Files
boost_unordered/include/boost/unordered/detail/table.hpp
2014-08-19 16:41:10 +01:00

2021 lines
60 KiB
C++

// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011, 2014 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_ALL_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_ALL_HPP_INCLUDED
#include <boost/config.hpp>
#if defined(BOOST_HAS_PRAGMA_ONCE)
#pragma once
#endif
#include <boost/unordered/detail/allocate.hpp>
#include <boost/preprocessor/seq/size.hpp>
#include <boost/preprocessor/seq/enum.hpp>
#include <boost/type_traits/aligned_storage.hpp>
#include <boost/type_traits/alignment_of.hpp>
#include <boost/type_traits/is_nothrow_move_constructible.hpp>
#include <boost/type_traits/is_nothrow_move_assignable.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/is_empty.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/detail/select_type.hpp>
#include <boost/move/move.hpp>
#include <boost/swap.hpp>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <boost/iterator.hpp>
#include <cmath>
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable:4127) // conditional expression is constant
#endif
#if defined(BOOST_UNORDERED_DEPRECATED_EQUALITY)
#if defined(__EDG__)
#elif defined(_MSC_VER) || defined(__BORLANDC__) || defined(__DMC__)
#pragma message("Warning: BOOST_UNORDERED_DEPRECATED_EQUALITY is no longer supported.")
#elif defined(__GNUC__) || defined(__HP_aCC) || \
defined(__SUNPRO_CC) || defined(__IBMCPP__)
#warning "BOOST_UNORDERED_DEPRECATED_EQUALITY is no longer supported."
#endif
#endif
namespace boost { namespace unordered { namespace detail {
static const float minimum_max_load_factor = 1e-3f;
static const std::size_t default_bucket_count = 11;
struct move_tag {};
struct empty_emplace {};
namespace func {
template <class T>
inline void ignore_unused_variable_warning(T const&) {}
}
////////////////////////////////////////////////////////////////////////////
// iterator SFINAE
template <typename I>
struct is_forward :
boost::is_convertible<
typename boost::iterator_traversal<I>::type,
boost::forward_traversal_tag>
{};
template <typename I, typename ReturnType>
struct enable_if_forward :
boost::enable_if_c<
boost::unordered::detail::is_forward<I>::value,
ReturnType>
{};
template <typename I, typename ReturnType>
struct disable_if_forward :
boost::disable_if_c<
boost::unordered::detail::is_forward<I>::value,
ReturnType>
{};
////////////////////////////////////////////////////////////////////////////
// primes
#define BOOST_UNORDERED_PRIMES \
(17ul)(29ul)(37ul)(53ul)(67ul)(79ul) \
(97ul)(131ul)(193ul)(257ul)(389ul)(521ul)(769ul) \
(1031ul)(1543ul)(2053ul)(3079ul)(6151ul)(12289ul)(24593ul) \
(49157ul)(98317ul)(196613ul)(393241ul)(786433ul) \
(1572869ul)(3145739ul)(6291469ul)(12582917ul)(25165843ul) \
(50331653ul)(100663319ul)(201326611ul)(402653189ul)(805306457ul) \
(1610612741ul)(3221225473ul)(4294967291ul)
template<class T> struct prime_list_template
{
static std::size_t const value[];
#if !defined(SUNPRO_CC)
static std::ptrdiff_t const length;
#else
static std::ptrdiff_t const length
= BOOST_PP_SEQ_SIZE(BOOST_UNORDERED_PRIMES);
#endif
};
template<class T>
std::size_t const prime_list_template<T>::value[] = {
BOOST_PP_SEQ_ENUM(BOOST_UNORDERED_PRIMES)
};
#if !defined(SUNPRO_CC)
template<class T>
std::ptrdiff_t const prime_list_template<T>::length
= BOOST_PP_SEQ_SIZE(BOOST_UNORDERED_PRIMES);
#endif
#undef BOOST_UNORDERED_PRIMES
typedef prime_list_template<std::size_t> prime_list;
// no throw
inline std::size_t next_prime(std::size_t num) {
std::size_t const* const prime_list_begin = prime_list::value;
std::size_t const* const prime_list_end = prime_list_begin +
prime_list::length;
std::size_t const* bound =
std::lower_bound(prime_list_begin, prime_list_end, num);
if(bound == prime_list_end)
bound--;
return *bound;
}
// no throw
inline std::size_t prev_prime(std::size_t num) {
std::size_t const* const prime_list_begin = prime_list::value;
std::size_t const* const prime_list_end = prime_list_begin +
prime_list::length;
std::size_t const* bound =
std::upper_bound(prime_list_begin,prime_list_end, num);
if(bound != prime_list_begin)
bound--;
return *bound;
}
////////////////////////////////////////////////////////////////////////////
// insert_size/initial_size
#if !defined(BOOST_NO_STD_DISTANCE)
using ::std::distance;
#else
template <class ForwardIterator>
inline std::size_t distance(ForwardIterator i, ForwardIterator j) {
std::size_t x;
std::distance(i, j, x);
return x;
}
#endif
template <class I>
inline typename
boost::unordered::detail::enable_if_forward<I, std::size_t>::type
insert_size(I i, I j)
{
return std::distance(i, j);
}
template <class I>
inline typename
boost::unordered::detail::disable_if_forward<I, std::size_t>::type
insert_size(I, I)
{
return 1;
}
template <class I>
inline std::size_t initial_size(I i, I j,
std::size_t num_buckets =
boost::unordered::detail::default_bucket_count)
{
// TODO: Why +1?
