Files
boost_unordered/include/boost/unordered/detail/equivalent.hpp
2011-04-29 11:03:29 +00:00

305 lines
10 KiB
C++

// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2009 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED
#include <boost/unordered/detail/extract_key.hpp>
namespace boost { namespace unordered { namespace detail {
template <class T>
class equivalent_table : public T::table_base
{
public:
typedef BOOST_DEDUCED_TYPENAME T::hasher hasher;
typedef BOOST_DEDUCED_TYPENAME T::key_equal key_equal;
typedef BOOST_DEDUCED_TYPENAME T::value_allocator value_allocator;
typedef BOOST_DEDUCED_TYPENAME T::key_type key_type;
typedef BOOST_DEDUCED_TYPENAME T::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME T::table_base table_base;
typedef BOOST_DEDUCED_TYPENAME T::node_constructor node_constructor;
typedef BOOST_DEDUCED_TYPENAME T::node node;
typedef BOOST_DEDUCED_TYPENAME T::node_ptr node_ptr;
typedef BOOST_DEDUCED_TYPENAME T::bucket_ptr bucket_ptr;
typedef BOOST_DEDUCED_TYPENAME T::extractor extractor;
// Constructors
equivalent_table(std::size_t n,
hasher const& hf, key_equal const& eq, value_allocator const& a)
: table_base(n, hf, eq, a) {}
equivalent_table(equivalent_table const& x)
: table_base(x, x.node_alloc()) {}
equivalent_table(equivalent_table const& x,
value_allocator const& a)
: table_base(x, a) {}
equivalent_table(equivalent_table& x, move_tag m)
: table_base(x, m) {}
equivalent_table(equivalent_table& x,
value_allocator const& a, move_tag m)
: table_base(x, a, m) {}
~equivalent_table() {}
// Equality
bool equals(equivalent_table const& other) const
{
if(this->size_ != other.size_) return false;
if(!this->size_) return true;
for(node_ptr n1 = this->buckets_[this->bucket_count_].next_; n1;)
{
node_ptr n2 = other.find_matching_node(n1);
if (!n2) return false;
node_ptr end1 = node::next_group(n1);
node_ptr end2 = node::next_group(n2);
if (!group_equals(n1, end1, n2, end2)) return false;
n1 = end1;
}
return true;
}
static bool group_equals(node_ptr n1, node_ptr end1,
node_ptr n2, node_ptr end2)
{
for(;;)
{
if (node::get_value(n1) != node::get_value(n2))
break;
n1 = n1->next_;
n2 = n2->next_;
if (n1 == end1) return n2 == end2;
if (n2 == end2) return false;
}
for(node_ptr n1a = n1, n2a = n2;;)
{
n1a = n1a->next_;
n2a = n2a->next_;
if (n1a == end1)
{
if (n2a == end2) break;
else return false;
}
if (n2a == end2) return false;
}
node_ptr start = n1;
for(;n1 != end2; n1 = n1->next_)
{
value_type const& v = node::get_value(n1);
if (find(start, n1, v)) continue;
std::size_t matches = count_equal(n2, end2, v);
if (!matches || matches != 1 + count_equal(n1->next_, end1, v))
return false;
}
return true;
}
static bool find(node_ptr n, node_ptr end, value_type const& v)
{
for(;n != end; n = n->next_)
if (node::get_value(n) == v)
return true;
return false;
}
static std::size_t count_equal(node_ptr n, node_ptr end, value_type const& v)
{
std::size_t count = 0;
for(;n != end; n = n->next_)
if (node::get_value(n) == v) ++count;
return count;
}
////////////////////////////////////////////////////////////////////////
// A convenience method for adding nodes.
