///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Olaf Krzikalla 2004-2006. // (C) Copyright Ion Gaztanaga 2006-2007 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_SLIST_HPP #define BOOST_INTRUSIVE_SLIST_HPP #include #include #ifndef BOOST_INTRUSIVE_DISABLE_EXCEPTION_HANDLING #include #endif #include #include #include #include #include #include #include #include namespace boost { namespace intrusive { //! The class template slist is an intrusive container, that encapsulates //! a singly-linked list. You can use such a list to squeeze the last bit //! of performance from your application. Unfortunately, the little gains //! come with some huge drawbacks. A lot of member functions can't be //! implemented as efficiently as for standard containers. To overcome //! this limitation some other member functions with rather unusual semantics //! have to be introduced. //! //! The template parameter ValueTraits is called "value traits". It stores //! information and operations about the type to be stored in the container. //! //! If the user specifies ConstantTimeSize as "true", a member of type SizeType //! will be embedded in the class, that will keep track of the number of stored objects. //! This will allow constant-time O(1) size() member, instead of default O(N) size. //! //! The iterators of slist are forward iterators. slist provides a static //! function called "previous" to compute the previous iterator of a given iterator. //! This function has linear complexity. To improve the usability esp. with //! the '*_after' functions, ++end() == begin() and previous(begin()) == end() //! are defined. In addition, whenever you have an end iterator, 'after this //! iterator' means 'at the beginning of the list'. To improve the self-documentation //! a "before_begin()" function is defined, returning the end() iterator. template < class ValueTraits , bool ConstantTimeSize //= true , class SizeType //= std::size_t > class slist : private detail::size_holder { /// @cond private: typename ValueTraits::node_traits::node root_; typedef slist this_type; typedef typename ValueTraits::node_traits node_traits; typedef detail::size_holder size_traits; //! This class is //! non-copyable slist (const slist&); //! This class is //! non-asignable slist &operator =(const slist&); /// @endcond //Public typedefs public: typedef ValueTraits value_traits; typedef typename ValueTraits::value_type value_type; typedef typename ValueTraits::pointer pointer; typedef typename ValueTraits::const_pointer const_pointer; typedef typename std::iterator_traits::reference reference; typedef typename std::iterator_traits::reference const_reference; typedef typename std::iterator_traits::difference_type difference_type; typedef SizeType size_type; typedef detail::slist_iterator iterator; typedef detail::slist_iterator const_iterator; /// @cond private: typedef typename node_traits::node node; typedef typename boost::pointer_to_other ::type node_ptr; typedef typename boost::pointer_to_other ::type const_node_ptr; typedef circular_slist_algorithms node_algorithms; enum { safemode_or_autounlink = (int)ValueTraits::linking_policy == (int)auto_unlink || (int)ValueTraits::linking_policy == (int)safe_link }; //Constant-time size is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(ConstantTimeSize && ((int)ValueTraits::linking_policy == (int)auto_unlink))); node_ptr get_root_node() { return node_ptr(&root_); } const_node_ptr get_root_node() const { return const_node_ptr(&root_); } static node_ptr uncast(const_node_ptr ptr) { return node_ptr(const_cast(detail::get_pointer(ptr))); } static iterator previous_node(iterator beg, iterator i) { return iterator (node_algorithms::get_previous_node(beg.pointed_node(), i.pointed_node())); } static const_iterator previous_node(const_iterator beg, const_iterator i) { return const_iterator (node_algorithms::get_previous_node(beg.pointed_node(), i.pointed_node())); } /// @endcond public: //! Effects: constructs an empty list. //! //! Complexity: Constant //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks). slist() { size_traits::set_size(size_type(0)); node_algorithms::init(this->get_root_node()); } //! Requires: Dereferencing iterator must yield an lvalue of type value_type. //! //! Effects: Constructs a list equal to [first,last). //! //! Complexity: Linear in std::distance(b, e). No copy constructors are called. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks). template slist(Iterator b, Iterator e) { size_traits::set_size(size_type(0)); node_algorithms::init(this->get_root_node()); insert_after(before_begin(), b, e); } //! Effects: If it's a safe-mode //! or auto-unlink value, the destructor does nothing //! (ie. no code is generated). Otherwise it detaches all elements from this. //! In this case the objects in the list are not deleted (i.e. no destructors //! are called), but the hooks according to the ValueTraits template parameter //! are set to their default value. //! //! Complexity: Linear to the number of elements in the list, if //! it's a safe-mode or auto-unlink value. Otherwise constant. ~slist() { this->clear(); } //! Effects: Erases all the elements of the container. