Files
boost_smart_ptr/shared_ptr.htm

468 lines
26 KiB
HTML
Raw Normal View History

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2000-07-27 14:27:00 +00:00
<html>
<head>
<title>shared_ptr</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body text="#000000" bgColor="#ffffff">
<h1><IMG height="86" alt="c++boost.gif (8819 bytes)" src="../../c++boost.gif" width="277" align="middle">shared_ptr
class template</h1>
<p><A href="#Introduction">Introduction</A><br>
<A href="#Synopsis">Synopsis</A><br>
<A href="#Members">Members</A><br>
<A href="#functions">Free Functions</A><br>
<A href="#example">Example</A><br>
<A href="#Handle/Body">Handle/Body Idiom</A><br>
<A href="#FAQ">Frequently Asked Questions</A><br>
<A href="smarttests.htm">Smart Pointer Timings</A></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <b>shared_ptr</b> class template stores a pointer to a dynamically allocated
object. (Dynamically allocated objects are allocated with the C++ <b>new</b> expression.)
The object pointed to is guaranteed to be deleted when the last <b>shared_ptr</b>
pointing to it is destroyed or reset. See the <A href="#example">example</A>.</p>
<p>Every <b>shared_ptr</b> meets the <b>CopyConstructible</b> and <b>Assignable</b>
requirements of the C++ Standard Library, and so can be used in standard
library containers. Comparison operators are supplied so that <b>shared_ptr</b>
works with the standard library's associative containers.</p>
<p>Normally, a <b>shared_ptr</b> cannot correctly hold a pointer to a dynamically
allocated array. See <A href="shared_array.htm"><b>shared_array</b></A> for
that usage.</p>
<p>Because the implementation uses reference counting, <b>shared_ptr</b> will not
work correctly with cyclic data structures. For example, if <b>main()</b> holds
a <b>shared_ptr</b> to <b>A</b>, which directly or indirectly holds a <b>shared_ptr</b>
back to <b>A</b>, <b>A</b>'s use count will be 2. Destruction of the original <b>shared_ptr</b>
will leave <b>A</b> dangling with a use count of 1.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <b>T</b> must meet the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>. <b>T</b> may be <b>void</b>, but in that case,
either an explicit delete function must be passed in, or the pointed-to object
must have a trivial destructor.</p>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>namespace boost {
class use_count_is_zero: public std::exception;
template&lt;typename T&gt; class <A href="weak_ptr.htm" >weak_ptr</A>;
template&lt;typename T&gt; class shared_ptr {
public:
typedef T <A href="#element_type" >element_type</A>;
<A href="#constructors" >shared_ptr</A> ();
explicit <A href="#constructors" >shared_ptr</A> (T * p); // requires complete type
template&lt;typename D&gt; <A href="#constructors" >shared_ptr</A>(T * p, D d);
<A href="#destructor" >~shared_ptr</A>(); // never throws
<A href="#constructors" >shared_ptr</A>(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; <A href="#constructors" >shared_ptr</A>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
explicit <A href="#constructors" >shared_ptr</A>(<A href="weak_ptr.htm" >weak_ptr</A> const &amp; r);
template&lt;typename Y&gt; <A href="#constructors" >shared_ptr</A>(std::auto_ptr&lt;Y&gt; &amp; r);
shared_ptr &amp; <A href="#assignment" >operator=</A>(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; <A href="#assignment" >operator=</A>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; <A href="#assignment" >operator=</A>(std::auto_ptr&lt;Y&gt; &amp; r);
void <A href="#reset" >reset</A> ();
void <A href="#reset" >reset</A> (T * p); // requires complete type
template&lt;typename D&gt; void <A href="#reset" >reset</A>(T * p, D d);
T &amp; <A href="#indirection" >operator*</A>() const; // never throws
T * <A href="#indirection" >operator-&gt;</A>() const; // never throws
T * <A href="#get" >get</A>() const; // never throws
bool <A href="#unique" >unique</A>() const; // never throws
long <A href="#use_count" >use_count</A>() const; // never throws
operator <a href="#conversions"><i>implementation-defined-type</i></a> () const; // never throws
void <A href="#swap" >swap</A>(shared_ptr&lt;T&gt; &amp; b); // never throws
2000-07-27 14:27:00 +00:00
};
template&lt;typename T, typename U&gt;
bool <A href="#comparison" >operator==</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool <A href="#comparison" >operator!=</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
2002-02-08 20:45:04 +00:00
template&lt;typename T&gt;
