///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2006-2007 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_RBTREE_HPP #define BOOST_INTRUSIVE_RBTREE_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace intrusive { //! The class template rbtree is an intrusive red-black tree container, that //! is used to construct intrusive set and tree containers. The no-throw //! guarantee holds only, if the Compare object //! doesn't throw. template < class ValueTraits , class Compare //= std::less , bool ConstantTimeSize //= true , class SizeType //= std::size_t > class rbtree : private detail::size_holder { /// @cond private: typename ValueTraits::node_traits::node root_; typedef rbtree this_type; typedef typename ValueTraits::node_traits node_traits; typedef detail::size_holder size_traits; //noncopyable rbtree (const rbtree&); rbtree operator =(const rbtree&); /// @endcond public: typedef ValueTraits value_traits; typedef typename ValueTraits::value_type value_type; typedef typename ValueTraits::pointer pointer; typedef typename ValueTraits::const_pointer const_pointer; typedef typename std::iterator_traits::reference reference; typedef typename std::iterator_traits::reference const_reference; typedef typename std::iterator_traits::difference_type difference_type; typedef SizeType size_type; typedef value_type key_type; typedef Compare value_compare; typedef detail::rbtree_iterator iterator; typedef detail::rbtree_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; /// @cond private: typedef typename node_traits::node node; typedef typename boost::pointer_to_other ::type node_ptr; typedef typename boost::pointer_to_other ::type const_node_ptr; typedef rbtree_algorithms node_algorithms; enum { safemode_or_autounlink = (int)ValueTraits::linking_policy == (int)auto_unlink || (int)ValueTraits::linking_policy == (int)safe_link }; //Constant-time size is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(ConstantTimeSize && ((int)ValueTraits::linking_policy == (int)auto_unlink))); //Use EBO if possible typedef detail::node_plus_pred members_t; members_t members_; const Compare &priv_comp() const { return members_.second(); } Compare &priv_comp() { return members_.second(); } const node &priv_header() const { return members_.first(); } node &priv_header() { return members_.first(); } static node_ptr uncast(const_node_ptr ptr) { return node_ptr(const_cast(detail::get_pointer(ptr))); } /// @endcond public: typedef typename node_algorithms::insert_commit_data insert_commit_data; //! Effects: Constructs an empty tree. //! //! Complexity: Constant. //! //! Throws: Nothing unless the copy constructor of the Compare object throws. rbtree(Compare cmp = Compare()) : members_(cmp) { node_algorithms::init_header(&priv_header()); size_traits::set_size(size_type(0)); } //! Requires: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //! Effects: Constructs an empty tree and inserts elements from //! [b, e). //! //! Complexity: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is last ­ first. //! //! Throws: Nothing unless the copy constructor of the Compare object throws. template rbtree(bool unique, Iterator b, Iterator e, Compare cmp = Compare()) : members_(cmp) { node_algorithms::init_header(&priv_header()); size_traits::set_size(size_type(0)); if(unique) this->insert_unique(b, e); else this->insert_equal(b, e); } //! Effects: Detaches all elements from this. The objects in the set //! are not deleted (i.e. no destructors are called), but the nodes according to //! the ValueTraits template parameter are reinitialized and thus can be reused. //! //! Complexity: Linear to elements contained in *this. //! //! Throws: Nothing. ~rbtree() { this->clear(); } //! Effects: Returns an iterator pointing to the beginning of the tree. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator begin() { return iterator (node_traits::get_left(node_ptr(&priv_header()))); } //! Effects: Returns a const_iterator pointing to the beginning of the tree. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator begin() const { return cbegin(); } //! Effects: Returns a const_iterator pointing to the beginning of the tree. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cbegin() const { return const_iterator (node_traits::get_left(const_node_ptr(&priv_header()))); } //! Effects: Returns an iterator pointing to the end of the tree. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator end() { return iterator (node_ptr(&priv_header())); } //! Effects: Returns a const_iterator pointing to the end of the tree. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator end() const { return cend(); } //! Effects: Returns a const_iterator pointing to the end of the tree. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cend() const { return const_iterator (uncast(const_node_ptr(&priv_header()))); } //! Effects: Returns a reverse_iterator pointing to the beginning of the //! reversed tree. //! //! Complexity: Constant. //! //! Throws: Nothing. reverse_iterator rbegin() { return reverse_iterator(end()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed tree. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed tree. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator crbegin() const { return const_reverse_iterator(end()); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed tree. //! //! Complexity: Constant. //! //! Throws: Nothing. reverse_iterator rend() { return reverse_iterator(begin()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed tree. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed tree. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator crend() const { return const_reverse_iterator(begin()); } //! Precondition: end_iterator must be a valid end iterator //! of rbtree. //! //! Effects: Returns a const reference to the rbtree associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static rbtree &container_from_end_iterator(iterator end_iterator) { return *detail::parent_from_member ( members_t::this_from_node(detail::get_pointer(end_iterator.pointed_node())) , &rbtree::members_); } //! Precondition: end_iterator must be a valid end const_iterator //! of rbtree. //! //! Effects: Returns a const reference to the rbtree associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static const rbtree &container_from_end_iterator(const_iterator end_iterator) { return *detail::parent_from_member ( members_t::this_from_node(detail::get_pointer(end_iterator.pointed_node())) , &rbtree::members_); } //! Effects: Returns the value_compare object used by the tree. //! //! Complexity: Constant. //! //! Throws: If value_compare copy-constructor throws. value_compare value_comp() const { return priv_comp(); } //! Effects: Returns true is the container is empty. //! //! Complexity: Constant. //! //! Throws: Nothing. bool empty() const { return node_algorithms::unique(const_node_ptr(&priv_header())); } //! Effects: Returns the number of elements stored in the tree. //! //! Complexity: Linear to elements contained in *this. //! //! Throws: Nothing. size_type size() const { if(ConstantTimeSize) return size_traits::get_size(); else return empty() ? 0 : node_algorithms::count(node_traits::get_parent(const_node_ptr(&priv_header()))); } //! Effects: Swaps the contents of two multisets. //! //! Complexity: Constant. //! //! Throws: If the comparison functor's unspecified swap call throws. void swap(rbtree& other) { //This can throw using std::swap; swap(priv_comp(), priv_comp()); //These can't throw node_algorithms::swap_tree(node_ptr(&priv_header()), node_ptr(&other.priv_header())); if(ConstantTimeSize){ size_type backup = size_traits::get_size(); size_traits::set_size(other.get_size()); other.set_size(backup); } } //! Requires: value must be an lvalue //! //! Effects: Inserts value into the tree before the upper bound. //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: Nothing. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_equal_upper_bound(reference value) { detail::key_node_ptr_compare key_node_comp(priv_comp()); node_ptr to_insert(ValueTraits::to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); size_traits::increment(); return iterator(node_algorithms::insert_equal_upper_bound (node_ptr(&priv_header()), to_insert, key_node_comp)); } //! Requires: value must be an lvalue //! //! Effects: Inserts value into the tree before the lower bound. //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: Nothing. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_equal_lower_bound(reference value) { detail::key_node_ptr_compare key_node_comp(priv_comp()); node_ptr to_insert(ValueTraits::to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); size_traits::increment(); return iterator(node_algorithms::insert_equal_lower_bound (node_ptr(&priv_header()), to_insert, key_node_comp)); } //! Requires: value must be an lvalue, and "hint" must be //! a valid iterator. //! //! Effects: Inserts x into the tree, using "hint" as a hint to //! where it will be inserted. If "hint" is the upper_bound //! the insertion takes constant time (two comparisons in the worst case) //! //! Complexity: Logarithmic in general, but it is amortized //! constant time if t is inserted immediately before hint. //! //! Throws: Nothing. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_equal(const_iterator hint, reference value) { detail::key_node_ptr_compare key_node_comp(priv_comp()); node_ptr to_insert(ValueTraits::to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); size_traits::increment(); return iterator(node_algorithms::insert_equal (node_ptr(&priv_header()), hint.pointed_node(), to_insert, key_node_comp)); } //! Requires: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! Effects: Inserts a each element of a range into the tree //! before the upper bound of the key of each element. //! //! Complexity: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //! Throws: Nothing. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. template void insert_equal(Iterator b, Iterator e) { if(this->empty()){ iterator end(this->end()); for (; b != e; ++b) this->insert_equal(end, *b); } else{ for (; b != e; ++b) this->insert_equal_upper_bound(*b); } } //! Requires: value must be an lvalue //! //! Effects: Inserts value into the tree if the value //! is not already present. //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: Nothing. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. std::pair insert_unique(reference value) { insert_commit_data commit_data; std::pair ret = insert_unique_check(value, commit_data); if(!ret.second) return ret; return std::pair (insert_unique_commit(value, commit_data), true); } //! Requires: value must be an lvalue, and "hint" must be //! a valid iterator //! //! Effects: Tries to insert x into the tree, using "hint" as a hint //! to where it will be inserted. //! //! Complexity: Logarithmic in general, but it is amortized //! constant time (two comparisons in the worst case) //! if t is inserted immediately before hint. //! //! Throws: Nothing. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_unique(const_iterator hint, reference value) { insert_commit_data commit_data; std::pair ret = insert_unique_check(hint, value, commit_data); if(!ret.second) return ret.first; return insert_unique_commit(value, commit_data); } //! Requires: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! Effects: Tries to insert each element of a range into the tree. //! //! Complexity: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //! Throws: Nothing. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. template void insert_unique(Iterator b, Iterator e) { if(this->empty()){ iterator end(this->end()); for (; b != e; ++b) this->insert_unique(end, *b); } else{ for (; b != e; ++b) this->insert_unique(*b); } } std::pair insert_unique_check (const_reference value, insert_commit_data &commit_data) { return insert_unique_check(value, priv_comp(), commit_data); } template std::pair insert_unique_check (const KeyType &key, KeyValueCompare key_value_comp, insert_commit_data &commit_data) { detail::key_node_ptr_compare comp(key_value_comp); std::pair ret = (node_algorithms::insert_unique_check (node_ptr(&priv_header()), key, comp, commit_data)); return std::pair(iterator(ret.first), ret.second); } std::pair insert_unique_check (const_iterator hint, const_reference value, insert_commit_data &commit_data) { return insert_unique_check(hint, value, priv_comp(), commit_data); } template std::pair insert_unique_check (const_iterator hint, const KeyType &key ,KeyValueCompare key_value_comp, insert_commit_data &commit_data) { detail::key_node_ptr_compare comp(key_value_comp); std::pair ret = (node_algorithms::insert_unique_check (node_ptr(&priv_header()), hint.pointed_node(), key, comp, commit_data)); return std::pair(iterator(ret.first), ret.second); } iterator insert_unique_commit(reference value, const insert_commit_data &commit_data) { node_ptr to_insert(ValueTraits::to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); size_traits::increment(); node_algorithms::insert_unique_commit (node_ptr(&priv_header()), to_insert, commit_data); return iterator(to_insert); } //! Effects: Erases the element pointed to by pos. //! //! Complexity: Average complexity for erase element is constant time. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator i) { iterator ret(i); ++ret; node_ptr to_erase(i.pointed_node()); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!node_algorithms::unique(to_erase)); node_algorithms::erase(&priv_header(), to_erase); size_traits::decrement(); if(safemode_or_autounlink) node_algorithms::init(to_erase); return ret; } //! Effects: Erases the range pointed to by b end e. //! //! Complexity: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator b, iterator e) { size_type n; return private_erase(b, e, n); } //! Effects: Erases all the elements with the given value. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return this->erase(value, priv_comp()); } //! Effects: Erases all the elements with the given key. //! according to the comparison functor "comp". //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase(const KeyType& key, KeyValueCompare comp) { std::pair p = this->equal_range(key, comp); size_type n; private_erase(p.first, p.second, n); return n; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element pointed to by pos. //! Disposer::operator()(pointer) is called for the removed element. //! //! Complexity: Average complexity for erase element is constant time. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template iterator erase_and_dispose(iterator i, Disposer disposer) { node_ptr to_erase(i.pointed_node()); iterator ret(this->erase(i)); disposer(ValueTraits::to_value_ptr(to_erase)); return ret; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Complexity: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template iterator erase_and_dispose(iterator b, iterator e, Disposer disposer) { size_type n; return private_erase(b, e, n, disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase_and_dispose(const_reference value, Disposer disposer) { std::pair p = this->equal_range(value); size_type n; private_erase(p.first, p.second, n, disposer); return n; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer) { std::pair p = this->equal_range(key, comp); size_type n; private_erase(p.first, p.second, n, disposer); return n; } //! Effects: Erases all of the elements. //! //! Complexity: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { if(safemode_or_autounlink){ while(1){ node_ptr leftmost (node_algorithms::unlink_leftmost_without_rebalance (node_ptr(&priv_header()))); if(!leftmost) break; size_traits::decrement(); if(safemode_or_autounlink) node_algorithms::init(leftmost); } } else{ node_algorithms::init_header(&priv_header()); size_traits::set_size(0); } } //! Effects: Erases all of the elements calling disposer(p) for //! each node to be erased. //! Complexity: Average complexity for is at most O(log(size() + N)), //! where N is the number of elements in the container. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. Calls N times to disposer functor. template void clear_and_dispose(Disposer disposer) { while(1){ node_ptr leftmost (node_algorithms::unlink_leftmost_without_rebalance (node_ptr(&priv_header()))); if(!leftmost) break; size_traits::decrement(); if(safemode_or_autounlink) node_algorithms::init(leftmost); disposer(ValueTraits::to_value_ptr(leftmost)); } } //! Effects: Returns the number of contained elements with the given value //! //! Complexity: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given value. //! //! Throws: Nothing. size_type count(const_reference value) const { return this->count(value, priv_comp()); } //! Effects: Returns the number of contained elements with the given key //! //! Complexity: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //! Throws: Nothing. template size_type count(const KeyType &key, KeyValueCompare comp) const { std::pair ret = this->equal_range(key, comp); return std::distance(ret.first, ret.second); } //! Effects: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. iterator lower_bound(const_reference value) { return this->lower_bound(value, priv_comp()); } //! Effects: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. const_iterator lower_bound(const_reference value) const { return this->lower_bound(value, priv_comp()); } //! Effects: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template iterator lower_bound(const KeyType &key, KeyValueCompare comp) { detail::key_node_ptr_compare key_node_comp(comp); return iterator(node_algorithms::lower_bound (const_node_ptr(&priv_header()), key, key_node_comp)); } //! Effects: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template const_iterator lower_bound(const KeyType &key, KeyValueCompare comp) const { detail::key_node_ptr_compare key_node_comp(comp); return const_iterator(node_algorithms::lower_bound (const_node_ptr(&priv_header()), key, key_node_comp)); } //! Effects: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. iterator upper_bound(const_reference value) { return this->upper_bound(value, priv_comp()); } //! Effects: Returns an iterator to the first element whose //! key is greater than k according to comp or end() if that element //! does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template iterator upper_bound(const KeyType &key, KeyValueCompare comp) { detail::key_node_ptr_compare key_node_comp(comp); return iterator(node_algorithms::upper_bound (const_node_ptr(&priv_header()), key, key_node_comp)); } //! Effects: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. const_iterator upper_bound(const_reference value) const { return this->upper_bound(value, priv_comp()); } //! Effects: Returns an iterator to the first element whose //! key is greater than k according to comp or end() if that element //! does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template const_iterator upper_bound(const KeyType &key, KeyValueCompare comp) const { detail::key_node_ptr_compare key_node_comp(comp); return const_iterator(node_algorithms::upper_bound (const_node_ptr(&priv_header()), key, key_node_comp)); } //! Effects: Finds an iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. iterator find(const_reference value) { return this->find(value, priv_comp()); } //! Effects: Finds an iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template iterator find(const KeyType &key, KeyValueCompare comp) { detail::key_node_ptr_compare key_node_comp(comp); return iterator (node_algorithms::find(const_node_ptr(&priv_header()), key, key_node_comp)); } //! Effects: Finds a const_iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. const_iterator find(const_reference value) const { return this->find(value, priv_comp()); } //! Effects: Finds a const_iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template const_iterator find(const KeyType &key, KeyValueCompare comp) const { detail::key_node_ptr_compare key_node_comp(comp); return const_iterator (node_algorithms::find(const_node_ptr(&priv_header()), key, key_node_comp)); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. std::pair equal_range(const_reference value) { return