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements of the list. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Note: Invalidates the iterators (but not the references) to the erased elements. void clear() { if(safemode_or_autounlink){ this->erase_after(this->before_begin(), this->end()); } else{ node_algorithms::init(this->get_root_node()); size_traits::set_size(size_type(0)); } } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements of the container //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements of the list. //! //! Note: Invalidates the iterators to the erased elements. template void clear_and_dispose(Disposer disposer) { this->erase_after_and_dispose(this->before_begin(), this->end(), disposer); } //! Requires: value must be an lvalue. //! //! Effects: Inserts the value in the front of the list. //! No copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. void push_front(reference value) { node_ptr to_insert = ValueTraits::to_node_ptr(value); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); node_algorithms::link_after(this->get_root_node(), to_insert); size_traits::increment(); } //! Effects: Erases the first element of the list. //! No destructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators (but not the references) to the erased element. void pop_front() { node_ptr to_erase = node_traits::get_next(this->get_root_node()); node_algorithms::unlink_after(this->get_root_node()); size_traits::decrement(); if(safemode_or_autounlink) node_algorithms::init(to_erase); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the first element of the list. //! Disposer::operator()(pointer) is called for the removed element. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators to the erased element. template void pop_front_and_dispose(Disposer disposer) { node_ptr to_erase = node_traits::get_next(this->get_root_node()); this->pop_front(); disposer(ValueTraits::to_value_ptr(to_erase)); } //! Effects: Returns a reference to the first element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. reference front() { return *ValueTraits::to_value_ptr(node_traits::get_next(this->get_root_node())); } //! Effects: Returns a const_reference to the first element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference front() const { return *ValueTraits::to_value_ptr(uncast(node_traits::get_next(this->get_root_node()))); } //! Effects: Returns an iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return iterator (node_traits::get_next(this->get_root_node())); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return const_iterator (node_traits::get_next(this->get_root_node())); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return const_iterator (node_traits::get_next(this->get_root_node())); } //! Effects: Returns an iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return iterator (this->get_root_node()); } //! Effects: Returns a const_iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return const_iterator (uncast(this->get_root_node())); } //! Effects: Returns a const_iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return const_iterator (uncast(this->get_root_node())); } //! Effects: Returns an iterator that points to a position //! before the first element. Equivalent to "end()" //! //! Throws: Nothing. //! //! Complexity: Constant. iterator before_begin() { return end(); } //! Effects: Returns an iterator that points to a position //! before the first element. Equivalent to "end()" //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator before_begin() const { return end(); } //! Effects: Returns an iterator that points to a position //! before the first element. Equivalent to "end()" //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbefore_begin() const { return end(); } //! Precondition: end_iterator must be a valid end iterator //! of slist. //! //! Effects: Returns a const reference to the slist associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static slist &container_from_end_iterator(iterator end_iterator) { return *detail::parent_from_member ( detail::get_pointer(end_iterator.pointed_node()), &slist::root_); } //! Precondition: end_iterator must be a valid end const_iterator //! of slist. //! //! Effects: Returns a const reference to the slist associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static const slist &container_from_end_iterator(const_iterator end_iterator) { return *detail::parent_from_member ( detail::get_pointer(end_iterator.pointed_node()), &slist::root_); } //! Effects: Returns the number of the elements contained in the list. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements contained in the list. //! if ConstantTimeSize is false. Constant time otherwise. //! //! Note: Does not affect the validity of iterators and references. size_type size() const { if(ConstantTimeSize) return size_traits::get_size(); else return node_algorithms::count(this->get_root_node()) - 1; } //! Effects: Returns true if the list contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. bool empty() const { return node_algorithms::unique(this->get_root_node()); } //! Effects: Swaps the elements of x and *this. