Merged from 1.33.0 release

[SVN r30540]
This commit is contained in:
Douglas Gregor
2005-08-12 13:02:37 +00:00
parent 7311fb528a
commit e82a7fab5d
7 changed files with 155 additions and 141 deletions

View File

@ -44,16 +44,16 @@
<p>
A Range is a <i>concept</i> similar to the STL <a
href="http://www.sgi.com/Technology/STL/Container.html">Container</a> concept. A
href="http://www.sgi.com/Technology/STL/Container.html">Container</a> concept. A
Range provides iterators for accessing a half-open range
<code>[first,one_past_last)</code> of elements and provides
information about the number of elements in the Range. However, a Range has
fewer requirements than a Container.
</p>
information about the number of elements in the Range. However, a Range has
fewer requirements than a Container.
</p>
<p>
The motivation for the Range concept is
that there are many useful Container-like types that do not meet the full
requirements of Container, and many algorithms that can be written with this
The motivation for the Range concept is
that there are many useful Container-like types that do not meet the full
requirements of Container, and many algorithms that can be written with this
reduced set of requirements. In particular, a Range does not necessarily
<ul>
@ -67,25 +67,25 @@
-->
</ul>
Because of the second requirement, a Range object must be passed by
Because of the second requirement, a Range object must be passed by
(const or non-const) reference in generic code.
</p>
<p>
The operations that can be performed on a Range is dependent on the
<a href="../../iterator/doc/new-iter-concepts.html#iterator-traversal-concepts-lib-iterator-traversal">traversal
The operations that can be performed on a Range is dependent on the
<a href="../../iterator/doc/new-iter-concepts.html#iterator-traversal-concepts-lib-iterator-traversal">traversal
category</a> of the underlying iterator type. Therefore
the range concepts are named to reflect which traversal category its
the range concepts are named to reflect which traversal category its
iterators support. See also <a href="style.html">terminology and style guidelines.</a>
for more information about naming of ranges.</p>
<p> The concepts described below specifies associated types as
<a href="../../mpl/doc/index.html#metafunctions">metafunctions</a> and all
<a href="../../mpl/doc/refmanual/metafunction.html">metafunctions</a> and all
functions as free-standing functions to allow for a layer of indirection. </p>
<p><i>Notice that these metafunctions must be defined in namespace </i>
<code>boost</code></p>
<!--<p><i>Notice that these metafunctions must be defined in namespace </i>
<code>boost</code></p>-->
<hr>
<a name="single_pass_range">
@ -103,10 +103,10 @@ functions as free-standing functions to allow for a layer of indirection. </p>
</TR>
</table>
<h3>Description</h3>
<p>
A range X where <code>range_iterator&lt;X>::type</code> is a model of <a
A range X where <code>boost::range_iterator&lt;X>::type</code> is a model of <a
href="../../iterator/doc/new-iter-concepts.html#single-pass-iterators-lib-single-pass-iterators">
Single Pass Iterator</a>
@ -118,20 +118,20 @@ Single Pass Iterator</a>
<table border="1" cellpadding="5">
<TR>
<TD VAlign="top">Value type</TD>
<TD VAlign="top"><code>range_value&lt;X>::type</code></TD>
<TD VAlign="top"><code>boost::range_value&lt;X>::type</code></TD>
<TD VAlign="top">The type of the object stored in a Range.
</TR>
<TR>
<TD VAlign="top">Iterator type</TD>
<TD VAlign="top"><code>range_iterator&lt;X>::type</code></TD>
<TD VAlign="top">The type of iterator used to iterate through a Range's elements.
The iterator's value type is expected to be the Range's value type. A
<TD VAlign="top"><code>boost::range_iterator&lt;X>::type</code></TD>
<TD VAlign="top">The type of iterator used to iterate through a Range's elements.
The iterator's value type is expected to be the Range's value type. A
conversion from the iterator type to the const iterator type must exist.
