push_back(reference value)
{
node_ptr to_insert = ValueTraits::to_node_ptr(value);
if(safemode_or_autounlink)
BOOST_ASSERT(node_algorithms::unique(to_insert));
node_algorithms::link_before(get_root_node(), to_insert);
size_traits::increment();
}
//! <b>Requires</b>: value must be an lvalue.
//!
//! <b>Effects</b>: Inserts the value in the front of the list.
//! No copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void push_front(reference value)
{
node_ptr to_insert = ValueTraits::to_node_ptr(value);
if(safemode_or_autounlink)
BOOST_ASSERT(node_algorithms::unique(to_insert));
node_algorithms::link_before(node_traits::get_next(get_root_node()), to_insert);
size_traits::increment();
}
//! <b>Effects</b>: Erases the last element of the list.
//! No destructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the erased element.
void pop_back()
{
node_ptr to_erase = node_traits::get_previous(get_root_node());
node_algorithms::unlink(to_erase);
size_traits::decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
}
//! <b>Requires</b>: Destroyer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the last element of the list.
//! No destructors are called.
//! Destroyer::operator()(pointer) is called for the removed element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators to the erased element.
template<class Destroyer>
void pop_back_and_destroy(Destroyer destroyer)
{
node_ptr to_erase = node_traits::get_previous(get_root_node());
node_algorithms::unlink(to_erase);
size_traits::decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
destroyer(ValueTraits::to_value_ptr(to_erase));
}
//! <b>Effects</b>: Erases the first element of the list.
//! No destructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the erased element.
void pop_front()
{
node_ptr to_erase = node_traits::get_next(get_root_node());
node_algorithms::unlink(to_erase);
size_traits::decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
}
//! <b>Requires</b>: Destroyer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the first element of the list.
//! No destructors are called.
//! Destroyer::operator()(pointer) is called for the removed element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators to the erased element.
template<class Destroyer>
void pop_front_and_destroy(Destroyer destroyer)
{
node_ptr to_erase = node_traits::get_next(get_root_node());
node_algorithms::unlink(to_erase);
size_traits::decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
destroyer(ValueTraits::to_value_ptr(to_erase));
}
//! <b>Effects</b>: Returns a reference to the first element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front()
{ return *ValueTraits::to_value_ptr(node_traits::get_next(get_root_node())); }
//! <b>Effects</b>: Returns a const_reference to the first element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const
{ return *ValueTraits::to_value_ptr(uncast(node_traits::get_next(get_root_node()))); }
//! <b>Effects</b>: Returns a reference to the last element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference back()
{ return *ValueTraits::to_value_ptr(node_traits::get_previous(get_root_node())); }
//! <b>Effects</b>: Returns a const_reference to the last element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference back() const
{ return *ValueTraits::to_value_ptr(uncast(node_traits::get_previous(get_root_node()))); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return iterator(node_traits::get_next(get_root_node())); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return cbegin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const
{ return const_iterator(node_traits::get_next(get_root_node())); }
//! <b>Effects</b>: Returns an iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return iterator(get_root_node()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return cend(); }
//! <b>Effects</b>: Returns a constant iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const
{ return const_iterator(uncast(get_root_node())); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return reverse_iterator(end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const
{ return crbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const
{ return const_reverse_iterator(end()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return reverse_iterator(begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return crend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const
{ return const_reverse_iterator(begin()); }
//! <b>Precondition</b>: end_iterator must be a valid end iterator
//! of list.
//!
//! <b>Effects</b>: Returns a const reference to the list associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static list &container_from_end_iterator(iterator end_iterator)
{ return static_cast<list&>(*end_iterator.pointed_node()); }
//! <b>Precondition</b>: end_iterator must be a valid end const_iterator
//! of list.
//!
//! <b>Effects</b>: Returns a const reference to the list associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static const list &container_from_end_iterator(const_iterator end_iterator)
{ return static_cast<const list&>(*end_iterator.pointed_node()); }
//! <b>Effects</b>: Returns the number of the elements contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements contained in the list.
