Files
boost_unordered/test/unordered/insert_tests.cpp
Daniel James 1c606980ec Update tests for standard changes involving bucket count.
It seems my defect report was accepted at some point, and they tweaked
the requirements involving bucket counts. This also makes it possible to
have a bucket count of 0, which I think wasn't allowed in the past. I
don't think I'll change this implementation to do so, but I'd like to be
able to run these tests against standard implementations, so I'm
starting to take that into account.

I believe these changes were made after the C++14 standard, but I've
always been tracking the draft standards, so that doesn't really matter.
2016-09-18 12:22:48 +01:00

790 lines
23 KiB
C++

// Copyright 2006-2010 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
#include "../helpers/test.hpp"
#include <boost/next_prior.hpp>
#include "../objects/test.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/equivalent.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/input_iterator.hpp"
#include "../helpers/helpers.hpp"
#include <iostream>
namespace insert_tests {
test::seed_t initialize_seed(243432);
template <class X>
void unique_insert_tests1(X*, test::random_generator generator)
{
test::check_instances check_;
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef test::ordered<X> ordered;
std::cerr<<"insert(value) tests for containers with unique keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
std::pair<iterator, bool> r1 = x.insert(*it);
std::pair<BOOST_DEDUCED_TYPENAME ordered::iterator, bool>
r2 = tracker.insert(*it);
BOOST_TEST(r1.second == r2.second);
BOOST_TEST(*r1.first == *r2.first);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
template <class X>
void equivalent_insert_tests1(X*, test::random_generator generator)
{
std::cerr<<"insert(value) tests for containers with equivalent keys.\n";
test::check_instances check_;
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
BOOST_DEDUCED_TYPENAME X::iterator r1 = x.insert(*it);
BOOST_DEDUCED_TYPENAME test::ordered<X>::iterator r2
= tracker.insert(*it);
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
template <class X>
void insert_tests2(X*, test::random_generator generator)
{
typedef BOOST_DEDUCED_TYPENAME test::ordered<X> tracker_type;
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME tracker_type::iterator tracker_iterator;
std::cerr<<"insert(begin(), value) tests.\n";
{
test::check_instances check_;
X x;
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
iterator r1 = x.insert(x.begin(), *it);
tracker_iterator r2 = tracker.insert(tracker.begin(), *it);
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
std::cerr<<"insert(end(), value) tests.\n";
{
test::check_instances check_;
X x;
X const& x_const = x;
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(100, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
const_iterator r1 = x.insert(x_const.end(), *it);
tracker_iterator r2 = tracker.insert(tracker.end(), *it);
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
std::cerr<<"insert(pos, value) tests.\n";
{
test::check_instances check_;
X x;
const_iterator pos = x.begin();
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
pos = x.insert(pos, *it);
tracker_iterator r2 = tracker.insert(tracker.begin(), *it);
BOOST_TEST(*pos == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
std::cerr<<"insert single item range tests.\n";
{
test::check_instances check_;
X x;
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
x.insert(it, boost::next(it));
tracker.insert(*it);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
std::cerr<<"insert range tests.\n";
{
test::check_instances check_;
X x;
test::random_values<X> v(1000, generator);
x.insert(v.begin(), v.end());
test::check_container(x, v);
test::check_equivalent_keys(x);
}