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements of both lists. //! //! Note: Does not affect the validity of iterators and references. void swap(slist& other) { node_algorithms::swap_nodes(this->get_root_node(), other.get_root_node()); if(ConstantTimeSize){ size_type backup = size_traits::get_size(); size_traits::set_size(other.get_size()); other.set_size(backup); } } //! Effects: Moves backwards all the elements, so that the first //! element becomes the second, the second becomes the third... //! the last element becomes the first one. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements plus the number shifts. //! //! Note: Iterators Does not affect the validity of iterators and references. void shift_backwards(size_type n = 1) { //Null shift, nothing to do if(!n) return; node_ptr root = this->get_root_node(); node_ptr first = node_traits::get_next(root); //size() == 0 or 1, nothing to do if(node_traits::get_next(first) == root) return; //Iterate until the root node is found to know where the current last node is. //If the shift count is less than the size of the list, we can also obtain //the position of the new last node after the shift. node_ptr old_last(first), next_to_it, new_last(root); size_type distance = 1; while(root != (next_to_it = node_traits::get_next(old_last))){ if(++distance > n) new_last = node_traits::get_next(new_last); old_last = next_to_it; } //If the shift was bigger or equal than the size, obtain the equivalent //forward shifts and find the new last node. if(distance <= n){ //Now find the equivalent forward shifts. //Shorcut the shift with the modulo of the size of the list size_type new_before_last_pos = (distance - (n % distance))% distance; //If the shift is a multiple of the size there is nothing to do if(!new_before_last_pos) return; for( new_last = root ; new_before_last_pos-- ; new_last = node_traits::get_next(new_last)){ //empty } } //Now unlink the root node and link it after the new last node node_algorithms::unlink_after(old_last); node_algorithms::link_after(new_last, root); } //! Effects: Moves forward all the elements, so that the second //! element becomes the first, the third becomes the second... //! the first element becomes the last one. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements plus the number shifts. //! //! Note: Does not affect the validity of iterators and references. void shift_forward(size_type n = 1) { //Null shift, nothing to do if(!n) return; node_ptr root = this->get_root_node(); node_ptr first = node_traits::get_next(root); //size() == 0 or 1, nothing to do if(node_traits::get_next(first) == root) return; bool end_found = false; node_ptr new_last; //Now find the new last node according to the shift count. //If we find the root node before finding the new last node //unlink the root, shortcut the search now that we know the size of the list //and continue. for(size_type i = 1; i <= n; ++i){ new_last = first; first = node_traits::get_next(first); if(first == root){ //Shorcut the shift with the modulo of the size of the list n %= i; i = 0; //Unlink the root node and continue the new first node search first = node_traits::get_next(first); node_algorithms::unlink_after(new_last); end_found = true; } } //If the root node has not been found in the previous loop, find it //starting in the new first node and unlink it if(!end_found){ node_algorithms::unlink_after(node_algorithms::get_previous_node(first, root)); } //Now link the root node after the new last node node_algorithms::link_after(new_last, root); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner throws. template void clone_from(const slist &src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); #ifndef BOOST_INTRUSIVE_DISABLE_EXCEPTION_HANDLING BOOST_TRY{ #endif iterator prev = this->before_begin(); const_iterator b(src.begin()), e(src.end()); for(; b != e; ++b, ++prev){ this->insert_after(prev, *cloner(*b)); } #ifndef BOOST_INTRUSIVE_DISABLE_EXCEPTION_HANDLING } BOOST_CATCH(...){ this->clear_and_dispose(disposer); BOOST_RETHROW; } BOOST_CATCH_END #endif } //! Requires: value must be an lvalue and prev_p must point to an element //! contained by the list or to end(). //! //! Effects: Inserts the value after the position pointed by prev_p. //! No copy constructor is called. //! //! Returns: An iterator to the inserted element. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. iterator insert_after(iterator prev_p, reference value) { node_ptr n = ValueTraits::to_node_ptr(value); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n)); node_algorithms::link_after(prev_p.pointed_node(), n); size_traits::increment(); return iterator (n); } //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type and prev_p must point to an element //! contained by the list or to the end node. //! //! Effects: Inserts the [first, last) //! after the position prev_p. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted. //! //! Note: Does not affect the validity of iterators and references. template void insert_after(iterator prev_p, Iterator first, Iterator last) { for (; first != last; ++first) prev_p = insert_after(prev_p, *first); } //! Requires: value must be an lvalue and p must point to an element //! contained by the list or to end(). //! //! Effects: Inserts the value before the position pointed by p. //! No copy constructor is called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before p. //! //! Note: Does not affect the validity of iterators and references. iterator insert(iterator p, reference value) { return insert_after(this->previous(p), value); } //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type and p must point to an element //! contained by the list or to the end node. //! //! Effects: Inserts the pointed by b and e //! before the position p. No copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted plus linear //! to the elements before b. //! //! Note: Does not affect the validity of iterators and references. template void insert(iterator p, Iterator b, Iterator e) { return insert_after(this->previous(p), b, e); } //! Effects: Erases the element after the element pointed by prev of //! the list. No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase_after(iterator prev) { iterator it(prev); ++it; node_ptr to_erase(it.pointed_node()); node_algorithms::unlink_after(prev.pointed_node()); size_traits::decrement(); iterator ret(++prev); if(safemode_or_autounlink) node_algorithms::init(to_erase); return ret; } //! Effects: Erases the range (before_first, last) from //! the list. No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Lineal to the elements (last - before_first). //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase_after(iterator before_first, iterator last) { iterator first; while(++(first = before_first) != last){ this->erase_after(before_first); } return last; } //! Effects: Erases the element pointed by i of the list. //! No destructors are called. //! //! Returns: the first element remaining beyond the removed element, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements before i. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase(iterator i) { return this->erase_after(this->previous(i)); } //! Requires: first and last must be valid iterator to elements in *this. //! //! Effects: Erases the range pointed by b and e. //! No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements erased plus linear //! to the elements before first. //! //! Note: Invalidates the iterators (but not the references) to the //! erased elements. iterator erase(iterator first, iterator last) { return erase_after(this->previous(first), last); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element after the element pointed by prev of //! the list. //! Disposer::operator()(pointer) is called for the removed element. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators to the erased element. template iterator erase_after_and_dispose(iterator prev, Disposer disposer) { iterator it(prev); ++it; node_ptr to_erase(it.pointed_node()); iterator ret(this->erase_after(prev)); disposer(ValueTraits::to_value_ptr(to_erase)); return ret; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range (before_first, last) from //! the list. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Lineal to the elements (last - before_first). //! //! Note: Invalidates the iterators to the erased element. template iterator erase_after_and_dispose(iterator before_first, iterator last, Disposer disposer) { iterator first; while(++(first = before_first) != last){ this->erase_after_and_dispose(before_first, disposer); } return last; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element pointed by i of the list. //! No destructors are called. //! Disposer::operator()(pointer) is called for the removed element. //! //! Returns: the first element remaining beyond the removed element, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements before i. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. template iterator erase_and_dispose(iterator i, Disposer disposer) { return this->erase_after_and_dispose(this->previous(i), disposer); } //! Requires: first and last must be valid iterator to elements in *this. //! Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range pointed by b and e. //! No destructors are called. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements erased plus linear //! to the elements before first. //! //! Note: Invalidates the iterators (but not the references) to the //! erased elements. template iterator erase_and_dispose(iterator first, iterator last, Disposer disposer) { return erase_after_and_dispose(this->previous(first), last, disposer); } //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type. //! //! Effects: Clears the list and inserts the range pointed by b and e. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted plus //! linear to the elements contained in the list if it's a safe-mode //! or auto-unlink value. //! Linear to the number of elements inserted in the list otherwise. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. template void assign(Iterator b, Iterator e) { this->clear(); this->insert_after(before_begin(), b, e); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type. //! //! Effects: Clears the list and inserts the range pointed by b and e. //! No destructors or copy constructors are called. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted plus //! linear to the elements contained in the list. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. template void dispose_and_assign(Disposer disposer, Iterator b, Iterator e) { this->clear_and_dispose(disposer); this->insert_after_and_dispose(before_begin(), b, e, disposer); } //! Requires: prev is an iterator to an element or x.end()/x.before_begin() in x. //! //! Effects: Transfers all the elements of list x to this list, after the //! the element pointed by prev. No destructors or copy constructors are called. //! //! Returns: The last element inserted of x or prev if x is empty. //! This iterator can be used as new "prev" iterator for a new splice_after call. //! that will splice new values after the previously spliced values. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements contained in x //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. iterator splice_after(iterator prev, slist &x) { if (!x.empty()){ iterator last_x(x.previous(x.end())); node_algorithms::transfer_after ( prev.pointed_node() , x.end().pointed_node() , last_x.pointed_node()); size_traits::set_size(size_traits::get_size() + x.get_size()); x.set_size(size_type(0)); return last_x; } else{ return prev; } } //! Requires: prev must point to an element contained by this list or //! to the before_begin() element. prev_ele must point to an element contained in list //! x or must be x.before_begin(). //! //! Effects: Transfers the element after prev_ele, from list x to this list, //! after the element pointed by prev. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(iterator prev, slist &x, iterator prev_ele) { iterator nxt = prev_ele; ++nxt; if (nxt != prev && prev_ele != prev){ node_algorithms::transfer_after (prev.pointed_node(), prev_ele.pointed_node(), nxt.pointed_node()); size_traits::increment(); x.decrement(); } } //! Requires: prev_pos must be a dereferenceable iterator in *this or be //! before_begin(), and before_first and before_last belong to x and //! ++before_first != x.end() && before_last != x.end(). //! //! Effects: Transfers the range (before_first, before_last] from list x to this //! list, after the element pointed by prev_pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements transferred //! if ConstantTimeSize is true. Constant-time otherwise. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(iterator prev_pos, slist &x, iterator before_first, iterator before_last) { if (before_first != before_last){ if(ConstantTimeSize){ size_type increment = std::distance(before_first, before_last); node_algorithms::transfer_after (prev_pos.pointed_node(), before_first.pointed_node(), before_last.pointed_node()); size_traits::set_size(size_traits::get_size() + increment); x.set_size(x.get_size() - increment); } else{ node_algorithms::transfer_after (prev_pos.pointed_node(), before_first.pointed_node(), before_last.pointed_node()); } } } //! Requires: prev_pos must be a dereferenceable iterator in *this or be //! before_begin(), and before_first and before_last belong to x and //! ++before_first != x.end() && before_last != x.end() and //! n == std::distance(before_first, before_last). //! //! Effects: Transfers the range (before_first, before_last] from list x to this //! list, after the element pointed by p. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(iterator prev_pos, slist &x, iterator before_first, iterator before_last, difference_type n) { if(n){ if(ConstantTimeSize){ BOOST_INTRUSIVE_INVARIANT_ASSERT(std::distance(before_first, before_last) == n); node_algorithms::transfer_after (prev_pos.pointed_node(), before_first.pointed_node(), before_last.pointed_node()); size_traits::set_size(size_traits::get_size() + n); x.set_size(x.get_size() - n); } else{ node_algorithms::transfer_after (prev_pos.pointed_node(), before_first.pointed_node(), before_last.pointed_node()); } } } //! Requires: it is an iterator to an element in x. //! //! Effects: Transfers all the elements of list x to this list, before the //! the element pointed by it. No destructors or copy constructors are called. //! //! Returns: The last element inserted of x or the previous element //! of it if x is empty. //! This iterator can be used as new "prev" iterator for a new splice call. //! that will splice new values after the previously spliced values. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements contained in x plus linear to //! the elements before it. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. iterator splice(iterator it, slist &x) { return splice_after(this->previous(it), x); } //! Requires: it p must be a valid iterator of *this. //! elem must point to an element contained in list //! x. //! //! Effects: Transfers the element elem, from list x to this list, //! before the element pointed by pos. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements before pos and before elem. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(iterator pos, slist &x, iterator elem) { return splice_after(this->previous(pos), x, this->previous(elem)); } //! Requires: pos must be a dereferenceable iterator in *this //! and first and last belong to x and first and last a valid range on x. //! //! Effects: Transfers the range [first, last) from list x to this //! list, before the element pointed by pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the sum of elements before pos, first, and last. //! Plus linear to the number of elements transferred if ConstantTimeSize is true. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(iterator pos, slist &x, iterator first, iterator last) { return splice_after(this->previous(pos), x, this->previous(first), this->previous(last)); } //! Requires: pos must be a dereferenceable iterator in *this //! and first and last belong to x and first and last a valid range on x. //! n == std::distance(first, last). //! //! Effects: Transfers the range [first, last) from list x to this //! list, before the element pointed by pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the sum of elements before pos, first, and last. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(iterator pos, slist &x, iterator first, iterator last, difference_type n) { return splice_after(this->previous(pos), x, this->previous(first), this->previous(last), n); } //! Effects: This function sorts the list *this according to std::less. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the predicate throws. Basic guarantee. //! //! Complexity: The number of comparisons is approximately N log N, where N //! is the list's size. //! //! Note: Iterators and references are not invalidated template void sort(Predicate p) { if (node_traits::get_next(node_traits::get_next(this->get_root_node())) != this->get_root_node()) { slist carry; slist counter[64]; int fill = 0; iterator last_inserted; while(!this->empty()){ last_inserted = this->begin(); carry.splice_after(carry.before_begin(), *this, this->before_begin()); int i = 0; while(i < fill && !counter[i].empty()) { last_inserted = carry.merge(counter[i++], p); } BOOST_INTRUSIVE_INVARIANT_ASSERT(counter[i].empty()); iterator last_element(previous_node(last_inserted, carry.end())); if(ConstantTimeSize){ counter[i].splice_after( counter[i].end(), carry , carry.before_begin(), last_element , carry.size()); } else{ counter[i].splice_after( counter[i].end(), carry , carry.before_begin(), last_element); } //counter[i].splice_after(counter[i].end(), carry, carry.end(), previous_node(last_inserted, carry.end())); //carry.swap(counter[i]); if(i == fill) ++fill; } for (int i = 1; i < fill; ++i) last_inserted = counter[i].merge(counter[i-1], p); //this->swap(counter[fill-1]); BOOST_INTRUSIVE_INVARIANT_ASSERT(this->empty()); iterator last_element(previous_node(last_inserted, counter[--fill].end())); if(ConstantTimeSize){ this->splice_after( end(), counter[fill], counter[fill].before_begin() , last_element, counter[fill].size()); } else{ this->splice_after( end(), counter[fill], counter[fill].before_begin() , last_element); } } } //! Requires: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or std::less throws. Basic guarantee. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references are not invalidated. void sort() { this->sort(std::less()); } //! Requires: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! Returns: An iterator to the last transferred value, end() is x is empty. //! //! Throws: If the predicate throws. Basic guarantee. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references are not invalidated. template iterator merge(slist& x, Predicate p) { iterator a(before_begin()), e(end()), ax(x.before_begin()); iterator last_inserted(e); iterator a_next; while(++(a_next = a) != e && !x.empty()) { iterator ix(ax); iterator cx; size_type n(0); while(++(cx = ix) != ax && p(*cx, *a_next)){ ++ix; ++n; } if(ax != ix){ this->splice_after(a, x, ax, ix, n); last_inserted = ix; } a = a_next; } if (!x.empty()){ last_inserted = this->splice_after(a, x); } return last_inserted; } //! Effects: This function removes all of x's elements and inserts them //! in order into *this according to std::less. The merge is stable; //! that is, if an element from *this is equivalent to one from x, then the element //! from *this will precede the one from x. //! //! Throws: if std::less throws. Basic guarantee. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references are not invalidated void merge(slist& x) { this->merge(x, std::less()); } //! Effects: Reverses the order of elements in the list. //! //! Throws: Nothing. //! //! Complexity: This function is linear to the contained elements. //! //! Note: Iterators and references are not invalidated void reverse() { node_algorithms::reverse(this->get_root_node()); } //! Effects: Removes all the elements that compare equal to value. //! No destructors are called. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. This function is //! linear time: it performs exactly size() comparisons for equality. void remove(const_reference value) { remove_if(detail::equal_to_value(value)); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes all the elements that compare equal to value. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_and_dispose(const_reference value, Disposer disposer) { remove_and_dispose_if(detail::equal_to_value(value), disposer); } //! Effects: Removes all the elements for which a specified //! predicate is satisfied. No destructors are called. //! //! Throws: If pred throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() calls to the predicate. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_if(Pred pred) { remove_and_dispose_if(pred, detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes all the elements for which a specified //! predicate is satisfied. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If pred throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_and_dispose_if(Pred pred, Disposer disposer) { iterator bcur(this->before_begin()), cur, e(this->end()); while(++(cur = bcur) != e){ if (pred(*cur)){ pointer p = cur.operator->(); this->erase_after(bcur); disposer(p); } else{ ++bcur; } } } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that are equal from the list. No destructors are called. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons calls to pred()). //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void unique() { unique_and_dispose(std::equal_to(), detail::null_disposer()); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! No destructors are called. //! //! Throws: If the predicate throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons equality comparisons. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique(BinaryPredicate pred) { unique_and_dispose(pred, detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons equality comparisons. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique_and_dispose(Disposer disposer) { unique(std::equal_to(), disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If the predicate throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons equality comparisons. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique_and_dispose(BinaryPredicate pred, Disposer disposer) { iterator end_n(end()); iterator cur(begin()); iterator cur_next; if (cur != end_n) { while(++(cur_next = cur) != end_n) { if (pred(*cur, *cur_next)){ pointer p = cur_next.operator->(); this->erase_after(cur); disposer(p); } else{ ++cur; } } } } //! Requires: value must be a reference to a value inserted in a list. //! //! Effects: This function returns a const_iterator pointing to the element //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. static iterator iterator_to(reference value) { BOOST_INTRUSIVE_INVARIANT_ASSERT (!node_algorithms::unique(ValueTraits::to_node_ptr(value))); return iterator (ValueTraits::to_node_ptr(value)); } //! Requires: value must be a const reference to a value inserted in a list. //! //! Effects: This function returns an iterator pointing to the element. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. static const_iterator iterator_to(const_reference value) { BOOST_INTRUSIVE_INVARIANT_ASSERT (!node_algorithms::unique(ValueTraits::to_node_ptr(const_cast (value)))); return const_iterator (ValueTraits::to_node_ptr(const_cast (value))); } //! Returns: The iterator to the element before i in the list. //! Returns the end-iterator, if either i is the begin-iterator or the //! list is empty. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before i. iterator previous(iterator i) { return iterator (node_algorithms::get_previous_node (before_begin().pointed_node(), i.pointed_node())); } //! Returns: The const_iterator to the element before i in the list. //! Returns the end-const_iterator, if either i is the begin-const_iterator or //! the list is empty. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before i. const_iterator previous(const_iterator i) const { return const_iterator (node_algorithms::get_previous_node (before_begin().pointed_node(), i.pointed_node())); } }; template inline bool operator==(const slist& x, const slist& y) { if(C && x.size() != y.size()){ return false; } typedef typename slist::const_iterator const_iterator; const_iterator end1 = x.end(); const_iterator i1 = x.begin(); const_iterator i2 = y.begin(); if(C){ while (i1 != end1 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1; } else{ const_iterator end2 = y.end(); while (i1 != end1 && i2 != end2 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1 && i2 == end2; } } template inline bool operator<(const slist& x, const slist& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template inline bool operator!=(const slist& x, const slist& y) { return !(x == y); } template inline bool operator>(const slist& x, const slist& y) { return y < x; } template inline bool operator<=(const slist& x, const slist& y) { return !(y < x); } template inline bool operator>=(const slist& x, const slist& y) { return !(x < y); } template inline void swap(slist& x, slist& y) { x.swap(y); } } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_SLIST_HPP