//! if ConstantTimeSize is false. Constant time otherwise.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
size_type size() const
{
if(ConstantTimeSize)
return size_traits::get_size();
else
return node_algorithms::count(get_root_node()) - 1;
}
//! <b>Effects</b>: Returns true if the list contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
bool empty() const
{ return node_algorithms::unique(get_root_node()); }
//! <b>Effects</b>: Swaps the elements of x and *this.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void swap(list& other)
{
node_algorithms::swap_nodes(get_root_node(), other.get_root_node());
if(ConstantTimeSize){
size_type backup = size_traits::get_size();
size_traits::set_size(other.get_size());
other.set_size(backup);
}
}
//! <b>Effects</b>: Moves backwards all the elements, so that the first
//! element becomes the second, the second becomes the third...
//! the last element becomes the first one.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of shifts.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void shift_backwards(size_type n = 1)
{
//Null shift, nothing to do
if(!n) return;
node_ptr root = get_root_node();
node_ptr last = node_traits::get_previous(root);
//size() == 0 or 1, nothing to do
if(last == node_traits::get_next(root)) return;
node_algorithms::unlink(root);
//Now get the new last node
while(n--){
last = node_traits::get_previous(last);
}
node_algorithms::link_after(last, root);
}
//! <b>Effects</b>: Moves forward all the elements, so that the second
//! element becomes the first, the third becomes the second...
//! the first element becomes the last one.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of shifts.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void shift_forward(size_type n = 1)
{
//Null shift, nothing to do
if(!n) return;
node_ptr root = get_root_node();
node_ptr first = node_traits::get_next(root);
//size() == 0 or 1, nothing to do
if(first == node_traits::get_previous(root)) return;
node_algorithms::unlink(root);
//Now get the new first node
while(n--){
first = node_traits::get_next(first);
}
node_algorithms::link_before(first, root);
}
//! <b>Effects</b>: Erases the element pointed by i of the list.
//! No destructors are called.
//!
//! <b>Returns</b>: the first element remaining beyond the removed element,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased element.
iterator erase(iterator i)
{
iterator erase = i;
++i;
node_ptr to_erase = erase.pointed_node();
node_algorithms::unlink(to_erase);
size_traits::decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
return i;
}
//! <b>Requires</b>: first and last must be valid iterator to elements in *this.
//!
//! <b>Effects</b>: Erases the element range pointed by b and e
//! No destructors are called.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements erased if it's a safe-mode
//! or auto-unlink value. Constant time otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased elements.
iterator erase(iterator b, iterator e)
{
if(safemode_or_autounlink || ConstantTimeSize){
while(b != e){
b = this->erase(b);
}
return b;
}
else{
node_algorithms::unlink(b.pointed_node(), e.pointed_node());
return e;
}
}
//! <b>Requires</b>: Destroyer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the element pointed by i of the list.
//! No destructors are called.
//! Destroyer::operator()(pointer) is called for the removed element.
//!
//! <b>Returns</b>: the first element remaining beyond the removed element,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators to the erased element.
template <class Destroyer>
iterator erase_and_destroy(iterator i, Destroyer destroyer)
{
iterator erase = i;
++i;
node_ptr to_erase = erase.pointed_node();
node_algorithms::unlink(to_erase);
size_traits::decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
destroyer(ValueTraits::to_value_ptr(to_erase));
return i;
}
//! <b>Requires</b>: Destroyer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the element range pointed by b and e
//! No destructors are called.
//! Destroyer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements erased.
//!
//! <b>Note</b>: Invalidates the iterators to the erased elements.
template <class Destroyer>
iterator erase_and_destroy(iterator b, iterator e, Destroyer destroyer)
{
while(b != e){
b = this->erase_and_destroy(b, destroyer);
}
return b;
}
//! <b>Effects</b>: Erases all the elements of the container.
//! No destructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements of the list.
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the erased elements.
void clear()
{
if(safemode_or_autounlink){
this->erase(this->begin(), this->end());
}
else{
node_algorithms::init(get_root_node());
size_traits::set_size(size_type(0));
}
}
//! <b>Requires</b>: Destroyer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements of the container.
//! No destructors are called.
//! Destroyer::operator()(pointer) is called for the removed elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements of the list.
//!
//! <b>Note</b>: Invalidates the iterators to the erased elements.
template <class Destroyer>
void clear_and_destroy(Destroyer destroyer)
{ this->erase_and_destroy(this->begin(), this->end(), destroyer); }
//! <b>Requires</b>: Destroyer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements from *this
//! calling Destroyer::operator()(pointer), clones all the
//! elements from src calling Cloner::operator()(const_reference )
//! and inserts them on *this.
