Files
boost_unordered/include/boost/unordered/detail/table.hpp

753 lines
25 KiB
C++
Raw Normal View History

// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_ALL_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_ALL_HPP_INCLUDED
#include <boost/unordered/detail/buckets.hpp>
namespace boost { namespace unordered { namespace detail {
// This implements almost all of the required functionality, apart
// from some things that are specific to containers with unique and
// equivalent keys which is implemented in unique_table and
// equivalent_table. See unique.hpp and equivalent.hpp for
// their declaration and implementation.
template <class T>
class table : public T::buckets, public T::functions
{
table(table const&);
table& operator=(table const&);
public:
typedef BOOST_DEDUCED_TYPENAME T::hasher hasher;
typedef BOOST_DEDUCED_TYPENAME T::key_equal key_equal;
typedef BOOST_DEDUCED_TYPENAME T::value_allocator value_allocator;
typedef BOOST_DEDUCED_TYPENAME T::key_type key_type;
typedef BOOST_DEDUCED_TYPENAME T::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME T::functions functions;
typedef BOOST_DEDUCED_TYPENAME T::buckets buckets;
typedef BOOST_DEDUCED_TYPENAME T::extractor extractor;
typedef BOOST_DEDUCED_TYPENAME T::node_constructor node_constructor;
typedef BOOST_DEDUCED_TYPENAME T::node node;
typedef BOOST_DEDUCED_TYPENAME T::bucket bucket;
typedef BOOST_DEDUCED_TYPENAME T::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME T::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME T::node_allocator node_allocator;
typedef BOOST_DEDUCED_TYPENAME T::iterator_pair iterator_pair;
// Members
float mlf_;
std::size_t max_load_; // Only use if this->buckets_.
// Helper methods
key_type const& get_key(value_type const& v) const {
return extractor::extract(v);
}
private:
// pre: this->buckets_ != null
template <class Key, class Pred>
node_ptr find_node_impl(
std::size_t bucket_index,
std::size_t hash,
Key const& k,
Pred const& eq) const
{
node_ptr n = this->buckets_[bucket_index].next_;
if (!n) return n;
n = n->next_;
for (;;)
{
if (!n) return n;
std::size_t node_hash = node::get_hash(n);
if (hash == node_hash)
{
if (eq(k, get_key(node::get_value(n))))
return n;
}
else
{
if (node_hash % this->bucket_count_ != bucket_index)
return node_ptr();
}
n = node::next_group(n);
}
}
public:
template <class Key, class Hash, class Pred>
node_ptr generic_find_node(
Key const& k,
Hash const& hash_function,
Pred const& eq) const
{
if (!this->size_) return node_ptr();
std::size_t hash = hash_function(k);
return this->find_node_impl(hash % this->bucket_count_, hash, k, eq);
}
node_ptr find_node(
std::size_t bucket_index,
std::size_t hash,
key_type const& k) const
{
if (!this->size_) return node_ptr();
return this->find_node_impl(bucket_index, hash, k, this->key_eq());
}
node_ptr find_node(key_type const& k) const
{
if (!this->size_) return node_ptr();
std::size_t hash = this->hash_function()(k);
return this->find_node_impl(hash % this->bucket_count_, hash, k,
this->key_eq());
}
node_ptr find_matching_node(node_ptr n) const
{
// For some stupid reason, I decided to support equality comparison
// when different hash functions are used. So I can't use the hash
// value from the node here.