return (std::max)(
boost::unordered::detail::insert_size(i, j) + 1,
num_buckets);
}
////////////////////////////////////////////////////////////////////////////
// compressed
template <typename T, int Index>
struct compressed_base : private T
{
compressed_base(T const& x) : T(x) {}
compressed_base(T& x, move_tag) : T(boost::move(x)) {}
T& get() { return *this; }
T const& get() const { return *this; }
};
template <typename T, int Index>
struct uncompressed_base
{
uncompressed_base(T const& x) : value_(x) {}
uncompressed_base(T& x, move_tag) : value_(boost::move(x)) {}
T& get() { return value_; }
T const& get() const { return value_; }
private:
T value_;
};
template <typename T, int Index>
struct generate_base
: boost::detail::if_true<
boost::is_empty<T>::value
>:: BOOST_NESTED_TEMPLATE then<
boost::unordered::detail::compressed_base<T, Index>,
boost::unordered::detail::uncompressed_base<T, Index>
>
{};
template <typename T1, typename T2>
struct compressed
: private boost::unordered::detail::generate_base<T1, 1>::type,
private boost::unordered::detail::generate_base<T2, 2>::type
{
typedef typename generate_base<T1, 1>::type base1;
typedef typename generate_base<T2, 2>::type base2;
typedef T1 first_type;
typedef T2 second_type;
first_type& first() {
return static_cast<base1*>(this)->get();
}
first_type const& first() const {
return static_cast<base1 const*>(this)->get();
}
second_type& second() {
return static_cast<base2*>(this)->get();
}
second_type const& second() const {
return static_cast<base2 const*>(this)->get();
}
template <typename First, typename Second>
compressed(First const& x1, Second const& x2)
: base1(x1), base2(x2) {}
compressed(compressed const& x)
: base1(x.first()), base2(x.second()) {}
compressed(compressed& x, move_tag m)
: base1(x.first(), m), base2(x.second(), m) {}
void assign(compressed const& x)
{
first() = x.first();
second() = x.second();
}
void move_assign(compressed& x)
{
first() = boost::move(x.first());
second() = boost::move(x.second());
}
void swap(compressed& x)
{
boost::swap(first(), x.first());
boost::swap(second(), x.second());
}
private:
// Prevent assignment just to make use of assign or
// move_assign explicit.
compressed& operator=(compressed const&);
};
}}}
namespace boost { namespace unordered { namespace detail {
template <typename Types> struct table;
template <typename NodePointer> struct bucket;
struct ptr_bucket;
template <typename Types> struct table_impl;
template <typename Types> struct grouped_table_impl;
}}}
// The 'iterator_detail' namespace was a misguided attempt at avoiding ADL
// in the detail namespace. It didn't work because the template parameters
// were in detail. I'm not changing it at the moment to be safe. I might
// do in the future if I change the iterator types.
