
Iterator Facade

2

Author : David Abrahams, Jeremy Siek, Thomas Witt

Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de

Organization: Boost Consulting, Indiana UniversityOpen Systems Lab, University of
HanoverInstitute for Transport Railway Operation and Construction

Date: 2004-01-12

Copyright : Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. All rights
reserved

abstract: iterator facade is a base class template that implements the interface of standard
iterators in terms of a few core functions and associated types, to be supplied by a derived
iterator class.

Table of Contents

Overview

Usage

Iterator Core Access

operator[]

operator->

Reference

iterator facade Requirements

iterator facade operations

Tutorial Example

The Problem

A Basic Iterator Usingiterator facade

Template Arguments foriterator facade

Derived

Value

CategoryOrTraversal

Reference

Difference

Constructors and Data Members

Implementing the Core Operations

A constantnode iterator

Interoperability

Telling the Truth

Wrap Up

mailto:dave@boost-consulting.com
mailto:jsiek@osl.iu.edu
mailto:witt@ive.uni-hannover.de
http://www.boost-consulting.com
http://www.osl.iu.edu
http://www.ive.uni-hannover.de

3

Overview

While the iterator interface is rich, there is a core subset of the interface that is necessary for all the functionality.
We have identified the following core behaviors for iterators:

• dereferencing

• incrementing

• decrementing

• equality comparison

• random-access motion

• distance measurement

In addition to the behaviors listed above, the core interface elements include the associated types exposed
through iterator traits:value type, reference, difference type, anditerator category.

Iterator facade uses the Curiously Recurring Template Pattern (CRTP) [Cop95] so that the user can specify the
behavior ofiterator facade in a derived class. Former designs used policy objects to specify the behavior,
but that approach was discarded for several reasons:

1. the creation and eventual copying of the policy object may create overhead that can be
avoided with the current approach.

2. The policy object approach does not allow for custom constructors on the created it-
erator types, an essential feature ifiterator facade should be used in other library
implementations.

3. Without the use of CRTP, the standard requirement that an iterator’soperator++ returns
the iterator type itself would mean that all iterators built with the library would have to
be specializations ofiterator facade<...>, rather than something more descriptive
like indirect iterator<T*>. Cumbersome type generator metafunctions would be
needed to build new parameterized iterators, and a separateiterator adaptor layer
would be impossible.

Usage

The user ofiterator facade derives his iterator class from a specialization ofiterator facade and passes
the derived iterator class asiterator facade’s first template parameter. The order of the other template pa-
rameters have been carefully chosen to take advantage of useful defaults. For example, when defining a constant
lvalue iterator, the user can pass a const-qualified version of the iterator’svalue type asiterator facade’s
Value parameter and omit theReference parameter which follows.

The derived iterator class must define member functions implementing the iterator’s core behaviors. The fol-
lowing table describes expressions which are required to be valid depending on the category of the derived
iterator type. These member functions are described briefly below and in more detail in the iterator facade
requirements.

Expression Effects
i.dereference() Access the value referred to

i.equal(j) Compare for equality withj

4

Expression Effects
i.increment() Advance by one position

i.decrement() Retreat by one position

i.advance(n) Advance byn positions

i.distance to(j) Measure the distance toj

In addition to implementing the core interface functions, an iterator derived fromiterator facade typically
defines several constructors. To model any of the standard iterator concepts, the iterator must at least have a
copy constructor. Also, if the iterator typeX is meant to be automatically interoperate with another iterator type
Y (as with constant and mutable iterators) then there must be an implicit conversion fromX to Y or from Y to X
(but not both), typically implemented as a conversion constructor. Finally, if the iterator is to model Forward
Traversal Iterator or a more-refined iterator concept, a default constructor is required.

Iterator Core Access

iterator facade and the operator implementations need to be able to access the core member functions in
the derived class. Making the core member functions public would expose an implementation detail to the user.
The design used here ensures that implementation details do not appear in the public interface of the derived
iterator type.

Preventing direct access to the core member functions has two advantages. First, there is no possibility for the
user to accidently use a member function of the iterator when a member of the valuetype was intended. This
has been an issue with smart pointer implementations in the past. The second and main advantage is that library
implementers can freely exchange a hand-rolled iterator implementation for one based oniterator facade
without fear of breaking code that was accessing the public core member functions directly.