//!
//! If cloner throws, all cloned elements are unlinked and destroyed
//! calling Destroyer::operator()(pointer).
//!
//! <b>Complexity</b>: Linear to erased plus inserted elements.
//!
//! <b>Throws</b>: If cloner throws. Basic guarantee.
template <class Cloner, class Destroyer>
void clone_from(const list &src, Cloner cloner, Destroyer destroyer)
{
this->clear_and_destroy(destroyer);
try{
const_iterator b(src.begin()), e(src.end());
for(; b != e; ++b){
this->push_back(*cloner(*b));
}
}
catch(...){
clear_and_destroy(destroyer);
throw;
}
}
//! <b>Requires</b>: value must be an lvalue and p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts the value before the position pointed by p.
//!
//! <b>Returns</b>: An iterator to the inserted element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time. No copy constructors are called.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
iterator insert(iterator p, reference value)
{
node_ptr to_insert = ValueTraits::to_node_ptr(value);
if(safemode_or_autounlink)
BOOST_ASSERT(node_algorithms::unique(to_insert));
node_algorithms::link_before(p.pointed_node(), to_insert);
size_traits::increment();
return iterator(to_insert);
}
//! <b>Requires</b>: Dereferencing iterator must yield
//! an lvalue of type value_type and p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts the range pointed by b and e before the position p.
//! No copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements inserted.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
template<class Iterator>
void insert(iterator p, Iterator b, Iterator e)
{
for (; b != e; ++b)
this->insert(p, *b);
}
//! <b>Requires</b>: Dereferencing iterator must yield
//! an lvalue of type value_type.
//!
//! <b>Effects</b>: Clears the list and inserts the range pointed by b and e.
//! No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements inserted plus
//! linear to the elements contained in the list if it's a safe-mode
//! or auto-unlink value.
//! Linear to the number of elements inserted in the list otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements.
template<class Iterator>
void assign(Iterator b, Iterator e)
{
this->clear();
this->insert(this->end(), b, e);
}
//! <b>Requires</b>: Destroyer::operator()(pointer) shouldn't throw.
//!
//! <b>Requires</b>: Dereferencing iterator must yield
//! an lvalue of type value_type.
//!
//! <b>Effects</b>: Clears the list and inserts the range pointed by b and e.
//! No destructors or copy constructors are called.
//! Destroyer::operator()(pointer) is called for the removed elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements inserted plus
//! linear to the elements contained in the list.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements.
template<class Iterator, class Destroyer>
void destroy_and_assign(Destroyer destroyer, Iterator b, Iterator e)
{
this->clear(destroyer);
this->insert(this->end(), b, e);
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Transfers all the elements of list x to this list, before the
//! the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of
//! this list. Iterators of this list and all the references are not invalidated.
void splice(iterator p, list& x)
{
if(!x.empty()){
node_algorithms::transfer
(p.pointed_node(), x.begin().pointed_node(), x.end().pointed_node());
size_traits::set_size(size_traits::get_size() + x.get_size());
x.set_size(size_type(0));
}
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//! new_ele must point to an element contained in list x.
//!
//! <b>Effects</b>: Transfers the value pointed by new_ele, from list x to this list,
//! before the the element pointed by p. No destructors or copy constructors are called.
//! If p == new_ele or p == ++new_ele, this function is a null operation.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(iterator p, list&x, iterator new_ele)
{
node_algorithms::transfer(p.pointed_node(), new_ele.pointed_node());
x.decrement();
size_traits::increment();
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//! start and end must point to elements contained in list x.
//!
//! <b>Effects</b>: Transfers the range pointed by start and end from list x to this list,
//! before the the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements transferred
//! if ConstantTimeSize is true. Constant-time otherwise.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(iterator p, list&x, iterator start, iterator end)
{
if(start != end){
if(ConstantTimeSize){
size_type increment = std::distance(start, end);
node_algorithms::transfer(p.pointed_node(), start.pointed_node(), end.pointed_node());
size_traits::set_size(size_traits::get_size() + increment);
x.set_size(x.get_size() - increment);
}
else{
node_algorithms::transfer(p.pointed_node(), start.pointed_node(), end.pointed_node());
}
}
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//! start and end must point to elements contained in list x.