namespace boost { namespace unordered { namespace iterator_detail {
////////////////////////////////////////////////////////////////////////////
// Iterators
//
// all no throw
template <typename Node> struct iterator;
template <typename Node, typename ConstNodePointer> struct c_iterator;
template <typename Node, typename Policy> struct l_iterator;
template <typename Node, typename ConstNodePointer, typename Policy>
struct cl_iterator;
// Local Iterators
//
// all no throw
template <typename Node, typename Policy>
struct l_iterator
: public boost::iterator<
std::forward_iterator_tag,
typename Node::value_type,
std::ptrdiff_t,
typename Node::node_pointer,
typename Node::value_type&>
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename Node2, typename ConstNodePointer, typename Policy2>
friend struct boost::unordered::iterator_detail::cl_iterator;
private:
#endif
typedef typename Node::node_pointer node_pointer;
typedef boost::unordered::iterator_detail::iterator<Node> iterator;
node_pointer ptr_;
std::size_t bucket_;
std::size_t bucket_count_;
public:
typedef typename Node::value_type value_type;
l_iterator() BOOST_NOEXCEPT : ptr_() {}
l_iterator(iterator x, std::size_t b, std::size_t c) BOOST_NOEXCEPT
: ptr_(x.node_), bucket_(b), bucket_count_(c) {}
value_type& operator*() const {
return ptr_->value();
}
value_type* operator->() const {
return ptr_->value_ptr();
}
l_iterator& operator++() {
ptr_ = static_cast<node_pointer>(ptr_->next_);
if (ptr_ && Policy::to_bucket(bucket_count_, ptr_->hash_)
!= bucket_)
ptr_ = node_pointer();
return *this;
}
l_iterator operator++(int) {
l_iterator tmp(*this);
++(*this);
return tmp;
}
bool operator==(l_iterator x) const BOOST_NOEXCEPT {
return ptr_ == x.ptr_;
}
bool operator!=(l_iterator x) const BOOST_NOEXCEPT {
return ptr_ != x.ptr_;
}
};
template <typename Node, typename ConstNodePointer, typename Policy>
struct cl_iterator
: public boost::iterator<
std::forward_iterator_tag,
typename Node::value_type,
std::ptrdiff_t,
ConstNodePointer,
typename Node::value_type const&>
{
friend struct boost::unordered::iterator_detail::l_iterator
<Node, Policy>;
private:
typedef typename Node::node_pointer node_pointer;
typedef boost::unordered::iterator_detail::iterator<Node> iterator;
node_pointer ptr_;
std::size_t bucket_;
std::size_t bucket_count_;
public:
typedef typename Node::value_type value_type;
cl_iterator() BOOST_NOEXCEPT : ptr_() {}
cl_iterator(iterator x, std::size_t b, std::size_t c) BOOST_NOEXCEPT :
ptr_(x.node_), bucket_(b), bucket_count_(c) {}
cl_iterator(boost::unordered::iterator_detail::l_iterator<
Node, Policy> const& x) BOOST_NOEXCEPT :
ptr_(x.ptr_), bucket_(x.bucket_), bucket_count_(x.bucket_count_)
{}
value_type const& operator*() const {
return ptr_->value();
}
value_type const* operator->() const {
return ptr_->value_ptr();
}
cl_iterator& operator++() {
ptr_ = static_cast<node_pointer>(ptr_->next_);
if (ptr_ && Policy::to_bucket(bucket_count_, ptr_->hash_)
!= bucket_)
ptr_ = node_pointer();
return *this;
}
cl_iterator operator++(int) {
cl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(cl_iterator const& x, cl_iterator const& y)
BOOST_NOEXCEPT
{
return x.ptr_ == y.ptr_;
}
friend bool operator!=(cl_iterator const& x, cl_iterator const& y)
BOOST_NOEXCEPT
{
return x.ptr_ != y.ptr_;
}
};
template <typename Node>
struct iterator
: public boost::iterator<
std::forward_iterator_tag,
typename Node::value_type,
std::ptrdiff_t,
typename Node::node_pointer,
typename Node::value_type&>
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename, typename>
friend struct boost::unordered::iterator_detail::c_iterator;
template <typename, typename>
friend struct boost::unordered::iterator_detail::l_iterator;
template <typename, typename, typename>
friend struct boost::unordered::iterator_detail::cl_iterator;
template <typename>
friend struct boost::unordered::detail::table;
template <typename>
friend struct boost::unordered::detail::table_impl;
template <typename>
friend struct boost::unordered::detail::grouped_table_impl;
private:
#endif
typedef typename Node::node_pointer node_pointer;
node_pointer node_;
public:
typedef typename Node::value_type value_type;
iterator() BOOST_NOEXCEPT : node_() {}
explicit iterator(typename Node::link_pointer x) BOOST_NOEXCEPT :
node_(static_cast<node_pointer>(x)) {}
value_type& operator*() const {
return node_->value();
}
value_type* operator->() const {
return &node_->value();
}
iterator& operator++() {
node_ = static_cast<node_pointer>(node_->next_);
return *this;
}
iterator operator++(int) {
iterator tmp(node_);
node_ = static_cast<node_pointer>(node_->next_);
return tmp;
}
bool operator==(iterator const& x) const BOOST_NOEXCEPT {