</TR>
<TR>
<TD VAlign="top">Const iterator type</TD>
<TD VAlign="top"><code>range_const_iterator&lt;X>::type</code></TD>
<TD VAlign="top">A type of iterator that may be used to examine, but not to
<TD VAlign="top"><code>boost::range_const_iterator&lt;X>::type</code></TD>
<TD VAlign="top">A type of iterator that may be used to examine, but not to
modify, a Range's elements.</TD>
</TR>
<!--
@ -157,20 +157,20 @@ Single Pass Iterator</a>
</TR>
<TR>
<TD VAlign="top">Beginning of range</TD>
<TD VAlign="top"><code>begin(a)</code></TD>
<TD VAlign="top"><code>range_iterator&lt;X>::type</code> if
<code>a</code> is mutable, <code>range_const_iterator&lt;X>::type</code>
<TD VAlign="top"><code>boost::begin(a)</code></TD>
<TD VAlign="top"><code>boost::range_iterator&lt;X>::type</code> if
<code>a</code> is mutable, <code>boost::range_const_iterator&lt;X>::type</code>
otherwise</TD> </TR>
<TR>
<TD VAlign="top">End of range</TD>
<TD VAlign="top"><code>end(a)</code></TD>
<TD VAlign="top"><code>range_iterator&lt;X>::type</code> if
<code>a</code> is mutable, <code>range_const_iterator&lt;X>::type</code>
<TD VAlign="top"><code>boost::end(a)</code></TD>
<TD VAlign="top"><code>boost::range_iterator&lt;X>::type</code> if
<code>a</code> is mutable, <code>boost::range_const_iterator&lt;X>::type</code>
otherwise</TD>
</TR>
<tr>
<TD VAlign="top">Is range empty?</TD>
<TD VAlign="top"><code>empty(a)</code></TD>
<TD VAlign="top"><code>boost::empty(a)</code></TD>
<TD VAlign="top">Convertible to <code>bool</code></TD>
</TR>
</table>
@ -183,20 +183,20 @@ otherwise</TD>
<TH>Postcondition</TH>
</TR>
<TR>
<TD VAlign="top"><code>begin(a)</code></TD>
<TD VAlign="top"><code>boost::begin(a)</code></TD>
<TD VAlign="top">Returns an iterator pointing to the first element in the Range.</TD>
<TD VAlign="top"><code>begin(a)</code> is either dereferenceable or past-the-end.
It is past-the-end if and only if <code>size(a) == 0</code>.</TD>
<TD VAlign="top"><code>boost::begin(a)</code> is either dereferenceable or past-the-end.
It is past-the-end if and only if <code>boost::size(a) == 0</code>.</TD>
</TR>
<TR>
<TD VAlign="top"><code>end(a)</code></TD>
<TD VAlign="top"><code>boost::end(a)</code></TD>
<TD VAlign="top">Returns an iterator pointing one past the last element in the
Range.</TD>
<TD VAlign="top"><code>end(a)</code> is past-the-end.</TD>
<TD VAlign="top"><code>boost::end(a)</code> is past-the-end.</TD>
</TR>
<TR>
<TD VAlign="top"><code>empty(a)</code></TD>
<TD VAlign="top">Equivalent to <code>begin(a) == end(a)</code>. (But possibly
<TD VAlign="top"><code>boost::empty(a)</code></TD>
<TD VAlign="top">Equivalent to <code>boost::begin(a) == boost::end(a)</code>. (But possibly
faster.)</TD>
<TD VAlign="top">&nbsp;-&nbsp;</TD>
</TR>
@ -205,20 +205,20 @@ otherwise</TD>
<h3>Complexity guarantees</h3>
All three functions are at most amortized linear time. For most practical
purposes, one can expect <code>begin(a)</code>, <code>end(a)</code> and <code>empty(a)</code>
purposes, one can expect <code>boost::begin(a)</code>, <code>boost::end(a)</code> and <code>boost::empty(a)</code>
to be amortized constant time.