In a naive implementation, keeping the derived class’ core member functions private would require it to grant
friendship toiterator facade and each of the seven operators. In order to reduce the burden of limiting
access,iterator core access is provided, a class that acts as a gateway to the core member functions in the
derived iterator class. The author of the derived class only needs to grant friendship toiterator core access
to make his core member functions available to the library.

iterator core access will be typically implemented as an empty class containing only private static member
functions which invoke the iterator core member functions. There is, however, no need to standardize the
gateway protocol. Note that even ifiterator core access used public member functions it would not open
a safety loophole, as every core member function preserves the invariants of the iterator.

operator[]

The indexing operator for a generalized iterator presents special challenges. A random access iterator’s
operator[] is only required to return something convertible to itsvalue type. Requiring that it return an
lvalue would rule out currently-legal random-access iterators which hold the referenced value in a data member
(e.g.counting iterator), because*(p+n) is a reference into the temporary iteratorp+n, which is destroyed
whenoperator[] returns.

Writable iterators built withiterator facade implement the semantics required by the preferred resolution
to issue 299and adopted by proposaln1550: the result ofp[n] is an object convertible to the iterator’s
value type, andp[n] = x is equivalent to*(p + n) = x (Note: This result object may be implemented
as a proxy containing a copy ofp+n). This approach will work properly for any random-access iterator re-
gardless of the other details of its implementation. A user who knows more about the implementation of her
iterator is free to implement anoperator[] that returns an lvalue in the derived iterator class; it will hide the
one supplied byiterator facade from clients of her iterator.

file:counting_iterator.html
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#299
http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html

5

operator->

Thereference type of a readable iterator (and today’s input iterator) need not in fact be a reference, so long as
it is convertible to the iterator’svalue type. When thevalue type is a class, however, it must still be possible
to access members throughoperator->. Therefore, an iterator whosereference type is not in fact a reference
must return a proxy containing a copy of the referenced value from itsoperator->.

The return types foriterator facade’s operator-> andoperator[] are not explicitly specified. Instead,
those types are described in terms of a set of requirements, which must be satisfied by theiterator facade
implementation.

Reference

template <
class Derived

, class Value
, class CategoryOrTraversal
, class Reference = Value&
, class Difference = ptrdiff t

>
class iterator facade {
public:

typedef remove const<Value>::type value type;
typedef Reference reference;
typedef Value* pointer;
typedef Difference difference type;
typedef /* see below */ iterator category;

reference operator*() const;
/* see below */ operator->() const;
/* see below */ operator[](difference type n) const;
Derived& operator++();
Derived operator++(int);
Derived& operator--();
Derived operator--(int);
Derived& operator+=(difference type n);
Derived& operator-=(difference type n);
Derived operator-(difference type n) const;

};

// Comparison operators
template <class Dr1, class V1, class TC1, class R1, class D1,

class Dr2, class V2, class TC2, class R2, class D2>
typename enable if interoperable<Dr1,Dr2,bool>::type // exposition
operator ==(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,

[Cop95] [Coplien, 1995] Coplien, J., Curiously Recurring Template Patterns, C++ Report, February 1995, pp.
24-27.

6

class Dr2, class V2, class TC2, class R2, class D2>
typename enable if interoperable<Dr1,Dr2,bool>::type
operator !=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

// Iterator difference
template <class Dr1, class V1, class TC1, class R1, class D1,

class Dr2, class V2, class TC2, class R2, class D2>
/* see below */
operator-(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

// Iterator addition
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator facade<Dr,V,TC,R,D> const&,

typename Derived::difference type n);

template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference type n,

iterator facade<Dr,V,TC,R,D> const&);

Theiterator category member ofiterator facade is

iterator-category (CategoryOrTraversal, value type, reference)

whereiterator-categoryis defined as follows:

iterator-category (C,R,V) :=
if (C is convertible to std::input iterator tag

7

|| C is convertible to std::output iterator tag
)

return C

else if (C is not convertible to incrementable traversal tag)
the program is ill-formed

else return a type X satisfying the following two constraints:

1. X is convertible to X1, and not to any more-derived
type, where X1 is defined by:

if (R is a reference type
&& C is convertible to forward traversal tag)

{
if (C is convertible to random access traversal tag)

X1 = random access iterator tag
else if (C is convertible to bidirectional traversal tag)

X1 = bidirectional iterator tag
else

X1 = forward iterator tag
}
else
{

if (C is convertible to single pass traversal tag
&& R is convertible to V)
X1 = input iterator tag

else
X1 = C

}

2. category-to-traversal (X) is convertible to the most
derived traversal tag type to which X is also
convertible, and not to any more-derived traversal tag
type.