return find_node(get_key(node::get_value(n)));
}
////////////////////////////////////////////////////////////////////////
// Load methods
std::size_t max_size() const
{
using namespace std;
// size < mlf_ * count
return double_to_size_t(ceil(
static_cast<double>(this->mlf_) *
static_cast<double>(this->max_bucket_count())
)) - 1;
}
std::size_t calculate_max_load()
{
using namespace std;
// From 6.3.1/13:
// Only resize when size >= mlf_ * count
return double_to_size_t(ceil(
static_cast<double>(this->mlf_) *
static_cast<double>(this->bucket_count_)
));
}
void max_load_factor(float z)
{
BOOST_ASSERT(z > 0);
mlf_ = (std::max)(z, minimum_max_load_factor);
if (BOOST_UNORDERED_BORLAND_BOOL(this->buckets_))
this->max_load_ = this->calculate_max_load();
}
std::size_t min_buckets_for_size(std::size_t size) const
{
BOOST_ASSERT(this->mlf_ != 0);
using namespace std;
// From 6.3.1/13:
// size < mlf_ * count
// => count > size / mlf_
//
// Or from rehash post-condition:
// count > size / mlf_
return next_prime(double_to_size_t(floor(size / (double) mlf_)) + 1);
}
////////////////////////////////////////////////////////////////////////
// Constructors
table(std::size_t num_buckets,
hasher const& hf,
key_equal const& eq,
node_allocator const& a)
: buckets(a, next_prime(num_buckets)),
functions(hf, eq),
mlf_(1.0f),
max_load_(0)
{
}
table(table const& x, node_allocator const& a)
: buckets(a, x.min_buckets_for_size(x.size_)),
functions(x),
mlf_(x.mlf_),
max_load_(0)
{
if(x.size_) {
x.copy_buckets_to(*this);
this->max_load_ = calculate_max_load();
}
}
table(table& x, move_tag m)
: buckets(x, m),
functions(x),
mlf_(x.mlf_),
max_load_(calculate_max_load()) {}
// TODO: Why do I use x's bucket count?
table(table& x, node_allocator const& a, move_tag m)
: buckets(a, x.bucket_count_),
functions(x),
mlf_(x.mlf_),
max_load_(x.max_load_)
{
if(a == x.node_alloc()) {
this->buckets::swap(x, false_type());
}
else if(x.size_) {
// Use a temporary table because move_buckets_to leaves the
// source container in a complete mess.
buckets tmp(x, m);
tmp.move_buckets_to(*this);
this->max_load_ = calculate_max_load();
}
}
~table()
{}
// Iterators
node_ptr begin() const {
return !this->buckets_ ?
node_ptr() : this->buckets_[this->bucket_count_].next_;
}
void assign(table const& x)
{
assign(x, integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_copy_assignment::value>());
}
void assign(table const& x, false_type)
{
table tmp(x, this->node_alloc());
this->swap(tmp, false_type());
}
void assign(table const& x, true_type)
{
table tmp(x, x.node_alloc());
// Need to delete before setting the allocator so that buckets
// aren't deleted with the wrong allocator.
if(this->buckets_) this->delete_buckets();
// TODO: Can allocator assignment throw?
this->allocators_.assign(x.allocators_);
this->swap(tmp, false_type());
}
void move_assign(table& x)
{
move_assign(x, integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_move_assignment::value>());
}
void move_assign(table& x, true_type)
{
if(this->buckets_) this->delete_buckets();
this->allocators_.move_assign(x.allocators_);
move_assign_no_alloc(x);
}
void move_assign(table& x, false_type)
{
if(this->node_alloc() == x.node_alloc()) {
if(this->buckets_) this->delete_buckets();
move_assign_no_alloc(x);
}
else {
set_hash_functions<hasher, key_equal> new_func_this(*this, x);
if (x.size_) {
buckets b(this->node_alloc(), x.min_buckets_for_size(x.size_));
buckets tmp(x, move_tag());
tmp.move_buckets_to(b);
b.swap(*this);
}
else {
this->clear();
}
this->mlf_ = x.mlf_;
if (this->buckets_) this->max_load_ = calculate_max_load();
new_func_this.commit();
}
}
void move_assign_no_alloc(table& x)
{
set_hash_functions<hasher, key_equal> new_func_this(*this, x);
// No throw from here.
