Files
boost_unordered/include/boost/unordered/detail/node.hpp

367 lines
11 KiB
C++
Raw Normal View History

// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// This contains the basic data structure, apart from the actual values. There's
// no construction or deconstruction here. So this only depends on the pointer
// type.
#ifndef BOOST_UNORDERED_DETAIL_NODE_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_NODE_HPP_INCLUDED
#include <boost/unordered/detail/util.hpp>
#if BOOST_WORKAROUND(__BORLANDC__, <= 0X0582)
#define BOOST_UNORDERED_BORLAND_BOOL(x) (bool)(x)
#else
#define BOOST_UNORDERED_BORLAND_BOOL(x) x
#endif
namespace boost { namespace unordered { namespace detail {
// Some forward declarations for buckets and tables
template <typename T> class table;
template <class A, bool Unique> class buckets;
////////////////////////////////////////////////////////////////////////////
//
// This section implements buckets and nodes. Here's a rough
// inheritance diagram, to show how they pull together.
//
// For unordered_set/unordered_map:
//
// bucket<A> value_base<allocator_traits<A>::value_type>
// | |
// +--------------+-------------+
// |
// ungrouped_node<A>
//
// For unordered_multiset/unordered_multimap:
//
// bucket<A> value_base<allocator_traits<A>::value_type>
// | |
// +--------------+-------------+
// |
// grouped_node<A>
// bucket
//
// bucket is used for both the buckets and as a base class for
// nodes. By using 'bucket_ptr' for 'node_ptr', 'next_' can point
// to either a bucket or a node. This is used later to implement a
// sentinel at the end of the bucket array.
template <class A>
class bucket
{
bucket& operator=(bucket const&);
public:
typedef BOOST_DEDUCED_TYPENAME
::boost::unordered::detail::rebind_wrap<A, bucket>::type
bucket_allocator;
typedef BOOST_DEDUCED_TYPENAME
allocator_traits<bucket_allocator>::pointer bucket_ptr;
typedef bucket_ptr node_ptr;
node_ptr next_;
bucket() : next_() {}
};
// The space used to store values in a node.
template <class ValueType>
struct value_base
{
typedef ValueType value_type;
BOOST_DEDUCED_TYPENAME ::boost::aligned_storage<
sizeof(value_type),
::boost::alignment_of<value_type>::value>::type data_;
void* address() {
return this;
}
value_type& value() {
return *(ValueType*) this;
}
value_type* value_ptr() {
return (ValueType*) this;
}
private:
value_base& operator=(value_base const&);
};
// In containers with equivalent keys (unordered_multimap and
// unordered_multiset) equivalent nodes are grouped together, in
// containers with unique keys (unordered_map and unordered_set)
// individual nodes are treated as groups of one. The following two
// classes implement the data structure.
// This is used for containers with unique keys. There are no groups
// so it doesn't add any extra members, and just treats individual
// nodes as groups of one.
template <class A>
struct ungrouped_node
: ::boost::unordered::detail::bucket<A>,
value_base<BOOST_DEDUCED_TYPENAME allocator_traits<A>::value_type>
{
typedef ::boost::unordered::detail::bucket<A> bucket;
typedef BOOST_DEDUCED_TYPENAME bucket::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME bucket::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME allocator_traits<A>::value_type value_type;
std::size_t hash_;
ungrouped_node() : bucket() {}
void init(node_ptr) {}
static node_ptr next_group(node_ptr ptr)
{
return ptr->next_;
}
static node_ptr next_group2(node_ptr ptr)
{
return ptr->next_;
}
static std::size_t group_count(node_ptr n)
{
return !n ? 0 : 1;
}
static void add_after_node(node_ptr n, node_ptr position)
{
n->next_ = position->next_;
position->next_ = position;
}
static node_ptr unlink_node(bucket& b, node_ptr n)
{
return unlink_nodes(b, n, n->next_);
}
static node_ptr unlink_nodes(bucket& b, node_ptr begin, node_ptr end)
{
node_ptr prev = b.next_;
while(prev->next_ != begin) prev = prev->next_;
prev->next_ = end;
return prev;
}
static std::size_t get_hash(node_ptr p)
{
return static_cast<ungrouped_node&>(*p).hash_;
}
static void set_hash(node_ptr p, std::size_t hash)
{
static_cast<ungrouped_node&>(*p).hash_ = hash;
}
static value_type& get_value(node_ptr p)
{
return static_cast<ungrouped_node&>(*p).value();
}
static value_type* get_value_ptr(node_ptr p)
{
return static_cast<ungrouped_node&>(*p).value_ptr();
}
};
// This is used for containers with equivalent keys. It implements a
// circular list running in the opposite direction to the linked
// list through the nodes.