[Note: the intention is to allowiterator category to be one of the five original category tags when convert-
ibility to one of the traversal tags would add no information]

Theenable if interoperable template used above is for exposition purposes. The member operators should
only be in an overload set provided the derived typesDr1 andDr2 are interoperable, meaning that at least one
of the types is convertible to the other. Theenable if interoperable approach uses SFINAE to take the
operators out of the overload set when the types are not interoperable. The operators should behaveas-if
enable if interoperable were defined to be:

template <bool, typename> enable if interoperable impl
{};

template <typename T> enable if interoperable impl<true,T>
{ typedef T type; };

template<typename Dr1, typename Dr2, typename T>
struct enable if interoperable
: enable if interoperable impl<

file:new-iter-concepts.html#category-to-traversal

8

is convertible<Dr1,Dr2>::value || is convertible<Dr2,Dr1>::value
, T

>
{};

iterator facade Requirements

The following table describes the typical valid expressions oniterator facade’s Derived parameter, depend-
ing on the iterator concept(s) it will model. The operations in the first column must be made accessible to mem-
ber functions of classiterator core access. In addition,static cast<Derived*>(iterator facade*)
shall be well-formed.

In the table below,F is iterator facade<X,V,C,R,D>, a is an object of typeX, b andc are objects of type
const X, n is an object ofF::difference type, y is a constant object of a single pass iterator type interoper-
able withX, andz is a constant object of a random access traversal iterator type interoperable withX.

iterator facade Core Operations

Expression Return Type Assertion/Note Used to implement Iterator
Concept(s)

c.dereference() F::reference Readable Iterator, Writable It-
erator

c.equal(y) convertible to bool true iff c andy refer to the
same position.

Single Pass Iterator

a.increment() unused Incrementable Iterator

a.decrement() unused Bidirectional Traversal Itera-
tor

a.advance(n) unused Random Access Traversal It-
erator

c.distance to(z) convertible to
F::difference type

equivalent todistance(c,
X(z)).

Random Access Traversal It-
erator

iterator facade operations

The operations in this section are described in terms of operations on the core interface ofDerived which may
be inaccessible (i.e. private). The implementation should access these operations through member functions of
classiterator core access.

reference operator*() const;

Returns: static cast<Derived const*>(this)->dereference()

operator->() const; (seebelow)

Returns: If reference is a reference type, an object of typepointer equal to:

&static cast<Derived const*>(this)->dereference()

Otherwise returns an object of unspecified type such that,(*static cast<Derived
const*>(this))->m is equivalent to(w = **static cast<Derived const*>(this),
w.m) for some temporary objectw of typevalue type.

9

unspecifiedoperator[](difference type n) const;

Returns: an object convertible tovalue type. For constant objectsv of type value type,
and n of type difference type, (*this)[n] = v is equivalent to *(*this +
n) = v, and static cast<value type const&>((*this)[n]) is equivalent to
static cast<value type const&>(*(*this + n))

Derived& operator++();

Effects: static cast<Derived*>(this)->increment();
return *static cast<Derived*>(this);

Derived operator++(int);

Effects: Derived tmp(static cast<Derived const*>(this));
++*this;
return tmp;

Derived& operator--();

Effects: static cast<Derived*>(this)->decrement();
return *static cast<Derived*>(this);

Derived operator--(int);

Effects: Derived tmp(static cast<Derived const*>(this));
--*this;
return tmp;

Derived& operator+=(difference type n);

Effects: static cast<Derived*>(this)->advance(n);
return *static cast<Derived*>(this);

Derived& operator-=(difference type n);

Effects: static cast<Derived*>(this)->advance(-n);
return *static cast<Derived*>(this);

Derived operator-(difference type n) const;

Effects: Derived tmp(static cast<Derived const*>(this));
return tmp -= n;

template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator facade<Dr,V,TC,R,D> const&,

typename Derived::difference type n);

template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference type n,

iterator facade<Dr,V,TC,R,D> const&);

10

Effects: Derived tmp(static cast<Derived const*>(this));
return tmp += n;

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator ==(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).equal((Dr2 const&)rhs).
Otherwise, ((Dr2 const&)rhs).equal((Dr1 const&)lhs).