inline node_ptr add_node(
node_constructor& a,
std::size_t bucket_index,
std::size_t hash,
node_ptr pos)
{
node_ptr n = a.release();
node::set_hash(n, hash);
if(BOOST_UNORDERED_BORLAND_BOOL(pos)) {
node::add_after_node(n, pos);
if (n->next_) {
std::size_t next_bucket =
node::get_hash(n->next_) % this->bucket_count_;
if (next_bucket != bucket_index) {
this->buckets_[next_bucket].next_ = n;
}
}
}
else {
bucket_ptr b = this->get_bucket(bucket_index);
if (!b->next_)
{
bucket_ptr start_node =
this->get_bucket(this->bucket_count_);
if (BOOST_UNORDERED_BORLAND_BOOL(start_node->next_)) {
this->buckets_[
node::get_hash(start_node->next_) %
this->bucket_count_].next_ = n;
}
b->next_ = start_node;
n->next_ = start_node->next_;
start_node->next_ = n;
}
else
{
n->next_ = b->next_->next_;
b->next_->next_ = n;
}
}
++this->size_;
return n;
}
////////////////////////////////////////////////////////////////////////
// Insert methods
node_ptr emplace_impl(node_constructor& a)
{
key_type const& k = this->get_key(a.value());
std::size_t hash = this->hash_function()(k);
std::size_t bucket_index = hash % this->bucket_count_;
node_ptr position = this->find_node(bucket_index, hash, k);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
if(this->reserve_for_insert(this->size_ + 1)) {
bucket_index = hash % this->bucket_count_;
}
return add_node(a, bucket_index, hash, position);
}
void emplace_impl_no_rehash(node_constructor& a)
{
key_type const& k = this->get_key(a.value());
std::size_t hash = this->hash_function()(k);
std::size_t bucket_index = hash % this->bucket_count_;
add_node(a, bucket_index, hash,
this->find_node(bucket_index, hash, k));
}
#if defined(BOOST_UNORDERED_STD_FORWARD)
template <class... Args>
node_ptr emplace(Args&&... args)
{
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(*this);
a.construct(std::forward<Args>(args)...);
return emplace_impl(a);
}
#else
#define BOOST_UNORDERED_INSERT_IMPL(z, num_params, _) \
template <BOOST_UNORDERED_TEMPLATE_ARGS(z, num_params)> \
node_ptr emplace(BOOST_UNORDERED_FUNCTION_PARAMS(z, num_params)) \
{ \
node_constructor a(*this); \
a.construct(BOOST_UNORDERED_CALL_PARAMS(z, num_params)); \
return emplace_impl(a); \
}
BOOST_PP_REPEAT_FROM_TO(1, BOOST_UNORDERED_EMPLACE_LIMIT,
BOOST_UNORDERED_INSERT_IMPL, _)
#undef BOOST_UNORDERED_INSERT_IMPL
#endif
////////////////////////////////////////////////////////////////////////
// Insert range methods
// if hash function throws, or inserting > 1 element, basic exception
// safety. Strong otherwise
template <class I>
void insert_for_range(I i, I j, forward_traversal_tag)
{
if(i == j) return;
std::size_t distance = ::boost::unordered::detail::distance(i, j);
if(distance == 1) {
emplace(*i);
}
else {
// Only require basic exception safety here
this->reserve_for_insert(this->size_ + distance);
node_constructor a(*this);
for (; i != j; ++i) {
a.construct(*i);
emplace_impl_no_rehash(a);
}
}
}
template <class I>
void insert_for_range(I i, I j, ::boost::incrementable_traversal_tag)
{
node_constructor a(*this);
for (; i != j; ++i) {
a.construct(*i);
emplace_impl(a);
}
}
// If hash function throws, or inserting > 1 element, basic exception
// safety. Strong otherwise
template <class I>
void insert_range(I i, I j)
{
BOOST_DEDUCED_TYPENAME ::boost::iterator_traversal<I>::type
iterator_traversal_tag;
insert_for_range(i, j, iterator_traversal_tag);
}
};
template <class H, class P, class A>
struct multiset : public types<
BOOST_DEDUCED_TYPENAME A::value_type,
BOOST_DEDUCED_TYPENAME A::value_type,
H, P, A,
set_extractor<BOOST_DEDUCED_TYPENAME A::value_type>,
false>
{
typedef equivalent_table<multiset<H, P, A> > impl;
typedef table<multiset<H, P, A> > table_base;
};
template <class K, class H, class P, class A>
struct multimap : public types<
K, BOOST_DEDUCED_TYPENAME A::value_type,
H, P, A,
map_extractor<K, BOOST_DEDUCED_TYPENAME A::value_type>,
false>
{
typedef equivalent_table<multimap<K, H, P, A> > impl;
typedef table<multimap<K, H, P, A> > table_base;
};
}}}
#endif