
Zip Iterator

Author: David Abrahams, Thomas Becker
Contact: dave@boost-consulting.com, thomas@styleadvisor.com
Organization: Boost Consulting, Zephyr Associates, Inc.
Date: 2004-01-27
Copyright: Copyright David Abrahams and Thomas Becker 2003. All rights reserved

abstract: The zip iterator provides the ability to parallel-iterate over several controlled sequences
simultaneously. A zip iterator is constructed from a tuple of iterators. Moving the zip iterator
moves all the iterators in parallel. Dereferencing the zip iterator returns a tuple that contains
the results of dereferencing the individual iterators.

Table of Contents

zip iterator synopsis

zip iterator requirements

zip iterator models

zip iterator operations

Examples

zip iterator synopsis

template<typename IteratorTuple>
class zip iterator
{

public:
typedef /* see below */ reference;
typedef reference value type;
typedef value type* pointer;
typedef /* see below */ difference type;
typedef /* see below */ iterator category;

zip iterator();
zip iterator(IteratorTuple iterator tuple);

template<typename OtherIteratorTuple>
zip iterator(

const zip iterator<OtherIteratorTuple>& other
, typename enable if convertible<

OtherIteratorTuple
, IteratorTuple>::type* = 0 // exposition only

);

const IteratorTuple& get iterator tuple() const;

private:
IteratorTuple m iterator tuple; // exposition only

};

1

mailto:dave@boost-consulting.com
mailto:thomas@styleadvisor.com
http://www.boost-consulting.com
http://www.styleadvisor.com


template<typename IteratorTuple>
zip iterator<IteratorTuple>
make zip iterator(IteratorTuple t);

The reference member of zip iterator is the type of the tuple made of the reference types of the iterator
types in the IteratorTuple argument.

The difference type member of zip iterator is the difference type of the first of the iterator types in
the IteratorTuple argument.

The iterator category member of zip iterator is convertible to the minimum of the traversal categories
of the iterator types in the IteratorTuple argument. For example, if the zip iterator holds only vector
iterators, then iterator category is convertible to boost::random access traversal tag. If you add a list
iterator, then iterator category will be convertible to boost::bidirectional traversal tag, but no longer
to boost::random access traversal tag.

zip iterator requirements

All iterator types in the argument IteratorTuple shall model Readable Iterator.

zip iterator models

The resulting zip iterator models Readable Iterator.
The fact that the zip iterator models only Readable Iterator does not prevent you from modifying the

values that the individual iterators point to. The tuple returned by the zip iterator’s operator* is a tuple
constructed from the reference types of the individual iterators, not their value types. For example, if zip it
is a zip iterator whose first member iterator is an std::vector<double>::iterator, then the following line
will modify the value which the first member iterator of zip it currently points to:

zip it->get<0>() = 42.0;

Consider the set of standard traversal concepts obtained by taking the most refined standard traversal
concept modeled by each individual iterator type in the IteratorTuple argument.The zip iterator models
the least refined standard traversal concept in this set.

zip iterator<IteratorTuple1> is interoperable with zip iterator<IteratorTuple2> if and only if IteratorTuple1
is interoperable with IteratorTuple2.

zip iterator operations

In addition to the operations required by the concepts modeled by zip iterator, zip iterator provides the
following operations.

zip iterator();

Returns: An instance of zip iterator with m iterator tuple default constructed.

zip iterator(IteratorTuple iterator tuple);

Returns: An instance of zip iterator with m iterator tuple initialized to iterator tuple.

template<typename OtherIteratorTuple>
zip iterator(

const zip iterator<OtherIteratorTuple>& other
, typename enable if convertible<

OtherIteratorTuple
, IteratorTuple>::type* = 0 // exposition only

);

Returns: An instance of zip iterator that is a copy of other.

Requires: OtherIteratorTuple is implicitly convertible to IteratorTuple.

const IteratorTuple& get iterator tuple() const;

Returns: m iterator tuple

2



reference operator*() const;

Returns: A tuple consisting of the results of dereferencing all iterators in m iterator tuple.

zip iterator& operator++();

Effects: Increments each iterator in m iterator tuple.

Returns: *this

zip iterator& operator--();

Effects: Decrements each iterator in m iterator tuple.

Returns: *this

template<typename IteratorTuple>
zip iterator<IteratorTuple>
make zip iterator(IteratorTuple t);

Returns: An instance of zip iterator<IteratorTuple> with m iterator tuple initialized to t.

template<typename IteratorTuple>
zip iterator<IteratorTuple>
make zip iterator(IteratorTuple t);

Returns: An instance of zip iterator<IteratorTuple> with m iterator tuple initialized to t.

Examples

There are two main types of applications of the zip iterator. The first one concerns runtime efficiency: If one
has several controlled sequences of the same length that must be somehow processed, e.g., with the for each
algorithm, then it is more efficient to perform just one parallel-iteration rather than several individual iterations.
For an example, assume that vect of doubles and vect of ints are two vectors of equal length containing
doubles and ints, respectively, and consider the following two iterations:

std::vector<double>::const iterator beg1 = vect of doubles.begin();
std::vector<double>::const iterator end1 = vect of doubles.end();
std::vector<int>::const iterator beg2 = vect of ints.begin();
std::vector<int>::const iterator end2 = vect of ints.end();

std::for each(beg1, end1, func 0());
std::for each(beg2, end2, func 1());

These two iterations can now be replaced with a single one as follows:

std::for each(
boost::make zip iterator(
boost::make tuple(beg1, beg2)
),

boost::make zip iterator(
boost::make tuple(end1, end2)
),

zip func()
);

A non-generic implementation of zip func could look as follows:

struct zip func :
public std::unary function<const boost::tuple<const double&, const int&>&, void>

{
void operator()(const boost::tuple<const double&, const int&>& t) const
{
m f0(t.get<0>());
m f1(t.get<1>());

}

3



private:
func 0 m f0;
func 1 m f1;

};

The second important application of the zip iterator is as a building block to make combining iterators. A
combining iterator is an iterator that parallel-iterates over several controlled sequences and, upon dereferencing,
returns the result of applying a functor to the values of the sequences at the respective positions. This can now
be achieved by using the zip iterator in conjunction with the transform iterator.

Suppose, for example, that you have two vectors of doubles, say vect 1 and vect 2, and you need to expose
to a client a controlled sequence containing the products of the elements of vect 1 and vect 2. Rather than
placing these products in a third vector, you can use a combining iterator that calculates the products on the
fly. Let us assume that tuple multiplies is a functor that works like std::multiplies, except that it takes
its two arguments packaged in a tuple. Then the two iterators it begin and it end defined below delimit a
controlled sequence containing the products of the elements of vect 1 and vect 2:

typedef boost::tuple<
std::vector<double>::const iterator,
std::vector<double>::const iterator
> the iterator tuple;

typedef boost::zip iterator<
the iterator tuple
> the zip iterator;

typedef boost::transform iterator<
tuple multiplies<double>,
the zip iterator
> the transform iterator;

the transform iterator it begin(
the zip iterator(
the iterator tuple(
vect 1.begin(),
vect 2.begin()
)

),
tuple multiplies<double>()
);

the transform iterator it end(
the zip iterator(
the iterator tuple(
vect 1.end(),
vect 2.end()
)

),
tuple multiplies<double>()
);

The source code for these examples can be found here.

4

file:../example/zip_iterator_examples.cpp

	Table of Contents
	zip_iterator synopsis
	zip_iterator requirements
	zip_iterator models
	zip_iterator operations
	Examples