template <class A>
struct grouped_node
: ::boost::unordered::detail::bucket<A>,
value_base<BOOST_DEDUCED_TYPENAME allocator_traits<A>::value_type>
{
typedef ::boost::unordered::detail::bucket<A> bucket;
typedef BOOST_DEDUCED_TYPENAME bucket::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME bucket::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME allocator_traits<A>::value_type value_type;
std::size_t hash_;
node_ptr group_prev_;
grouped_node() : bucket(), group_prev_() {}
void init(node_ptr n)
{
group_prev_ = n;
}
static node_ptr next_group(node_ptr ptr)
{
return get(ptr).group_prev_->next_;
}
static node_ptr next_group2(node_ptr ptr)
{
return get(ptr->next_).group_prev_;
}
static std::size_t group_count(node_ptr ptr)
{
if (!ptr) return 0;
node_ptr start = ptr;
std::size_t size = 0;
do {
++size;
ptr = get(ptr).group_prev_;
} while(ptr != start);
return size;
}
static void add_after_node(node_ptr n, node_ptr pos)
{
n->next_ = get(pos).group_prev_->next_;
get(n).group_prev_ = get(pos).group_prev_;
get(pos).group_prev_->next_ = n;
get(pos).group_prev_ = n;
}
static node_ptr unlink_node(bucket& b, node_ptr n)
{
node_ptr next = n->next_;
node_ptr prev = get(n).group_prev_;
if(prev->next_ != n) {
// The node is at the beginning of a group.
// Find the previous node pointer:
prev = b.next_;
while(prev->next_ != n) {
prev = next_group2(prev);
}
// Remove from group
if(BOOST_UNORDERED_BORLAND_BOOL(next) &&
get(next).group_prev_ == n)
{
get(next).group_prev_ = get(n).group_prev_;
}
}
else if(BOOST_UNORDERED_BORLAND_BOOL(next) &&
get(next).group_prev_ == n)
{
// The deleted node is not at the end of the group, so
// change the link from the next node.
get(next).group_prev_ = get(n).group_prev_;
}
else {
// The deleted node is at the end of the group, so the
// first node in the group is pointing to it.
// Find that to change its pointer.
node_ptr x = get(n).group_prev_;
while(get(x).group_prev_ != n) {
x = get(x).group_prev_;
}
get(x).group_prev_ = get(n).group_prev_;
}
prev->next_ = next;
return prev;
}
static node_ptr unlink_nodes(bucket& b, node_ptr begin, node_ptr end)
{
node_ptr prev = get(begin).group_prev_;
if(prev->next_ != begin) {
// The node is at the beginning of a group.
// Find the previous node pointer:
prev = b.next_;
while(prev->next_ != begin) prev = next_group2(prev);
if(BOOST_UNORDERED_BORLAND_BOOL(end)) split_group(end);
}
else {
node_ptr group1 = split_group(begin);
if(BOOST_UNORDERED_BORLAND_BOOL(end)) {
node_ptr group2 = split_group(end);
if(begin == group2) {
node_ptr end1 = get(group1).group_prev_;
node_ptr end2 = get(group2).group_prev_;
get(group1).group_prev_ = end2;
get(group2).group_prev_ = end1;
}
}
}
prev->next_ = end;
return prev;
}
// Break a ciruclar list into two, with split as the beginning
// of the second group (if split is at the beginning then don't
// split).
static node_ptr split_group(node_ptr split)
{
// Find first node in group.
node_ptr first = split;
while(next_group(first) == first)
first = get(first).group_prev_;
if(first == split) return split;
node_ptr last = get(first).group_prev_;
get(first).group_prev_ = get(split).group_prev_;
get(split).group_prev_ = last;
return first;
}
static std::size_t get_hash(node_ptr p) {
return static_cast<grouped_node&>(*p).hash_;
}
static void set_hash(node_ptr p, std::size_t hash) {
static_cast<grouped_node&>(*p).hash_ = hash;
}
static value_type& get_value(node_ptr p) {
return static_cast<grouped_node&>(*p).value();
}
static value_type* get_value_ptr(node_ptr p) {
return static_cast<grouped_node&>(*p).value_ptr();
}
static grouped_node& get(node_ptr ptr) {
return static_cast<grouped_node&>(*ptr);
}
};
// These two classes implement an easy way to pass around the node
// group policy classes without the messy template parameters.
// Whenever you see the template parameter 'G' it's one of these.
struct ungrouped
{
template <class A>
struct node {
typedef ungrouped_node<A> type;
};
};
struct grouped
{
template <class A>
struct node {
typedef grouped_node<A> type;
};
};
}}}
#endif