bool <A href="#comparison" >operator&lt;</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt; void <A href="#free-swap" >swap</A>(shared_ptr&lt;T&gt; &amp; a, shared_ptr&lt;T&gt; &amp; b); // never throws
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_static_cast" >shared_static_cast</A>(shared_ptr&lt;U&gt; const &amp; r); // never throws
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_dynamic_cast" >shared_dynamic_cast</A>(shared_ptr&lt;U&gt; const &amp; r);
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_polymorphic_cast" >shared_polymorphic_cast</A>(shared_ptr&lt;U&gt; const &amp; r);
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_polymorphic_downcast" >shared_polymorphic_downcast</A>(shared_ptr&lt;U&gt; const &amp; r); // never throws
}</pre>
<h2><a name="Members">Members</a></h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<blockquote>
<p>Provides the type of the template parameter T.</p>
</blockquote>
<h3><a name="constructors">constructors</a></h3>
<pre>shared_ptr();</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 1; the stored
pointer is 0.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, the constructor has no
effect.</p>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<pre>explicit shared_ptr(T * p);</pre>
<blockquote>
<p><b>Requirements:</b> The expression <code>delete p</code> must be well-formed
and must not invoke undefined behavior.
</p>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, storing a copy of <b>p</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 1.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, <code>delete p</code> is
called.</p>
<P><STRONG>Notes:</STRONG> <B>p</B> must be a pointer to an object that was
allocated via a C++ <B>new</B> expression or be 0. The postcondition that <A href="#use_count">
use count</A> is 1 holds even if <b>p</b> is 0; invoking <STRONG>delete</STRONG>
on a pointer that has a value of 0 is harmless.</P>
</blockquote>
<pre>template&lt;typename D&gt; shared_ptr(T * p, D d);</pre>
<blockquote>
<p><b>Requirements:</b> The copy constructor and destructor of <b>D</b> must not
throw. The expression <code>d(p)</code> must be well-formed, must not invoke
undefined behavior, and must not throw exceptions.
</p>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, storing a copy of <b>p</b> and <b>d</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 1.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, <code>d(p)</code> is called.</p>
<p><b>Notes:</b> When the the time comes to delete the object pointed to by <b>p</b>,
<code>d(p)</code> is invoked.</p>
</blockquote>
<pre>shared_ptr(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr(shared_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, as if by storing a copy of the
pointer stored in <STRONG>r</STRONG>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> for all copies is
increased by one.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>explicit shared_ptr(<A href="weak_ptr.htm" >weak_ptr</A> const &amp; r);</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, as if by storing a copy of the
pointer stored in <STRONG>r</STRONG>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> for all copies is
increased by one.</p>
<p><b>Throws:</b> <b>use_count_is_zero</b> when <code>r.use_count() == 0</code>.</p>
<p><b>Exception safety:</b> If an exception is thrown, the constructor has no
effect.</p>
</blockquote>
<pre>template&lt;typename Y&gt; shared_ptr(std::auto_ptr&lt;Y&gt; &amp; r);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Constructs a <B>shared_ptr</B>, as if by storing a copy of <STRONG>r.release()</STRONG>.</P>
<P><B>Postconditions:</B> <A href="#use_count">use count</A> for all copies is
increased by one.</P>
<P><B>Throws:</B> <B>std::bad_alloc</B>.</P>
<P><B>Exception safety:</B> If an exception is thrown, the constructor has no
effect.</P>
</BLOCKQUOTE>
<h3><a name="destructor">destructor</a></h3>
<pre>~shared_ptr(); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> If <STRONG>*this</STRONG> is the sole owner (<code>use_count() == 1</code>),
destroys the object pointed to by the stored pointer.</P>
<P><B>Postconditions:</B> <A href="#use_count">use count</A> for all remaining
copies is decreased by one.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> <B>T</B> need not be a complete type. The guarantee that the
destructor does not throw exceptions depends on the requirement that the
deleted object's destructor does not throw exceptions. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</BLOCKQUOTE>
<H3><a name="assignment">assignment</a></H3>