<h3>Invariants</h3>
<Table border>
<TR>
<TD VAlign="top">Valid range</TD>
<TD VAlign="top">For any Range <code>a</code>, <code>[begin(a),end(a))</code> is
a valid range, that is, <code>end(a)</code> is reachable from <code>begin(a)</code>
<TD VAlign="top">For any Range <code>a</code>, <code>[boost::begin(a),boost::end(a))</code> is
a valid range, that is, <code>boost::end(a)</code> is reachable from <code>boost::begin(a)</code>
in a finite number of increments.</TD>
</TR>
<TR>
<TD VAlign="top">Completeness</TD>
<TD VAlign="top">An algorithm that iterates through the range <code>[begin(a),end(a))</code>
<TD VAlign="top">An algorithm that iterates through the range <code>[boost::begin(a),boost::end(a))</code>
will pass through every element of <code>a</code>.</TD>
</tr>
</table>
@ -228,7 +228,7 @@ otherwise</TD>
<p>
<A href="http://www.sgi.com/Technology/STL/Container.html">Container</A>
</p>
<p> <a href="boost_range.html#range_value">implementation of
<p> <a href="boost_range.html#boost::range_value">implementation of
metafunctions </a></p>
<p> <a href="boost_range.html#begin">implementation of
@ -251,7 +251,7 @@ otherwise</TD>
<h3>Description</h3>
<p>
A range <code>X</code> where <code>range_iterator&lt;X>::type</code> is a model
A range <code>X</code> where <code>boost::range_iterator&lt;X>::type</code> is a model
of <a
href="../../iterator/doc/new-iter-concepts.html#forward-traversal-iterators-lib-forward-traversal-iterators">Forward Traversal Iterator</a>
</p>
@ -264,14 +264,14 @@ Range</a>
<table cellpadding="5" border="1">
<TR>
<TD VAlign="top">Distance type</TD>
<TD VAlign="top"><code>range_difference&lt;X>::type</code></TD>
<TD VAlign="top"><code>boost::range_difference&lt;X>::type</code></TD>
<TD VAlign="top">A signed integral type used to represent the distance between
two of the Range's iterators. This type must be the same as the iterator's
distance type.</TD>
</TR>
<TR>
<TD VAlign="top">Size type</TD>
<TD VAlign="top"><code>range_size&lt;X>::type</code></TD>
<TD VAlign="top"><code>boost::range_size&lt;X>::type</code></TD>
<TD VAlign="top">An unsigned integral type that can represent any nonnegative
value of the Range's distance type.</TD>
</tr>
@ -287,8 +287,8 @@ Range</a>
</tr>
<TR>
<TD VAlign="top">Size of range</TD>
<TD VAlign="top"><code>size(a)</code></TD>
<TD VAlign="top"><code>range_size&lt;X>::type</code></TD>
<TD VAlign="top"><code>boost::size(a)</code></TD>
<TD VAlign="top"><code>boost::range_size&lt;X>::type</code></TD>
</TR>
</table>
@ -301,29 +301,29 @@ Range</a>
<TH>Postcondition</TH>
</TR>
<tr>
<TD VAlign="top"><code>size(a)</code></TD>
<TD VAlign="top"><code>boost::size(a)</code></TD>
<TD VAlign="top">Returns the size of the Range, that is, its number
of elements. Note <code>size(a) == 0u</code> is equivalent to
<code>empty(a).</code></TD>
<TD VAlign="top"><code>size(a) &gt;= 0</TD>
of elements. Note <code>boost::size(a) == 0u</code> is equivalent to
<code>boost::empty(a).</code></TD>
<TD VAlign="top"><code>boost::size(a) &gt;= 0</TD>
</TR>
</table>
<h3>Complexity guarantees</h3>
<p><code>size(a)</code> is at most amortized linear time.</p>
<p><code>boost::size(a)</code> is at most amortized linear time.</p>
<h3>Invariants</h3>
<p>
<Table border="1" cellpadding="5">
<TR>
<TD VAlign="top">Range size</TD>
<TD VAlign="top"><code>size(a)</code> is equal to the distance from <code>begin(a)</code>
to <code>end(a)</code>.</TD> </table>
<TD VAlign="top"><code>boost::size(a)</code> is equal to the distance from <code>boost::begin(a)</code>
to <code>boost::end(a)</code>.</TD> </table>
</p>
<h3>See also</h3>
<p> <a href="boost_range.html#range_difference">implementation of
<p> <a href="boost_range.html#boost::range_difference">implementation of
metafunctions </a></p>
<p> <a href="boost_range.html#size">implementation of
@ -347,7 +347,7 @@ of elements. Note <code>size(a) == 0u</code> is equivalent to
<h3>Description</h3> This concept provides access to iterators that traverse in
both directions (forward and reverse). The
<code>range_iterator&lt;X>::type</code> iterator must meet all of the requirements
<code>boost::range_iterator&lt;X>::type</code> iterator must meet all of the requirements
of <a
href="../../iterator/doc/new-iter-concepts.html#bidirectional-traversal-iterator
s-lib-bidirectional-traversal-iterators">Bidirectional Traversal Iterator.</a>
