Files
boost_iterator/doc/iterator_adaptor_tutorial.rst
Dave Abrahams 3bf52ec2f2 Finished iterator_adaptor tutorial
Added example test code
Rolled forward old counting_iterator abstract for boost docs.


[SVN r21649]
2004-01-12 20:58:22 +00:00

126 lines
5.0 KiB
ReStructuredText
Executable File

.. Copyright David Abrahams 2004. Use, modification and distribution is
.. subject to the Boost Software License, Version 1.0. (See accompanying
.. file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
In this section we'll further refine the ``node_iter`` class
template we developed in the |fac_tut|_. If you haven't already
read that material, you should go back now and check it out because
we're going to pick up right where it left off.
.. |fac_tut| replace:: ``iterator_facade`` tutorial
.. _fac_tut: iterator_facade.html#tutorial-example
.. sidebar:: ``node_base*`` really *is* an iterator
It's not really a very interesting iterator, since ``node_base``
is an abstract class: a pointer to a ``node_base`` just points
at some base subobject of an instance of some other class, and
incrementing a ``node_base*`` moves it past this base subobject
to who-knows-where? The most we can do with that incremented
position is to compare another ``node_base*`` to it. In other
words, the original iterator traverses a one-element array.
You probably didn't think of it that way, but the ``node_base*``
object which underlies ``node_iterator`` is itself an iterator,
just like all other pointers. If we examine that pointer closely
from an iterator perspective, we can see that it has much in common
with the ``node_iterator`` we're building. First, they share most
of the same associated types (``value_type``, ``reference``,
``pointer``, and ``difference_type``). Second, even much of the
core functionality is the same: ``operator*`` and ``operator==`` on
the ``node_iterator`` just return the result of invoking the same
operations on the underlying pointer, via the ``node_iterator``\ 's
|dereference_and_equal|_)
.. |dereference_and_equal| replace:: ``dereference`` and ``equal`` member functions
.. _dereference_and_equal: iterator_facade.html#implementing-the-core-operations
It turns out that the pattern of building an iterator on another
iterator-like type (the ``Base`` [#base]_ type) while modifying
just a few aspects of the underlying type's behavior is an
extremely common one, and it's the pattern addressed by
``iterator_adaptor``. Using ``iterator_adaptor`` is very much like
using ``iterator_facade``, but because iterator_adaptor tries to
mimic as much of the ``Base`` type's behavior as possible, we
neither have to supply a ``Value`` argument, nor implement any core
behaviors other than ``increment``. The implementation of
``node_iter`` is thus reduced to::
template <class Value>
class node_iter
: public boost::iterator_adaptor<
node_iter<Value> // Derived
, Value* // Base
, boost::use_default // Value
, boost::forward_traversal_tag // CategoryOrTraversal
>
{
private:
struct enabler {}; // a private type avoids misuse
typedef boost::iterator_adaptor<
node_iter<Value>, Value*, boost::use_default, boost::forward_traversal_tag
> super_t;
public:
node_iter()
: super_t(0) {}
explicit node_iter(Value* p)
: super_t(p) {}
template <class OtherValue>
node_iter(
node_iter<OtherValue> const& other
, typename boost::enable_if<
boost::is_convertible<OtherValue*,Value*>
, enabler
>::type = enabler()
)
: super_t(other.base()) {}
private:
friend class boost::iterator_core_access;
void increment() { this->base_reference() = this->base()->next(); }
};
You can see an example program which exercises this version of the
node iterators `here`__.
__ ../example/node_iterator3.cpp
In the case of ``node_iter``, it's not very compelling to pass
``boost::use_default`` as ``iterator_adaptor``\ 's ``Value``
argument; we could have just passed ``node_iter``\ 's ``Value``
along to ``iterator_adaptor``, and that'd even be shorter! Most
iterator class templates built with ``iterator_adaptor`` are
parameterized on another iterator type, rather than on its
``value_type``. For example, ``boost::reverse_iterator`` takes an
iterator type argument and reverses its direction of traversal,
since the original iterator and the reversed one have all the same
associated types, ``iterator_adaptor``\ 's delegation of default
types to its ``Base`` saves the implementor of
``boost::reverse_iterator`` from writing
.. parsed-literal::
std::iterator_traits<Iterator>::*some-associated-type*
at least four times.
We urge you to review the documentation and implementations of
|reverse_iterator|_ and the other Boost `specialized iterator
adaptors`__ to get an idea of the sorts of things you can do with
``iterator_adaptor``. In particular, have a look at
|counting_iterator|_, which demonstrates that ``iterator_adaptor``\
's ``Base`` type needn't be an iterator.
.. |reverse_iterator| replace:: ``reverse_iterator``
.. _reverse_iterator: reverse_iterator.html
.. |counting_iterator| replace:: ``counting_iterator``
.. _counting_iterator: counting_iterator.html
__ index.html#specialized-adaptors