this->equal_range(value, priv_comp()); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template std::pair equal_range(const KeyType &key, KeyValueCompare comp) { detail::key_node_ptr_compare key_node_comp(comp); std::pair ret (node_algorithms::equal_range(const_node_ptr(&priv_header()), key, key_node_comp)); return std::pair(iterator(ret.first), iterator(ret.second)); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. std::pair equal_range(const_reference value) const { return this->equal_range(value, priv_comp()); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template std::pair equal_range(const KeyType &key, KeyValueCompare comp) const { detail::key_node_ptr_compare key_node_comp(comp); std::pair ret (node_algorithms::equal_range(const_node_ptr(&priv_header()), key, key_node_comp)); return std::pair(const_iterator(ret.first), const_iterator(ret.second)); } template void clone_from(const rbtree &src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); if(!src.empty()){ node_algorithms::clone_tree (const_node_ptr(&src.priv_header()) ,node_ptr(&this->priv_header()) ,detail::value_to_node_cloner(cloner) ,detail::value_to_node_disposer(disposer)); size_traits::set_size(src.get_size()); } } pointer unlink_leftmost_without_rebalance() { node_ptr to_be_disposed(node_algorithms::unlink_leftmost_without_rebalance (node_ptr(&priv_header()))); if(!to_be_disposed) return 0; size_traits::decrement(); if(safemode_or_autounlink) node_algorithms::init(to_be_disposed); return ValueTraits::to_value_ptr(to_be_disposed); } //! Requires: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid iterator i belonging to the set //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. static iterator iterator_to(reference value) { return iterator (ValueTraits::to_node_ptr(value)); } //! Requires: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_iterator i belonging to the //! set that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. static const_iterator iterator_to(const_reference value) { return const_iterator (ValueTraits::to_node_ptr(const_cast (value))); } /* //! Requires: value shall not be in a tree of the appropriate type. //! //! Effects: init_node post-constructs the node data in x used by multisets of //! the appropriate type. For the accessors multiset_derived_node and multiset_member_node //! init_node has no effect, since the constructors of multiset_node_d and multiset_node_m //! have already initialized the node data. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: This function is meant to be used mainly with the member value_traits, //! where no implicit node initialization during construction occurs. static void init_node(reference value) { node_algorithms::init(node_ptr(&*ValueTraits::to_node_ptr(value))); } //! Effects: removes x from a tree of the appropriate type. It has no effect, //! if x is not in such a tree. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: This static function is only usable with the "safe mode" //! hook and non-constant time size lists. Otherwise, the user must use //! the non-static "erase(reference )" member. If the user calls //! this function with a non "safe mode" or constant time size list //! a compilation error will be issued. template static void remove_node(T& value) { //This function is only usable for safe mode hooks and non-constant //time lists. //BOOST_STATIC_ASSERT((!(safemode_or_autounlink && ConstantTimeSize))); BOOST_STATIC_ASSERT((!ConstantTimeSize)); BOOST_STATIC_ASSERT((boost::is_convertible::value)); node_ptr to_remove(ValueTraits::to_node_ptr(value)); node_algorithms::unlink_and_rebalance(to_remove); if(safemode_or_autounlink) node_algorithms::init(to_remove); } */ /// @cond private: template iterator private_erase(iterator b, iterator e, size_type &n, Disposer disposer) { for(n = 0; b != e; ++n) this->erase_and_dispose(b++, disposer); return b; } iterator private_erase(iterator b, iterator e, size_type &n) { for(n = 0; b != e; ++n) this->erase(b++); return b; } /// @endcond }; template inline bool operator==(const rbtree& x, const rbtree& y) { if(C && x.size() != y.size()){ return false; } typedef typename rbtree::const_iterator const_iterator; const_iterator end1 = x.end(); const_iterator i1 = x.begin(); const_iterator i2 = y.begin(); if(C){ while (i1 != end1 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1; } else{ const_iterator end2 = y.end(); while (i1 != end1 && i2 != end2 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1 && i2 == end2; } } template inline bool operator<(const rbtree& x, const rbtree& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template inline bool operator!=(const rbtree& x, const rbtree& y) { return !(x == y); } template inline bool operator>(const rbtree& x, const rbtree& y) { return y < x; } template inline bool operator<=(const rbtree& x, const rbtree& y) { return !(y < x); } template inline bool operator>=(const rbtree& x, const rbtree& y) { return !(x < y); } template inline void swap(rbtree& x, rbtree& y) { x.swap(y); } } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_RBTREE_HPP