@ -359,7 +359,7 @@ s-lib-bidirectional-traversal-iterators">Bidirectional Traversal Iterator.</a>
<Table border>
<TR>
<TD VAlign="top">Reverse Iterator type</TD>
<TD VAlign="top"><code>range_reverse_iterator&lt;X>::type</code></TD>
<TD VAlign="top"><code>boost::range_reverse_iterator&lt;X>::type</code></TD>
<TD VAlign="top">The type of iterator used to iterate through a Range's elements
in reverse order. The iterator's value type is expected to be the Range's value
type. A conversion from the reverse iterator type to the const reverse iterator
@ -368,7 +368,7 @@ s-lib-bidirectional-traversal-iterators">Bidirectional Traversal Iterator.</a>
<TR>
<TD VAlign="top">Const reverse iterator type</TD>
<TD
VAlign="top"><code>range_const_reverse_iterator&ltX>::type</code></TD>
VAlign="top"><code>boost::range_const_reverse_iterator&ltX>::type</code></TD>
<TD VAlign="top">A type of reverse iterator that may be used to examine, but not
to modify, a Range's elements.</TD>
</TR>
@ -386,27 +386,27 @@ VAlign="top"><code>range_const_reverse_iterator&ltX>::type</code></TD>
</TR>
<TR>
<TD VAlign="top">Beginning of range</TD>
<TD VAlign="top"><code>rbegin(a)</code></TD>
<TD VAlign="top"><code>range_reverse_iterator&lt;X>::type</code> if
<code>a</code> is mutable, <code>range_const_reverse_iterator&lt;X>::type</code>
<TD VAlign="top"><code>rboost::begin(a)</code></TD>
<TD VAlign="top"><code>boost::range_reverse_iterator&lt;X>::type</code> if
<code>a</code> is mutable, <code>boost::range_const_reverse_iterator&lt;X>::type</code>
otherwise.</TD>
<TD VAlign="top">Equivalent to
<code>range_reverse_iterator&lt;X>::type(end(a))</code>.</TD> </TR>
<code>boost::range_reverse_iterator&lt;X>::type(boost::end(a))</code>.</TD> </TR>
<TR>
<TD VAlign="top">End of range</TD>
<TD VAlign="top"><code>rend(a)</code></TD>
<TD VAlign="top"><code>range_reverse_iterator&lt;X>::type</code> if
<code>a</code> is mutable, <code>range_const_reverse_iterator&lt;X>::type</code>
<TD VAlign="top"><code>rboost::end(a)</code></TD>
<TD VAlign="top"><code>boost::range_reverse_iterator&lt;X>::type</code> if
<code>a</code> is mutable, <code>boost::range_const_reverse_iterator&lt;X>::type</code>
otherwise.</TD>
<TD VAlign="top">Equivalent to
<code>range_reverse_iterator&lt;X>::type(begin(a))</code>.</TD> </tr>
<code>boost::range_reverse_iterator&lt;X>::type(boost::begin(a))</code>.</TD> </tr>
</table>
<h3>Complexity guarantees</h3>
<code>rbegin(a)</code> has the same complexity as <code>end(a)</code> and <code>rend(a)</code>
has the same complexity as <code>begin(a)</code> from <a
<code>rboost::begin(a)</code> has the same complexity as <code>boost::end(a)</code> and <code>rboost::end(a)</code>
has the same complexity as <code>boost::begin(a)</code> from <a
href="#forward_range">Forward Range</a>.
<h3>Invariants</h3>
@ -414,20 +414,20 @@ otherwise.</TD>
<Table border="1" cellpadding="5">
<TR>
<TD VAlign="top">Valid reverse range</TD>
<TD VAlign="top">For any Bidirectional Range <code>a</code>, <code>[rbegin(a),rend(a))</code>
is a valid range, that is, <code>rend(a)</code> is reachable from <code>rbegin(a)</code>
<TD VAlign="top">For any Bidirectional Range <code>a</code>, <code>[rboost::begin(a),rboost::end(a))</code>
is a valid range, that is, <code>rboost::end(a)</code> is reachable from <code>rboost::begin(a)</code>
in a finite number of increments.</TD>
</TR>
<TR>
<TD VAlign="top">Completeness</TD>
<TD VAlign="top">An algorithm that iterates through the range <code>[rbegin(a),rend(a))</code>
<TD VAlign="top">An algorithm that iterates through the range <code>[rboost::begin(a),rboost::end(a))</code>
will pass through every element of <code>a</code>.</TD>
</tr>
</table>
</p>
<h3>See also</h3>
<p> <a href="boost_range.html#range_reverse_iterator">implementation of metafunctions </a></p>
<p> <a href="boost_range.html#boost::range_reverse_iterator">implementation of metafunctions </a></p>
<p> <a href="boost_range.html#rbegin">implementation of
functions </a></p>
@ -436,7 +436,7 @@ otherwise.</TD>
<a name=random_access_range><h2>Random Access Range</h2> <h3>Description</h3>
<p>
A range <code>X</code> where <code>range_iterator&lt;X>::type</code> is a model
A range <code>X</code> where <code>boost::range_iterator&lt;X>::type</code> is a model
of <a
href="../../iterator/doc/new-iter-concepts.html#random-access-traversal-iterators