std::cerr<<"insert range with rehash tests.\n";
{
test::check_instances check_;
X x;
test::random_values<X> v(1000, generator);
x.insert(*v.begin());
x.clear();
x.insert(v.begin(), v.end());
test::check_container(x, v);
test::check_equivalent_keys(x);
}
std::cerr<<"insert input iterator range tests.\n";
{
test::check_instances check_;
X x;
test::random_values<X> v(1000, generator);
BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator
begin = v.begin(), end = v.end();
x.insert(test::input_iterator(begin), test::input_iterator(end));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
std::cerr<<"insert copy iterator range tests.\n";
{
test::check_instances check_;
X x;
test::random_values<X> v(1000, generator);
x.insert(test::copy_iterator(v.begin()), test::copy_iterator(v.end()));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
std::cerr<<"insert copy iterator range test 2.\n";
{
test::check_instances check_;
X x;
test::random_values<X> v1(500, generator);
test::random_values<X> v2(500, generator);
x.insert(test::copy_iterator(v1.begin()), test::copy_iterator(v1.end()));
x.insert(test::copy_iterator(v2.begin()), test::copy_iterator(v2.end()));
test::check_equivalent_keys(x);
}
}
template <class X>
void unique_emplace_tests1(X*, test::random_generator generator)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef test::ordered<X> ordered;
std::cerr<<"emplace(value) tests for containers with unique keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
std::pair<iterator, bool> r1 = x.emplace(*it);
std::pair<BOOST_DEDUCED_TYPENAME ordered::iterator, bool>
r2 = tracker.insert(*it);
BOOST_TEST(r1.second == r2.second);
BOOST_TEST(*r1.first == *r2.first);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
template <class X>
void equivalent_emplace_tests1(X*, test::random_generator generator)
{
std::cerr<<"emplace(value) tests for containers with equivalent keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
BOOST_DEDUCED_TYPENAME X::iterator r1 = x.emplace(*it);
BOOST_DEDUCED_TYPENAME test::ordered<X>::iterator
r2 = tracker.insert(*it);
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
template <class X>
void move_emplace_tests(X*, test::random_generator generator)
{
std::cerr<<"emplace(move(value)) tests for containers with unique keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
typename X::value_type value = *it;
x.emplace(boost::move(value));
tracker.insert(*it);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
tracker.compare(x);
}
template <class X>
void default_emplace_tests(X*, test::random_generator)
{
std::cerr<<"emplace() tests.\n";
bool is_unique = test::has_unique_keys<X>::value;
X x;
x.emplace();
BOOST_TEST(x.size() == 1);
x.emplace();
BOOST_TEST(x.size() == is_unique ? 1: 2);
x.emplace();
BOOST_TEST(x.size() == is_unique ? 1: 3);
typename X::value_type y;
BOOST_TEST(x.count(test::get_key<X>(y)) == is_unique ? 1: 3);
BOOST_TEST(*x.equal_range(test::get_key<X>(y)).first == y);
x.emplace(y);
BOOST_TEST(x.size() == is_unique ? 1: 4);
BOOST_TEST(x.count(test::get_key<X>(y)) == is_unique ? 1: 4);
BOOST_TEST(*x.equal_range(test::get_key<X>(y)).first == y);
x.clear();
BOOST_TEST(x.empty());
x.emplace(y);
BOOST_TEST(x.size() == 1);
x.emplace(y);
BOOST_TEST(x.size() == is_unique ? 1: 2);
BOOST_TEST(x.count(test::get_key<X>(y)) == is_unique ? 1: 2);
BOOST_TEST(*x.equal_range(test::get_key<X>(y)).first == y);
}
template <class X>
void map_tests(X*, test::random_generator generator)
{
std::cerr<<"map tests.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
x[it->first] = it->second;
tracker[it->first] = it->second;
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) <= b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
// Some tests for when the range's value type doesn't match the container's
// value type.