this->move_buckets_from(x);
this->mlf_ = x.mlf_;
this->max_load_ = x.max_load_;
new_func_this.commit();
}
////////////////////////////////////////////////////////////////////////
// Swap & Move
void swap(table& x)
{
swap(x, integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_swap::value>());
}
// Only swaps the allocators if Propagate::value
template <typename Propagate>
void swap(table& x, Propagate p)
{
set_hash_functions<hasher, key_equal> op1(*this, x);
set_hash_functions<hasher, key_equal> op2(x, *this);
// I think swap can throw if Propagate::value,
// since the allocators' swap can throw. Not sure though.
this->buckets::swap(x, p);
std::swap(this->mlf_, x.mlf_);
std::swap(this->max_load_, x.max_load_);
op1.commit();
op2.commit();
}
// Swap everything but the allocators, and the functions objects.
void swap_contents(table& x)
{
this->buckets::swap(x, false_type());
std::swap(this->mlf_, x.mlf_);
std::swap(this->max_load_, x.max_load_);
}
////////////////////////////////////////////////////////////////////////
// Key methods
std::size_t count(key_type const& k) const
{
if(!this->size_) return 0;
return node::group_count(find_node(k));
}
value_type& at(key_type const& k) const
{
if (this->size_) {
node_ptr it = find_node(k);
if (BOOST_UNORDERED_BORLAND_BOOL(it))
return node::get_value(it);
}
::boost::throw_exception(
std::out_of_range("Unable to find key in unordered_map."));
}
iterator_pair equal_range(key_type const& k) const
{
if(!this->size_)
return iterator_pair(node_ptr(), node_ptr());
node_ptr ptr = find_node(k);
return iterator_pair(ptr, !ptr ? ptr : node::next_group(ptr));
}
// Erase
//
// no throw
std::size_t erase_key(key_type const& k)
{
if(!this->size_) return 0;
std::size_t hash = this->hash_function()(k);
std::size_t bucket_index = hash % this->bucket_count_;
bucket_ptr bucket = this->get_bucket(bucket_index);
node_ptr prev = bucket->next_;
if (!prev) return 0;
for (;;)
{
if (!prev->next_) return 0;
std::size_t node_hash = node::get_hash(prev->next_);
if (node_hash % this->bucket_count_ != bucket_index)
return 0;
if (node_hash == hash &&
this->key_eq()(k, get_key(node::get_value(prev->next_))))
break;
prev = node::next_group2(prev);
}
node_ptr pos = prev->next_;
node_ptr end = node::next_group(pos);
prev->next_ = end;
this->fix_buckets(bucket, prev, end);
return this->delete_nodes(pos, end);
}
// Reserve and rehash
bool reserve_for_insert(std::size_t);
void rehash(std::size_t);
};
////////////////////////////////////////////////////////////////////////////
// Reserve & Rehash
// basic exception safety
template <class T>
inline bool table<T>::reserve_for_insert(std::size_t size)
{
if (!this->buckets_) {
std::size_t old_bucket_count = this->bucket_count_;
this->bucket_count_ = (std::max)(this->bucket_count_,
this->min_buckets_for_size(size));
this->create_buckets();
this->max_load_ = calculate_max_load();
return old_bucket_count != this->bucket_count_;
}
else if(size >= max_load_) {
std::size_t num_buckets
= this->min_buckets_for_size((std::max)(size,
this->size_ + (this->size_ >> 1)));
if (num_buckets != this->bucket_count_) {
this->rehash_impl(num_buckets);
this->max_load_ = calculate_max_load();
return true;
}
}
return false;
}
// if hash function throws, basic exception safety
// strong otherwise.
template <class T>
void table<T>::rehash(std::size_t min_buckets)
{
using namespace std;
if(!this->size_) {
if(this->buckets_) this->delete_buckets();
this->bucket_count_ = next_prime(min_buckets);
}
else {
// no throw:
min_buckets = next_prime((std::max)(min_buckets,
double_to_size_t(floor(this->size_ / (double) mlf_)) + 1));
if(min_buckets != this->bucket_count_) {
this->rehash_impl(min_buckets);
this->max_load_ = calculate_max_load();
}
}
}
////////////////////////////////////////////////////////////////////////////
//
// types
//
// This is used to convieniently pass around a container's typedefs
// without having 7 template parameters.