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator !=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then !((Dr1 const&)lhs).equal((Dr2 const&)rhs).
Otherwise, !((Dr2 const&)rhs).equal((Dr1 const&)lhs).

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) < 0.
Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) > 0.

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) <= 0.
Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) >= 0.

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

11

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) > 0.
Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) < 0.

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) >= 0.
Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) <= 0.

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,difference>::type
operator -(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Return Type: if is convertible<Dr2,Dr1>::value

then difference shall beiterator traits<Dr1>::difference type.
Otherwise difference shall beiterator traits<Dr2>::difference type

Returns: if is convertible<Dr2,Dr1>::value

then -((Dr1 const&)lhs).distance to((Dr2 const&)rhs).
Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs).

Tutorial Example

In this section we’ll walk through the implementation of a few iterators usingiterator facade, based aroundd
[(iteconst&)rhs).distance)]35.193 9149 Tdf
96.59 cm
qx6s:

http://thread.gmane.org/gmane.comp.lib.boost.user/5100
file:../../../more/mailing_lists.htm#users

12

// print to the stream
virtual void print(std::ostream& s) const = 0;

// double the value
virtual void double me() = 0;

void append(node base* p)
{

if (m next)
m next->append(p);

else
m next = p;

}

private:
node base* m next;

};

Lists can hold objects of different types by linking together specializations of the following template:

template <class T>
struct node : node base
{

node(T x)
: m value(x)

{}

void print(std::ostream& s) const { s << this->m value; }
void double me() { m value += m value; }

private:
T m value;

};

And we can print any node using the following streaming operator:

inline std::ostream& operator<<(std::ostream& s, node base const& n)
{

n.print(s);
return s;

}

Our first challenge is to build an appropriate iterator over these lists.

A Basic Iterator Using iterator facade

We will construct anode iterator class using inheritance fromiterator facade to implement most of the
iterator’s operations.

include "node.hpp"
include <boost/iterator/iterator facade.hpp>

13

class node iterator
: public boost::iterator facade<...>

{
...

};

Template Arguments for iterator facade

iterator facade has several template parameters, so we must decide what types to use for the arguments.
The parameters areDerived, Value, CategoryOrTraversal, Reference, andDifference.

Derived

Becauseiterator facade is meant to be used with the CRTP [Cop95] the first parameter is the iterator class
name itself,node iterator.

Value

The Value parameter determines thenode iterator’s value type. In this case, we are iterating over
node base objects, soValue will be node base.

CategoryOrTraversal

Now we have to determine whichiterator traversal conceptour node iterator is going to model. Singly-
linked lists only have forward links, so our iterator can’t can’t be abidirectional traversal iterator. Our it-
erator should be able to make multiple passes over the same linked list (unlike, say, anistream iterator
which consumes the stream it traverses), so it must be aforward traversal iterator. Therefore, we’ll pass
boost::forward traversal tag in this position [1].

Reference

The Reference argument becomes the type returned bynode iterator’s dereference operation, and will
also be the same asstd::iterator traits<node iterator>::reference. The library’s default for this
parameter isValue&; sincenode base& is a good choice for the iterator’sreference type, we can omit this
argument, or passuse default.

Difference

TheDifference argument determines how the distance between twonode iterators will be measured and
will also be the same asstd::iterator traits<node iterator>::difference type. The library’s default
for Difference is std::ptrdiff t, an appropriate type for measuring the distance between any two addresses
in memory, and one that works for almost any iterator, so we can omit this argument, too.