<pre>shared_ptr &amp; operator=(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; operator=(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; operator=(std::auto_ptr&lt;Y&gt; &amp; r);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(r).swap(*this)</code>.</P>
<P><B>Notes:</B> The implementation is free to meet the effects (and the implied
guarantees) via different means, without creating a temporary. In particular,
in the example:</P>
<pre>
shared_ptr&lt;int&gt; p(new int);
shared_ptr&lt;void&gt; q(p);
p = p;
q = p;
</pre>
<p>both assignments may be no-ops.</p>
</BLOCKQUOTE>
<h3><a name="reset">reset</a></h3>
<pre>void reset();</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr().swap(*this)</code>.</P>
</BLOCKQUOTE>
<pre>void reset(T * p);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(p).swap(*this)</code>.</P>
<P><B>Notes:</B> Note the implied requirement that <b>T</b> is a complete type.</P>
</BLOCKQUOTE>
<pre>template&lt;typename D&gt; void reset(T * p, D d);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(p, d).swap(*this)</code>.</P>
</BLOCKQUOTE>
<h3><a name="indirection">indirection</a></h3>
<pre>T &amp; operator*() const; // never throws</pre>
<blockquote>
<p><b>Requirements:</b> The stored pointer must not be 0.</p>
<p><b>Returns:</b> a reference to the object pointed to by the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>T * operator-&gt;() const; // never throws</pre>
<blockquote>
<p><b>Requirements:</b> The stored pointer must not be 0.</p>
<p><b>Returns:</b> the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<h3><a name="unique">unique</a></h3>
<pre>bool unique() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>use_count() == 1</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>unique()</code> may be faster than <code>use_count()</code>. <B>T</B>
need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<h3><a name="use_count">use_count</a></h3>
<pre>long use_count() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the number of <b>shared_ptr</b> objects sharing ownership of the
stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>use_count()</code> is not necessarily efficient. Use only
for debugging and testing purposes, not for production code. <B>T</B> need not
be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<h3><a name="conversions">conversions</a></h3>
<pre>operator <i>implementation-defined-type</i> () const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> an implementation defined value that, when used in boolean
contexts, is equivalent to <code>get() != 0</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> This conversion operator allows <b>shared_ptr</b> objects to be
used in boolean contexts, like <code>if (p && p-&gt;valid()) {}</code>. The
actual target type is typically a pointer to a member function, avloiding many
of the implicit conversion pitfalls.</P>
</blockquote>
<h3><a name="swap">swap</a></h3>
<pre>void swap(shared_ptr &amp; b); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Exchanges the contents of the two smart pointers.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;typename T, typename U&gt;
bool operator==(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() == b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<pre>template&lt;typename T, typename U&gt;
bool operator!=(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() != b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<pre>template&lt;typename T&gt;
bool operator&lt;(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;T&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> an implementation-defined value such that <b>operator&lt;</b>
is a strict weak ordering as described in section 25.3 <code>[lib.alg.sorting]</code>
of the C++ standard.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> Allows <STRONG>shared_ptr</STRONG> objects to be used as keys in
associative containers. <B>T</B> need not be a complete type. See the smart
pointer <A href="smart_ptr.htm#Common requirements">common requirements</A>.</P>
</blockquote>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt;
void swap(shared_ptr&lt;T&gt; &amp; a, shared_ptr&lt;T&gt; &amp; b) // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>a.swap(b)</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> Matches the interface of <B>std::swap</B>. Provided as an aid to
generic programming.</P>
</BLOCKQUOTE>
<h3><a name="shared_static_cast">shared_static_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_static_cast(shared_ptr&lt;U&gt; const &amp; r); // never throws</pre>
<BLOCKQUOTE>
<P><STRONG>Requires:</STRONG> The expression <code>static_cast&lt;T*&gt;(r.get())</code>