template <class X>
void map_insert_range_test1(X*, test::random_generator generator)
{
std::cerr<<"map_insert_range_test1\n";
test::check_instances check_;
typedef test::list<
std::pair<
BOOST_DEDUCED_TYPENAME X::key_type,
BOOST_DEDUCED_TYPENAME X::mapped_type
>
> list;
test::random_values<X> v(1000, generator);
list l(v.begin(), v.end());
X x; x.insert(l.begin(), l.end());
test::check_equivalent_keys(x);
}
template <class X>
void map_insert_range_test2(X*, test::random_generator generator)
{
std::cerr<<"map_insert_range_test2\n";
test::check_instances check_;
typedef test::list<
std::pair<BOOST_DEDUCED_TYPENAME X::key_type const, test::implicitly_convertible>
> list;
test::random_values<
boost::unordered_map<BOOST_DEDUCED_TYPENAME X::key_type, test::implicitly_convertible>
> v(1000, generator);
list l(v.begin(), v.end());
X x; x.insert(l.begin(), l.end());
test::check_equivalent_keys(x);
}
boost::unordered_set<test::movable,
test::hash, test::equal_to,
std::allocator<test::movable> >* test_set_std_alloc;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
std::allocator<test::object> >* test_multimap_std_alloc;
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::movable,
test::hash, test::equal_to,
test::allocator2<test::movable> >* test_multiset;
boost::unordered_map<test::movable, test::movable,
test::hash, test::equal_to,
test::allocator2<test::movable> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
UNORDERED_TEST(unique_insert_tests1,
((test_set_std_alloc)(test_set)(test_map))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(equivalent_insert_tests1,
((test_multimap_std_alloc)(test_multiset)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(insert_tests2,
((test_multimap_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(unique_emplace_tests1,
((test_set_std_alloc)(test_set)(test_map))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(equivalent_emplace_tests1,
((test_multimap_std_alloc)(test_multiset)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(move_emplace_tests,
((test_set_std_alloc)(test_multimap_std_alloc)(test_set)(test_map)
(test_multiset)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(default_emplace_tests,
((test_set_std_alloc)(test_multimap_std_alloc)(test_set)(test_map)
(test_multiset)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(map_tests,
((test_map))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(map_insert_range_test1,
((test_multimap_std_alloc)(test_map)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(map_insert_range_test2,
((test_multimap_std_alloc)(test_map)(test_multimap))
((default_generator)(generate_collisions))
)
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
struct initialize_from_two_ints
{
int a, b;
friend std::size_t hash_value(initialize_from_two_ints const& x)
{
return x.a + x.b;
}
bool operator==(initialize_from_two_ints const& x) const
{
return a == x.a && b == x.b;
}
};
UNORDERED_AUTO_TEST(insert_initializer_list_set)
{
boost::unordered_set<int> set;
set.insert({1,2,3,1});
BOOST_TEST_EQ(set.size(), 3u);
BOOST_TEST(set.find(1) != set.end());
BOOST_TEST(set.find(4) == set.end());
boost::unordered_set<initialize_from_two_ints> set2;
#if defined(__GNUC__) && (__GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 5))
set2.insert({{1, 2}});
#else
set2.insert({1, 2});
#endif
BOOST_TEST(set2.size() == 1);
BOOST_TEST(set2.find({1,2}) != set2.end());
BOOST_TEST(set2.find({2,1}) == set2.end());
set2.insert({{3,4},{5,6},{7,8}});
BOOST_TEST(set2.size() == 4);
BOOST_TEST(set2.find({1,2}) != set2.end());
BOOST_TEST(set2.find({3,4}) != set2.end());
BOOST_TEST(set2.find({5,6}) != set2.end());
BOOST_TEST(set2.find({7,8}) != set2.end());
BOOST_TEST(set2.find({8,7}) == set2.end());
set2.insert({{2, 1}, {3,4}});
BOOST_TEST(set2.size() == 5);
BOOST_TEST(set2.find({1,2}) != set2.end());
BOOST_TEST(set2.find({2,1}) != set2.end());
BOOST_TEST(set2.find({3,4}) != set2.end());
BOOST_TEST(set2.find({5,6}) != set2.end());
BOOST_TEST(set2.find({7,8}) != set2.end());
BOOST_TEST(set2.find({8,7}) == set2.end());
}
#if !BOOST_WORKAROUND(BOOST_MSVC, == 1800)
UNORDERED_AUTO_TEST(insert_initializer_list_multiset)
{
boost::unordered_multiset<std::string> multiset;
//multiset.insert({});
BOOST_TEST(multiset.empty());
multiset.insert({"a"});
BOOST_TEST_EQ(multiset.size(), 1u);
BOOST_TEST(multiset.find("a") != multiset.end());