The declaration ofnode iterator will therefore look something like:

[1] iterator facade also supports old-style category tags, so we could have passed
std::forward iterator tag here; either way, the resulting iterator’siterator category will end up
beingstd::forward iterator tag.

file:new-iter-concepts.html#iterator-traversal-concepts-lib-iterator-traversal
file:new-iter-concepts.html#bidirectional-traversal-iterators-lib-bidirectional-traversal-iterators
file:new-iter-concepts.html#forward-traversal-iterators-lib-forward-traversal-iterators

14

include "node.hpp"
include <boost/iterator/iterator facade.hpp>

class node iterator
: public boost::iterator facade<

node iterator
, node base
, boost::forward traversal tag

>
{

...
};

Constructors and Data Members

Next we need to decide how to represent the iterator’s position. This representation will take the form of
data members, so we’ll also need to write constructors to initialize them. Thenode iterator’s position
is quite naturally represented using a pointer to anode base. We’ll need a constructor to build an iterator
from a node base*, and a default constructor to satisfy theforward traversal iteratorrequirements [2]. Our
node iterator then becomes:

include "node.hpp"
include <boost/iterator/iterator facade.hpp>

class node iterator
: public boost::iterator facade<

node iterator
, node base
, boost::forward traversal tag

>
{
public:

node iterator()
: m node(0)

{}

explicit node iterator(node base* p)
: m node(p)

{}

private:
...
node base* m node;

};

[2] Technically, the C++ standard places almost no requirements on a default-constructed iterator, so if we were
really concerned with efficiency, we could’ve written the default constructor to leavem node uninitialized.

file:new-iter-concepts.html#forward-traversal-iterators-lib-forward-traversal-iterators

15

Implementing the Core Operations

file:new-iter-concepts.html#readable-iterators-lib-readable-iterators
file:new-iter-concepts.html#single-pass-iterators-lib-single-pass-iterators
file:new-iter-concepts.html#incrementable-iterators-lib-incrementable-iterators
file:../example/node_iterator1.cpp

16

A constantnode iterator

Constant and Mutable iterators
The term mutable iterator means an iterator through which the object it references (its “referent”)
can be modified. A constant iterator is one which doesn’t allow modification of its referent.
The words constant and mutable don’t refer to the ability to modify the iterator itself. For example, an
int const* is a non-const constant iterator, which can be incremented but doesn’t allow modifica-
tion of its referent, and int* const is a const mutable iterator, which cannot be modified but which
allows modification of its referent.
Confusing? We agree, but those are the standard terms. It probably doesn’t help much that a
container’s constant iterator is called const iterator.

Now, ournode iterator gives clients access to bothnode’s print(std::ostream&) const member func-
tion, but also its mutatingdouble me() member. If we wanted to build aconstantnode iterator, we’d only
have to make three changes:

class const node iterator
: public boost::iterator facade<

node iterator
, node base const
, boost::forward traversal tag

>
{
public:

const node iterator()
: m node(0) {}

explicit const node iterator(node base* p)
: m node(p) {}

private:
friend class boost::iterator core access;

void increment() { m node = m node->next(); }

bool equal(const node iterator const& other) const
{

return this->m node == other.m node;
}

node base const & dereference() const { return *m node; }

node base const * m node;
};

const and an iterator’s value type
The C++ standard requires an iterator’s value type not be.887 0 Td
[5 -141.65at
23.26 0 Td
 (base)] TJ
/F- -23cannotio Tf
-20.324 -11.955 Td9891d

mpandar/F642 (th) 25 (w) 65 (,) -300 (77.887 0 Td
[5 -141.65at
23.26 0 Td
 0 Gr)] TJ
/Ffromndar/F64 20 (
133.292 0 Td
[(con3.d)] TJ
/F6V 9.963 Tf
1t
23.26 0 Td
 0 Gr(g)] TJ
/paquires) mether Td955 heth r Td9 (s) -278 (con -327 (iter) 10 (ato) -1 (r’) 7.101 c] TJ
/F63 9.963 Tf
161.092 0 Td457.5] 9.647TJ
ET
1 0 0 1 282.545 141.656 cm
q
[] 0 d
0 J
0.398 w
0 0.199 m
2.7.5] -9.647TJ
ET
0 0 1 -308.145 -14.989 9.647TJ
 11.955 Tf
286.131 141.656 Td
[(node)] TJ
/F22.9647 (Maklso) -264 -35037 1 (odifica-)] (th) 25 (w) 65 (,) -30.648s)] TJ
/F6V 9.963 Tf
1t
23.26 0 Td
 7 G
t