must be well-formed.</P>
<P><B>Returns:</B> A <STRONG>shared_ptr&lt;T&gt;</STRONG> object that stores a copy
of <code>static_cast&lt;T*&gt;(r.get())</code> and shares ownership with <b>r</b>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> the seemingly equivalent expression</P>
<p><code>shared_ptr&lt;T&gt;(static_cast&lt;T*&gt;(r.get()))</code></p>
<p>will eventually result in undefined behavior, attempting to delete the same
object twice.</p>
</BLOCKQUOTE>
<h3><a name="shared_dynamic_cast">shared_dynamic_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_dynamic_cast(shared_ptr&lt;U&gt; const &amp; r);</pre>
<BLOCKQUOTE>
<P><STRONG>Requires:</STRONG> The expression <CODE>dynamic_cast&lt;T*&gt;(r.get())</CODE>
must be well-formed and its behavior defined.</P>
<P><B>Returns:</B></P>
<UL>
<LI>
When <CODE>dynamic_cast&lt;T*&gt;(r.get())</CODE> returns a nonzero
value,&nbsp;a <STRONG>shared_ptr&lt;T&gt;</STRONG> object that stores a copy of
it and shares ownership with <STRONG>r</STRONG>;
<LI>
Otherwise, a default-constructed <STRONG>shared_ptr&lt;T&gt;</STRONG> object.</LI></UL>
<P><B>Throws:</B> <STRONG>std::bad_alloc</STRONG>.</P>
<P><B>Exception safety:</B> If an exception is thrown, the function has no
effect.</P>
<P><B>Notes:</B> the seemingly equivalent expression</P>
<P><CODE>shared_ptr&lt;T&gt;(dynamic_cast&lt;T*&gt;(r.get()))</CODE></P>
<P>will eventually result in undefined behavior, attempting to delete the same
object twice.</P>
</BLOCKQUOTE>
<h3><a name="shared_polymorphic_cast">shared_polymorphic_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_polymorphic_cast(shared_ptr&lt;U&gt; const &amp; r);</pre>
<BLOCKQUOTE>
<p><STRONG>Requires:</STRONG> The expression <CODE><A href="../conversion/cast.htm#Polymorphic_cast">
polymorphic_cast</A>&lt;T*&gt;(r.get())</CODE> must be well-formed and
its behavior defined.</p>
<P><B>Returns:</B> A <STRONG>shared_ptr&lt;T&gt;</STRONG> object that stores a copy
of <CODE><A href="../conversion/cast.htm#Polymorphic_cast">polymorphic_cast</A>&lt;T*&gt;(r.get())</CODE>
and shares ownership with <B>r</B>.</P>
<P><B>Throws:</B> <STRONG>std::bad_cast</STRONG> when the pointer cannot be
converted.</P>
<P><B>Exception safety:</B> If an exception is thrown, the function has no effect.</P>
</BLOCKQUOTE>
<h3><a name="shared_polymorphic_downcast">shared_polymorphic_downcast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_polymorphic_downcast(shared_ptr&lt;U&gt; const &amp; r); // never throws</pre>
<BLOCKQUOTE>
<p><STRONG>Requires:</STRONG> The expression <CODE><A href="../conversion/cast.htm#Polymorphic_cast">
polymorphic_downcast</A>&lt;T*&gt;(r.get())</CODE> must be well-formed
and its behavior defined.</p>
<P><B>Returns:</B> A <STRONG>shared_ptr&lt;T&gt;</STRONG> object that stores a copy
of <CODE><A href="../conversion/cast.htm#Polymorphic_cast">polymorphic_downcast</A>&lt;T*&gt;(r.get())</CODE>
and shares ownership with <B>r</B>.</P>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<h2><a name="example">Example</a></h2>
<p>See <A href="shared_ptr_example.cpp">shared_ptr_example.cpp</A> for a complete
example program. The program builds a <b>std::vector</b> and <b>std::set</b> of <b>shared_ptr</b>
objects.</p>
<p>Note that after the containers have been populated, some of the <b>shared_ptr</b>
objects will have a use count of 1 rather than a use count of 2, since the set
is a <b>std::set</b> rather than a <b>std::multiset</b>, and thus does not
contain duplicate entries. Furthermore, the use count may be even higher at
various times while <b>push_back</b> and <b>insert</b> container operations are
performed. More complicated yet, the container operations may throw exceptions
under a variety of circumstances. Getting the memory management and exception
handling in this example right without a smart pointer would be a nightmare.</p>
<h2><a name="Handle/Body">Handle/Body</a> Idiom</h2>
<p>One common usage of <b>shared_ptr</b> is to implement a handle/body (also called
pimpl) idiom which avoids exposing the body (implementation) in the header
file.</p>
<p>The <A href="shared_ptr_example2_test.cpp">shared_ptr_example2_test.cpp</A> sample
program includes a header file, <A href="shared_ptr_example2.hpp">shared_ptr_example2.hpp</A>,
which uses a <b>shared_ptr&lt;&gt;</b> to an incomplete type to hide the
implementation. The instantiation of member functions which require a complete
type occurs in the <A href="shared_ptr_example2.cpp">shared_ptr_example2.cpp</A>
implementation file. Note that there is no need for an explicit destructor.