BOOST_TEST(multiset.find("b") == multiset.end());
multiset.insert({"a","b"});
BOOST_TEST(multiset.size() == 3);
BOOST_TEST_EQ(multiset.count("a"), 2u);
BOOST_TEST_EQ(multiset.count("b"), 1u);
BOOST_TEST_EQ(multiset.count("c"), 0u);
}
#endif
UNORDERED_AUTO_TEST(insert_initializer_list_map)
{
boost::unordered_map<std::string, std::string> map;
//map.insert({});
BOOST_TEST(map.empty());
map.insert({{"a", "b"},{"a", "b"},{"d", ""}});
BOOST_TEST_EQ(map.size(), 2u);
}
UNORDERED_AUTO_TEST(insert_initializer_list_multimap)
{
boost::unordered_multimap<std::string, std::string> multimap;
//multimap.insert({});
BOOST_TEST(multimap.empty());
multimap.insert({{"a", "b"},{"a", "b"},{"d", ""}});
BOOST_TEST_EQ(multimap.size(), 3u);
BOOST_TEST_EQ(multimap.count("a"), 2u);
}
#endif
struct overloaded_constructor
{
overloaded_constructor(int x1_ = 1, int x2_ = 2, int x3_ = 3, int x4_ = 4)
: x1(x1_), x2(x2_), x3(x3_), x4(x4_) {}
int x1, x2, x3, x4;
bool operator==(overloaded_constructor const& rhs) const
{
return x1 == rhs.x1 && x2 == rhs.x2 && x3 == rhs.x3 && x4 == rhs.x4;
}
friend std::size_t hash_value(overloaded_constructor const& x)
{
std::size_t hash = 0;
boost::hash_combine(hash, x.x1);
boost::hash_combine(hash, x.x2);
boost::hash_combine(hash, x.x3);
boost::hash_combine(hash, x.x4);
return hash;
}
};
UNORDERED_AUTO_TEST(map_emplace_test)
{
boost::unordered_map<int, overloaded_constructor> x;
#if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100))
x.emplace();
BOOST_TEST(x.find(0) != x.end() &&
x.find(0)->second == overloaded_constructor());
#endif
x.emplace(2, 3);
BOOST_TEST(x.find(2) != x.end() &&
x.find(2)->second == overloaded_constructor(3));
}
UNORDERED_AUTO_TEST(set_emplace_test)
{
boost::unordered_set<overloaded_constructor> x;
overloaded_constructor check;
#if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100))
x.emplace();
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
#endif
x.clear();
x.emplace(1);
check = overloaded_constructor(1);
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
x.clear();
x.emplace(2, 3);
check = overloaded_constructor(2, 3);
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
x.clear();
x.emplace(4, 5, 6);
check = overloaded_constructor(4, 5, 6);
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
x.clear();
x.emplace(7, 8, 9, 10);
check = overloaded_constructor(7, 8, 9, 10);
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
}
struct derived_from_piecewise_construct_t :
boost::unordered::piecewise_construct_t {};
derived_from_piecewise_construct_t piecewise_rvalue() {
return derived_from_piecewise_construct_t();
}
struct convertible_to_piecewise {
operator boost::unordered::piecewise_construct_t() const {
return boost::unordered::piecewise_construct;
}
};
UNORDERED_AUTO_TEST(map_emplace_test2)
{
boost::unordered_map<overloaded_constructor, overloaded_constructor> x;
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(), boost::make_tuple());
BOOST_TEST(x.find(overloaded_constructor()) != x.end() &&
x.find(overloaded_constructor())->second == overloaded_constructor());
x.emplace(convertible_to_piecewise(), boost::make_tuple(1), boost::make_tuple());
BOOST_TEST(x.find(overloaded_constructor(1)) != x.end() &&
x.find(overloaded_constructor(1))->second == overloaded_constructor());
x.emplace(piecewise_rvalue(), boost::make_tuple(2,3), boost::make_tuple(4,5,6));
BOOST_TEST(x.find(overloaded_constructor(2,3)) != x.end() &&
x.find(overloaded_constructor(2,3))->second == overloaded_constructor(4,5,6));
derived_from_piecewise_construct_t d;
x.emplace(d, boost::make_tuple(9,3,1), boost::make_tuple(10));
BOOST_TEST(x.find(overloaded_constructor(9,3,1)) != x.end() &&
x.find(overloaded_constructor(9,3,1))->second == overloaded_constructor(10));
}
UNORDERED_AUTO_TEST(set_emplace_test2)
{
boost::unordered_set<std::pair<overloaded_constructor, overloaded_constructor> > x;
std::pair<overloaded_constructor, overloaded_constructor> check;
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(), boost::make_tuple());
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
x.clear();
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(1), boost::make_tuple(2,3));
check = std::make_pair(overloaded_constructor(1), overloaded_constructor(2, 3));;
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
}
}
RUN_TESTS()