Indirect Iterator

Author: David Abrahams, Jeremy Siek, Thomas Witt

Con

tact: dave@boost-consulting.coisiek@osl.iu.edpwitt@ive.uni-hannover.de

Organization: Boost Consulting Indiana University Open Systems LabUniversity of

Hanoverlinstitute for Transport Railway Operation and Construction

Date: 2004-01-15
Copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. All rights
reserved

abstract: indirect_iterator adapts an iterator by applying axtra dereference inside of

operator* (). For example, this iterator adaptor makes it possible to view a container of
pointers (e.glist<foo*>) as if it were a container of the pointed-to type (elgst<foo>).
indirect_iterator depends on two auxiliary traitpointee andindirect_reference

to provide support for underlying iterators whose ue_type is not an iterator.

Table of Contents

indirect_iterator Synopsis
indirect_iterator requirements
indirect_iterator models
indirect_iterator operations

Example

indirect _iterator synopsis

template <
class Iterator
, class Value = use_default

, class CategoryOrTraversal = use_default

, class Reference = use_default
, class Difference = use_default
>
class indirect_iterator

{

public:

typedef /* see below */ value_type;
typedef /* see below */ reference;
typedef /* see below */ pointer;

typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;

indirect_iterator();
indirect_iterator (Iterator x);

template <
class Iterator2, class Value2, class Category2
, class Reference2, class Difference2

mailto:dave@boost-consulting.com
mailto:jsiek@osl.iu.edu
mailto:witt@ive.uni-hannover.de
http://www.boost-consulting.com
http://www.osl.iu.edu
http://www.ive.uni-hannover.de

>
indirect_iterator (
indirect_iterator<
Iterator2, Value2, Category2, Reference2, Difference?2
> consté& y
, typename enable_if convertible<Iterator2, Iterator>::type* = 0 // exposition
)i

Iterator consté& base() const;

reference operator* () const;

indirect_iterator& operator++();

indirect_iterator& operator--{();
private:

Iterator m_iterator; // exposition
}i

The member types afndirect_iterator are defined according to the following pseudo-code, wheie
iterator_traits<Iterator>::value_type

if (Value is use_default) then

typedef remove_const<pointee<V>::type>::type value_type;
else

typedef remove_const<Value>::type value_type;

if (Reference is use_default) then
if (Value is use_default) then
typedef indirect_reference<V>::type reference;
else
typedef Value& reference;
else
typedef Reference reference;

if (Value is use_default) then

typedef pointee<V>::type* pointer;
else

typedef Value* pointer;

if (Difference is use_default)

typedef iterator_traits<Iterator>::difference_type difference_type;
else

typedef Difference difference_type;

if (CategoryOrTraversal is use_default)
typedef iterator-category (
iterator_traversal<Iterator>::type, ‘‘reference'’, ‘‘value_type*"'
) iterator_category;
else
typedef iterator-category (
CategoryOrTraversal, ‘‘reference'?, ‘‘value_type'"
) iterator_category;

4
indirect _iterator requirements

The expressiontv, wherev is an object ofiterator_traits<Iterator>::value_type, shall be valid
expression and convertible teeference. Iterator shall model the traversal concept indicated by
iterator_category. Value, Reference, andDifference shall be chosen so thatlue_type, reference
anddifference_type meet the requirements indicated tyerator_category.

[Note: there are further requirements on therator_traits<Iterator>::value_type if the value param-
eter is notuse_default, as implied by the algorithm for deducing the default for théue_t ype member.]

indirect _iterator models

In addition to the concepts indicated by iterator_category and by
iterator_traversal<indirect_iterator>::type, a specialization ofindirect_iterator models
the following concepts, Whereis an object ofiterator_traits<Iterator>::value_type:

e Readable Iterator ifeference (*v) is convertible tovalue_type.

e Writable Iterator ifreference (*v) = t is a valid expression (whereis an object of type
indirect_iterator::value_type)

e Lvalue lterator ifreference is a reference type.

indirect_iterator<X,V1,C1,R1,D1> is interoperable withindirect_iterator<y,Vv2,C2,R2,D2> if and
only if X is interoperable withy.

indirect _iterator operations

In addition to the operations required by the concepts described above, specializatiofisret:t _iterator
provide the following operations.

indirect_iterator();

Requires: Iterator must be Default Constructible.
Effects: Constructs an instance ofidirect_iterator with a default-constructedl.iterator.

indirect_iterator (Iterator x);

Effects: Constructs an instance ofidirect_iterator with m_iterator copy constructed from
X.

template <
class Iterator2, class Value2, unsigned Access, class Traversal
, class Reference2, class Difference?
>
indirect_iterator (
indirect_iterator<
Iterator2, Value2, Access, Traversal, Reference2, Difference2
> consté& y
, typename enable_if convertible<Iterator2, Iterator>::type* = 0 // exposition
)i

Requires: Iterator2 is implicitly convertible toIterator.

Effects: Constructs an instance ahdirect_iterator whosem_iterator subobject is con-
structed fromy .base ().

Iterator const& base() const;
Returns: m_iterator

reference operator* () const;
Returns: **m_iterator

indirect_iterator& operator++();

Effects: ++m_iterator
Returns: *this

indirect_iterator& operator—--{();

Effects: --m_iterator
Returns: *this

Example

This example prints an array of characters, usingji rect _iterator to access the array of characters through

an array of pointers. Nextndirect_iterator is used with theransform algorithm to copy the characters
(incremented by one) to another array. A constant indirect iterator is used for the source and a mutable indirect
iterator is used for the destination. The last part of the example prints the original array of characters, but this
time using thenake_indirect_iterator helper function.

char characters[] = "abcdefg";
const int N = sizeof (characters)/sizeof (char) - 1; // -1 since characters has a null char
char* pointers_to_chars[N]; // at the end.
for (int 1 = 0; 1 < N; ++i)
pointers_to_chars[i] = &characters[i];

// Example of using indirect_iterator

boost::indirect_iterator<char**, char>
indirect_first (pointers_to_chars), indirect_last (pointers_to_chars + N);

std::copy(indirect_first, indirect_last, std::ostream_iterator<char>(std::cout, ","));
std::cout << std::endl;

// Example of making mutable and constant indirect iterators

char mutable_characters[N];

char* pointers_to_mutable_chars([N];
for (int j = 0; j < N; ++7)

pointers_to.mutable_chars[j] = &mutable_characters[]j];

boost::indirect_iterator<char* const*> mutable_indirect_first (pointers_to_mutable_chars),
mutable_indirect_last (pointers_tomutable_chars + N);

boost::indirect_iterator<char* const*, char const> const_indirect_first (pointers_to_chars),
const_indirect_last (pointers_to_chars + N);

std::transform(const_indirect_first, const_indirect_last,
mutable_indirect_first, std::bindlst (std::plus<char>(), 1));

std::copy (mutable_indirect_first, mutable_indirect_last,
std::ostream_iterator<char> (std::cout, ","));
std::cout << std::endl;

// Example of using make_indirect_iterator()

std::copy (boost::make_indirect_iterator (pointers_to_chars),
boost::make_indirect_iterator (pointers_to_chars + N),
std::ostream_iterator<char> (std::cout, ","));

std::cout << std::endl;

The output is:

a,b,c,d,e,£,9,

bl Cfdl eI f! qlhl

a,b,c,d,e, f,g,

The source code for this example can be fohade

file:../example/indirect_iterator_example.cpp

	Table of Contents
	indirect_iterator synopsis
	indirect_iterator requirements
	indirect_iterator models
	indirect_iterator operations
	Example