Unlike ~scoped_ptr, ~shared_ptr does not require that <b>T</b> be a complete
type.</p>
<h2><a name="FAQ">Frequently Asked Questions</a></h2>
<P><B>Q.</B> There are several variations of shared pointers, with different
tradeoffs; why does the smart pointer library supply only a single
implementation? It would be useful to be able to experiment with each type so
as to find the most suitable for the job at hand?<BR>
<b>A.</b> An important goal of <STRONG>shared_ptr</STRONG> is to provide a
standard shared-ownership pointer. Having a single pointer type is important
for stable library interfaces, since different shared pointers typically cannot
interoperate, i.e. a reference counted pointer (used by library A) cannot share
ownership with a linked pointer (used by library B.)</P>
<P><B>Q.</B> Why doesn't <B>shared_ptr</B> have template parameters supplying
traits or policies to allow extensive user customization?<BR>
<B>A.</B> Parameterization discourages users. The <B>shared_ptr</B> template is
carefully crafted to meet common needs without extensive parameterization. Some
day a highly configurable smart pointer may be invented that is also very easy
to use and very hard to misuse. Until then, <B>shared_ptr</B> is the smart
pointer of choice for a wide range of applications. (Those interested in policy
based smart pointers should read <A href="http://cseng.aw.com/book/0,,0201704315,00.html">
Modern C++ Design</A> by Andrei Alexandrescu.)</P>
<P><B>Q.</B> I am not convinced. Default parameters can be use where appropriate to
hide the complexity. Again, why not policies?<BR>
<B>A.</B> Template parameters affect the type. See the answer to the first
question above.</P>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> use a linked list implementation?<br>
<b>A.</b> A linked list implementation does not offer enough advantages to
offset the added cost of an extra pointer. See <A href="smarttests.htm">timings</A>
page. In addition, it is expensive to make a linked list implementation thread
safe.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> (or any of the other Boost smart
pointers) supply an automatic conversion to <b>T*</b>?<br>
<b>A.</b> Automatic conversion is believed to be too error prone.</p>
<p><b>Q.</b> Why does <b>shared_ptr</b> supply use_count()?<br>
<b>A.</b> As an aid to writing test cases and debugging displays. One of the
progenitors had use_count(), and it was useful in tracking down bugs in a
complex project that turned out to have cyclic-dependencies.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> specify complexity requirements?<br>
<b>A.</b> Because complexity requirements limit implementors and complicate the
specification without apparent benefit to <b>shared_ptr</b> users. For example,
error-checking implementations might become non-conforming if they had to meet
stringent complexity requirements.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> provide a release() function?<br>
<b>A.</b> <b>shared_ptr</b> cannot give away ownership unless it's unique()
because the other copy will still destroy the object.</p>
<p>Consider:</p>
<blockquote><pre>shared_ptr&lt;int&gt; a(new int);
2002-01-11 20:20:07 +00:00
shared_ptr&lt;int&gt; b(a); // a.use_count() == b.use_count() == 2
int * p = a.release();
// Who owns p now? b will still call delete on it in its destructor.</pre>
</blockquote>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> provide (your pet feature here)?<br>
<b>A.</b> Because (your pet feature here) would mandate a reference counted
implementation or a linked list implementation, or some other specific
implementation. This is not the intent.</p>
<hr>
<p>Revised&nbsp; <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->
14 February 2002<!--webbot bot="Timestamp" i-checksum="38439" endspan --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Copyright 2002 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</p>
</body>
</html>