template <class K, class V, class H, class P, class A, class E, bool Unique>
struct types
{
public:
typedef K key_type;
typedef V value_type;
typedef H hasher;
typedef P key_equal;
typedef A value_allocator;
typedef E extractor;
typedef ::boost::unordered::detail::node_constructor<value_allocator, Unique> node_constructor;
typedef ::boost::unordered::detail::buckets<value_allocator, Unique> buckets;
typedef ::boost::unordered::detail::functions<hasher, key_equal> functions;
typedef BOOST_DEDUCED_TYPENAME buckets::node node;
typedef BOOST_DEDUCED_TYPENAME buckets::bucket bucket;
typedef BOOST_DEDUCED_TYPENAME buckets::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME buckets::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME buckets::node_allocator node_allocator;
typedef std::pair<node_ptr, node_ptr> iterator_pair;
};
}}}
namespace boost { namespace unordered { namespace iterator_detail {
// Iterators
//
// all no throw
template <class A, bool Unique> class iterator;
template <class A, bool Unique> class c_iterator;
template <class A, bool Unique> class l_iterator;
template <class A, bool Unique> class cl_iterator;
// Local Iterators
//
// all no throw
template <class A, bool Unique>
class l_iterator
: public ::boost::iterator <
std::forward_iterator_tag,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type,
std::ptrdiff_t,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::pointer,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type&>
{
public:
typedef BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type value_type;
private:
typedef ::boost::unordered::detail::buckets<A, Unique> buckets;
typedef BOOST_DEDUCED_TYPENAME buckets::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME buckets::node node;
typedef cl_iterator<A, Unique> const_local_iterator;
friend class cl_iterator<A, Unique>;
node_ptr ptr_;
std::size_t bucket_;
std::size_t bucket_count_;
public:
l_iterator() : ptr_() {}
l_iterator(node_ptr x, std::size_t b, std::size_t c)
: ptr_(x), bucket_(b), bucket_count_(c) {}
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type& operator*() const {
return node::get_value(ptr_);
}
value_type* operator->() const {
return node::get_value_ptr(ptr_);
}
l_iterator& operator++() {
ptr_ = ptr_->next_;
if (ptr_ && node::get_hash(ptr_) % bucket_count_ != bucket_)
ptr_ = node_ptr();
return *this;
}
l_iterator operator++(int) {
l_iterator tmp(*this);
ptr_ = ptr_->next_;
if (ptr_ && node::get_hash(ptr_) % bucket_count_ != bucket_)
ptr_ = node_ptr();
return tmp;
}
bool operator==(l_iterator x) const {
return ptr_ == x.ptr_;
}
bool operator==(const_local_iterator x) const {
return ptr_ == x.ptr_;
}
bool operator!=(l_iterator x) const {
return ptr_ != x.ptr_;
}
bool operator!=(const_local_iterator x) const {
return ptr_ != x.ptr_;
}
};
template <class A, bool Unique>
class cl_iterator
: public ::boost::iterator <
std::forward_iterator_tag,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type,
std::ptrdiff_t,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::const_pointer,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type const& >
{
public:
typedef BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type value_type;
private:
typedef ::boost::unordered::detail::buckets<A, Unique> buckets;
typedef BOOST_DEDUCED_TYPENAME buckets::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME buckets::node node;
typedef l_iterator<A, Unique> local_iterator;
friend class l_iterator<A, Unique>;
node_ptr ptr_;
std::size_t bucket_;
std::size_t bucket_count_;
public:
cl_iterator() : ptr_() {}
cl_iterator(node_ptr x, std::size_t b, std::size_t c)
: ptr_(x), bucket_(b), bucket_count_(c) {}
cl_iterator(local_iterator x)
: ptr_(x.ptr_), bucket_(x.bucket_), bucket_count_(x.bucket_count_)
{}
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type const&
operator*() const {
return node::get_value(ptr_);
}
value_type const* operator->() const {
return node::get_value_ptr(ptr_);
}