//! n == std::distance(start, end)
//!
//! <b>Effects</b>: Transfers the range pointed by start and end from list x to this list,
//! before the the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(iterator p, list&x, iterator start, iterator end, difference_type n)
{
if(n){
if(ConstantTimeSize){
BOOST_ASSERT(n == std::distance(start, end));
node_algorithms::transfer(p.pointed_node(), start.pointed_node(), end.pointed_node());
size_traits::set_size(size_traits::get_size() + n);
x.set_size(x.get_size() - n);
}
else{
node_algorithms::transfer(p.pointed_node(), start.pointed_node(), end.pointed_node());
}
}
}
//! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
//! The sort is stable, that is, the relative order of equivalent elements is preserved.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or std::less<value_type> throws. Basic guarantee.
//!
//! <b>Notes</b>: Iterators and references are not invalidated.
//!
//! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
//! is the list's size.
void sort()
{ sort(std::less<value_type>()); }
//! <b>Requires</b>: p must be a comparison function that induces a strict weak ordering
//!
//! <b>Effects</b>: This function sorts the list *this according to p. The sort is
//! stable, that is, the relative order of equivalent elements is preserved.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the predicate throws. Basic guarantee.
//!
//! <b>Notes</b>: This won't throw if list_base_hook<>::value_traits or
//! list_member_hook::::value_traits are used as value traits.
//! Iterators and references are not invalidated.
//!
//! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
//! is the list's size.
template<class Predicate>
void sort(Predicate p)
{
if(node_traits::get_next(get_root_node())
!= node_traits::get_previous(get_root_node())){
list carry;
list counter[64];
int fill = 0;
while(!this->empty()){
carry.splice(carry.begin(), *this, this->begin());
int i = 0;
while(i < fill && !counter[i].empty()) {
carry.merge(counter[i++], p);
}
carry.swap(counter[i]);
if(i == fill)
++fill;
}
for (int i = 1; i < fill; ++i)
counter[i].merge(counter[i-1], p);
this->swap(counter[fill-1]);
}
}
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this according to std::less<value_type>. The merge is stable;
//! that is, if an element from *this is equivalent to one from x, then the element
//! from *this will precede the one from x.
//!
//! <b>Throws</b>: If std::less<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
//!
//! <b>Note</b>: Iterators and references are not invalidated
void merge(list& x)
{ merge(x, std::less<value_type>()); }
//! <b>Requires</b>: p must be a comparison function that induces a strict weak
//! ordering and both *this and x must be sorted according to that ordering
//! The lists x and *this must be distinct.
//!
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this. The merge is stable; that is, if an element from *this is
//! equivalent to one from x, then the element from *this will precede the one from x.
//!
//! <b>Throws</b>: If the predicate throws. Basic guarantee.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
template<class Predicate>
void merge(list& x, Predicate p)
{
iterator e = this->end();
iterator bx = x.begin();
iterator ex = x.end();
for (iterator b = this->begin(); b != e; ++b) {
size_type n(0);
iterator ix(bx);
while(ix != ex && p(*ix, *b)){
++ix; ++n;
}
this->splice(b, x, bx, ix, n);
bx = ix;
}
//Now transfer the rest at the end of the container
this->splice(e, x);
}
//! <b>Effects</b>: Reverses the order of elements in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: This function is linear time.
//!
//! <b>Note</b>: Iterators and references are not invalidated
void reverse()
{ node_algorithms::reverse(get_root_node()); }
//! <b>Effects</b>: Removes all the elements that compare equal to value.
//! No destructors are called.
//!
//! <b>Throws</b>: If std::equal_to<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
void remove(const_reference value)
{ remove_if(detail::equal_to_value<const_reference>(value)); }
//! <b>Requires</b>: Destroyer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes all the elements that compare equal to value.
//! Destroyer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If std::equal_to<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Destroyer>
void remove_and_destroy(const_reference value, Destroyer destroyer)
{ remove_and_destroy_if(detail::equal_to_value<const_reference>(value), destroyer); }
//! <b>Effects</b>: Removes all the elements for which a specified
//! predicate is satisfied. No destructors are called.
//!