17

As a matter of fact,node iterator andconst node iterator are so similar that it makes sense to factor the
common code out into a template as follows:

template <class Value>
class node iter
: public boost::iterator facade<

node iter<Value>
, Value
, boost::forward traversal tag

>
{
public:

node iter()
: m node(0) {}

explicit node iter(Value* p)
: m node(p) {}

private:
friend class boost::iterator core access;

bool equal(node iter<Value> const& other) const
{

return this->m node == other.m node;
}

void increment()
{ m node = m node->next(); }

Value& dereference() const
{ return *m node; }

Value* m node;
};
typedef node iter<node base> node iterator;
typedef node iter<node base const> node const iterator;

Interoperability

Our const node iterator works perfectly well on its own, but taken together withnode iterator
it doesn’t quite meet expectations. For example, we’d like to be able to pass anode iterator
where anode const iterator was expected, just as you can withstd::list<int>’s iterator and
const iterator. Furthermore, given anode iterator and anode const iterator into the same list, we
should be able to compare them for equality.

This expected ability to use two different iterator types together is known asinteroperability . Achieving
interoperability in our case is as simple as templatizing theequal function and adding a templatized converting
constructor [3] [4]:

template <class Value>
class node iter
: public boost::iterator facade<

node iter<Value>

file:new-iter-concepts.html#interoperable-iterators-lib-interoperable-iterators

18

, Value
, boost::forward traversal tag

>
{
public:

node iter()
: m node(0) {}

explicit node iter(Value* p)
: m node(p) {}

template <class OtherValue>
node iter(node iter<OtherValue> const& other)
: m node(other.m node) {}

private:
friend class boost::iterator core access;
template <class> friend class node iter;

template <class OtherValue>
bool equal(node iter<OtherValue> const& other) const
{

return this->m node == other.m node;
}

void increment()
{ m node = m node->next(); }

Value& dereference() const
{ return *m node; }

Value* m node;
};
typedef impl::node iterator<node base> node iterator;
typedef impl::node iterator<node base const> node const iterator;

You can see an example program which exercises our interoperable iteratorshere.

Telling the Truth

Now node iterator andnode const iterator behave exactly as you’d expect... almost. We can compare
them and we can convert in one direction: fromnode iterator to node const iterator. If we try to convert
from node const iterator to node iterator, we’ll get an error when the converting constructor tries to
initialize node iterator’s m node, anode* with anode const*. So what’s the problem?

The problem is thatboost::is convertible<node const iterator,node iterator>::value will be
true, but it should befalse. is convertible lies because it can only see as far as thedeclarationof
node iter’s converting constructor, but can’t look inside at thedefinition to make sure it will compile. A

[3] If you’re using an older compiler and it can’t handle this example, see theexample codefor workarounds.

[4] If node iterator had been arandom access traversal iterator, we’d have had to templatize itsdistance to
function as well.

file:../example/node_iterator2.cpp
file:../../type_traits/index.html#relationships
file:../../type_traits/index.html#relationships
file:../example/node_iterator2.hpp
file:new-iter-concepts.html#random-access-traversal-iterators-lib-random-access-traversal-iterators

19

perfect solution would makenode iter’s converting constructor disappear when them node conversion would
fail.

In fact, that sort of magic is possible usingboost::enable if. By rewriting the converting constructor as
follows, we can remove it from the overload set when it’s not appropriate:

#include <boost/type traits/is convertible.hpp>
#include <boost/utility/enable if.hpp>

...

template <class OtherValue>
node iter(

node iter<OtherValue> const& other
, typename boost::enable if<

boost::is convertible<OtherValue*,Value*>
, enabler

>::type = enabler()
)

: m node(other.m node) {}

Wrap Up

This concludes ouriterator facade tutorial, but before you stop reading we urge you to take a look at
iterator adaptor. There’s another way to approach writing these iterators which might even be superior.

file:../../utility/enable_if.html
file:iterator_adaptor.html

	Table of Contents
	Overview
	Usage
	Iterator Core Access
	operator[]
	operator->

	Reference
	iterator_facade Requirements
	iterator_facade operations

	Tutorial Example
	The Problem
	A Basic Iterator Using iterator_facade
	Template Arguments for iterator_facade
	Constructors and Data Members
	Implementing the Core Operations

	A constant node_iterator
	Interoperability
	Telling the Truth
	Wrap Up