cl_iterator& operator++() {
ptr_ = ptr_->next_;
if (ptr_ && node::get_hash(ptr_) % bucket_count_ != bucket_)
ptr_ = node_ptr();
return *this;
}
cl_iterator operator++(int) {
cl_iterator tmp(*this);
ptr_ = ptr_->next_;
if (ptr_ && node::get_hash(ptr_) % bucket_count_ != bucket_)
ptr_ = node_ptr();
return tmp;
}
bool operator==(local_iterator x) const {
return ptr_ == x.ptr_;
}
bool operator==(cl_iterator x) const {
return ptr_ == x.ptr_;
}
bool operator!=(local_iterator x) const {
return ptr_ != x.ptr_;
}
bool operator!=(cl_iterator x) const {
return ptr_ != x.ptr_;
}
};
template <class A, bool Unique>
class iterator
: public ::boost::iterator <
std::forward_iterator_tag,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type,
std::ptrdiff_t,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::pointer,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type& >
{
public:
typedef BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type value_type;
private:
typedef ::boost::unordered::detail::buckets<A, Unique> buckets;
typedef BOOST_DEDUCED_TYPENAME buckets::node node;
typedef BOOST_DEDUCED_TYPENAME buckets::node_ptr node_ptr;
typedef c_iterator<A, Unique> const_iterator;
friend class c_iterator<A, Unique>;
node_ptr node_;
public:
iterator() : node_() {}
explicit iterator(node_ptr const& x) : node_(x) {}
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type& operator*() const {
return node::get_value(node_);
}
value_type* operator->() const {
return &node::get_value(node_);
}
iterator& operator++() {
node_ = node_->next_; return *this;
}
iterator operator++(int) {
iterator tmp(node_); node_ = node_->next_; return tmp;
}
bool operator==(iterator const& x) const {
return node_ == x.node_;
}
bool operator==(const_iterator const& x) const {
return node_ == x.node_;
}
bool operator!=(iterator const& x) const {
return node_ != x.node_;
}
bool operator!=(const_iterator const& x) const {
return node_ != x.node_;
}
};
template <class A, bool Unique>
class c_iterator
: public ::boost::iterator <
std::forward_iterator_tag,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type,
std::ptrdiff_t,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::const_pointer,
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type const& >
{
public:
typedef BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type value_type;
private:
typedef ::boost::unordered::detail::buckets<A, Unique> buckets;
typedef BOOST_DEDUCED_TYPENAME buckets::node node;
typedef BOOST_DEDUCED_TYPENAME buckets::node_ptr node_ptr;
typedef ::boost::unordered::iterator_detail::iterator<A, Unique>
iterator;
friend class ::boost::unordered::iterator_detail::iterator<A, Unique>;
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <class K, class T, class H, class P, class A2>
friend class ::boost::unordered::unordered_map;
template <class K, class T, class H, class P, class A2>
friend class ::boost::unordered::unordered_multimap;
template <class T, class H, class P, class A2>
friend class ::boost::unordered::unordered_set;
template <class T, class H, class P, class A2>
friend class ::boost::unordered::unordered_multiset;
#else
public:
#endif
node_ptr node_;
public:
c_iterator() : node_() {}
explicit c_iterator(node_ptr const& x) : node_(x) {}
c_iterator(iterator const& x) : node_(x.node_) {}
BOOST_DEDUCED_TYPENAME boost::unordered::detail::allocator_traits<A>::value_type const& operator*() const {
return node::get_value(node_);
}
value_type const* operator->() const {
return &node::get_value(node_);
}
c_iterator& operator++() {
node_ = node_->next_; return *this;
}
c_iterator operator++(int) {
c_iterator tmp(node_); node_ = node_->next_; return tmp;
}
bool operator==(iterator const& x) const {
return node_ == x.node_;
}
bool operator==(c_iterator const& x) const {
return node_ == x.node_;
}
bool operator!=(iterator const& x) const {
return node_ != x.node_;
}
bool operator!=(c_iterator const& x) const {
return node_ != x.node_;
}
};
}}}
#endif