//! <b>Throws</b>: If pred throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() calls to the predicate.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Pred>
void remove_if(Pred pred)
{ remove_and_destroy_if(pred, detail::null_destroyer()); }
//! <b>Requires</b>: Destroyer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes all the elements for which a specified
//! predicate is satisfied.
//! Destroyer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If pred throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Pred, class Destroyer>
void remove_and_destroy_if(Pred pred, Destroyer destroyer)
{
iterator first = begin();
iterator last = end();
while(first != last) {
iterator next = first;
++next;
if(pred(*first)){
pointer p = first.operator->();
this->erase(first);
destroyer(p);
}
first = next;
}
}
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that are equal from the list. No destructors are called.
//!
//! <b>Throws</b>: If std::equal_to<value_type throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1 comparisons calls to pred()).
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
void unique()
{ unique_and_destroy(std::equal_to<value_type>(), detail::null_destroyer()); }
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that satisfy some binary predicate from the list.
//! No destructors are called.
//!
//! <b>Throws</b>: If pred throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1 comparisons equality comparisons).
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class BinaryPredicate>
void unique(BinaryPredicate pred)
{ unique_and_destroy(pred, detail::null_destroyer()); }
//! <b>Requires</b>: Destroyer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that are equal from the list.
//! Destroyer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If std::equal_to<value_type throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1) comparisons equality comparisons.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Destroyer>
void unique_and_destroy(Destroyer destroyer)
{ unique_and_destroy(std::equal_to<value_type>(), destroyer); }
//! <b>Requires</b>: Destroyer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that satisfy some binary predicate from the list.
//! Destroyer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If pred throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1) comparisons equality comparisons.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class BinaryPredicate, class Destroyer>
void unique_and_destroy(BinaryPredicate pred, Destroyer destroyer)
{
if(!this->empty()){
iterator first = begin();
iterator after = first;
++after;
while(after != this->end()){
if(pred(*first, *after)){
pointer p = after.operator->();
after = erase(after);
destroyer(p);
}
else{
first = after++;
}
}
}
}
//! <b>Requires</b>: value must be a reference to a value inserted in a list.
//!
//! <b>Effects</b>: This function returns a const_iterator pointing to the element
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
static iterator iterator_to(reference value)
{
BOOST_ASSERT(!node_algorithms::unique(ValueTraits::to_node_ptr(value)));
return iterator(ValueTraits::to_node_ptr(value));
}
//! <b>Requires</b>: value must be a const reference to a value inserted in a list.
//!
//! <b>Effects</b>: This function returns an iterator pointing to the element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
static const_iterator iterator_to(const_reference value)
{
BOOST_ASSERT(!node_algorithms::unique(ValueTraits::to_node_ptr(const_cast<reference> (value))));
return const_iterator(ValueTraits::to_node_ptr(const_cast<reference> (value)));
}
};
template <class V, bool C, class S>
inline bool operator==(const list<V, C, S>& x, const list<V, C, S>& y)
{
if(C && x.size() != y.size()){
return false;
}
typedef typename list<V, C, S>::const_iterator const_iterator;
const_iterator end1 = x.end();
const_iterator i1 = x.begin();
const_iterator i2 = y.begin();
if(C){
while (i1 != end1 && *i1 == *i2) {
++i1;
++i2;
}
return i1 == end1;
}
else{
const_iterator end2 = y.end();
while (i1 != end1 && i2 != end2 && *i1 == *i2) {
++i1;
++i2;
}
return i1 == end1 && i2 == end2;
}
}
template <class V, bool C, class S>
inline bool operator<(const list<V, C, S>& x,
const list<V, C, S>& y)
{ return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
template <class V, bool C, class S>
inline bool operator!=(const list<V, C, S>& x, const list<V, C, S>& y)
{ return !(x == y); }
template <class V, bool C, class S>
inline bool operator>(const list<V, C, S>& x, const list<V, C, S>& y)
{ return y < x; }
template <class V, bool C, class S>
inline bool operator<=(const list<V, C, S>& x, const list<V, C, S>& y)
{ return !(y < x); }
template <class V, bool C, class S>
inline bool operator>=(const list<V, C, S>& x, const list<V, C, S>& y)
{ return !(x < y); }
template <class V, bool C, class S>
inline void swap(list<V, C, S>& x, list<V, C, S>& y)
{ x.swap(y); }
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_LIST_HPP