return node_ == x.node_;
}
bool operator!=(iterator const& x) const BOOST_NOEXCEPT {
return node_ != x.node_;
}
};
template <typename Node, typename ConstNodePointer>
struct c_iterator
: public boost::iterator<
std::forward_iterator_tag,
typename Node::value_type,
std::ptrdiff_t,
ConstNodePointer,
typename Node::value_type const&>
{
friend struct boost::unordered::iterator_detail::iterator<Node>;
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename>
friend struct boost::unordered::detail::table;
template <typename>
friend struct boost::unordered::detail::table_impl;
template <typename>
friend struct boost::unordered::detail::grouped_table_impl;
private:
#endif
typedef typename Node::node_pointer node_pointer;
typedef boost::unordered::iterator_detail::iterator<Node> iterator;
node_pointer node_;
public:
typedef typename Node::value_type value_type;
c_iterator() BOOST_NOEXCEPT : node_() {}
explicit c_iterator(typename Node::link_pointer x) BOOST_NOEXCEPT :
node_(static_cast<node_pointer>(x)) {}
c_iterator(iterator const& x) BOOST_NOEXCEPT : node_(x.node_) {}
value_type const& operator*() const {
return node_->value();
}
value_type const* operator->() const {
return &node_->value();
}
c_iterator& operator++() {
node_ = static_cast<node_pointer>(node_->next_);
return *this;
}
c_iterator operator++(int) {
c_iterator tmp(node_);
node_ = static_cast<node_pointer>(node_->next_);
return tmp;
}
friend bool operator==(c_iterator const& x, c_iterator const& y)
BOOST_NOEXCEPT
{
return x.node_ == y.node_;
}
friend bool operator!=(c_iterator const& x, c_iterator const& y)
BOOST_NOEXCEPT
{
return x.node_ != y.node_;
}
};
}}}
namespace boost { namespace unordered { namespace detail {
///////////////////////////////////////////////////////////////////
//
// Node construction
template <typename NodeAlloc>
struct node_constructor
{
private:
typedef NodeAlloc node_allocator;
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
typedef typename node_allocator_traits::value_type node;
typedef typename node_allocator_traits::pointer node_pointer;
typedef typename node::value_type value_type;
protected:
node_allocator& alloc_;
node_pointer node_;
bool node_constructed_;
bool value_constructed_;
public:
node_constructor(node_allocator& n) :
alloc_(n),
node_(),
node_constructed_(false),
value_constructed_(false)
{
}
~node_constructor();
void construct();
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
void construct_with_value(BOOST_UNORDERED_EMPLACE_ARGS)
{
construct();
boost::unordered::detail::func::construct_value_impl(
alloc_, node_->value_ptr(), BOOST_UNORDERED_EMPLACE_FORWARD);
value_constructed_ = true;
}
template <typename A0>
void construct_with_value2(BOOST_FWD_REF(A0) a0)
{
construct();
boost::unordered::detail::func::construct_value_impl(
alloc_, node_->value_ptr(),
BOOST_UNORDERED_EMPLACE_ARGS1(boost::forward<A0>(a0)));
value_constructed_ = true;
}
value_type const& value() const {
BOOST_ASSERT(node_ && node_constructed_ && value_constructed_);
return node_->value();
}
// no throw
node_pointer release()
{
BOOST_ASSERT(node_ && node_constructed_);
node_pointer p = node_;
node_ = node_pointer();
return p;
}
private:
node_constructor(node_constructor const&);
node_constructor& operator=(node_constructor const&);
};
template <typename Alloc>
node_constructor<Alloc>::~node_constructor()
{
if (node_) {
if (value_constructed_) {
boost::unordered::detail::func::destroy_value_impl(alloc_,
node_->value_ptr());
}
if (node_constructed_) {
boost::unordered::detail::func::destroy(
boost::addressof(*node_));
}
node_allocator_traits::deallocate(alloc_, node_, 1);
}
}
template <typename Alloc>
void node_constructor<Alloc>::construct()
{
if(!node_) {
node_constructed_ = false;
value_constructed_ = false;
node_ = node_allocator_traits::allocate(alloc_, 1);
new ((void*) boost::addressof(*node_)) node();
node_->init(node_);
node_constructed_ = true;
}
else {
BOOST_ASSERT(node_constructed_);
if (value_constructed_)
{
boost::unordered::detail::func::destroy_value_impl(alloc_,
node_->value_ptr());
value_constructed_ = false;
}
}
}
///////////////////////////////////////////////////////////////////
//
// Node Holder
//
// Temporary store for nodes. Deletes any that aren't used.
template <typename NodeAlloc>
struct node_holder : private node_constructor<NodeAlloc>
{
private:
typedef node_constructor<NodeAlloc> base;
typedef NodeAlloc node_allocator;
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
typedef typename node_allocator_traits::value_type node;
typedef typename node_allocator_traits::pointer node_pointer;
typedef typename node::value_type value_type;
typedef typename node::link_pointer link_pointer;
typedef boost::unordered::iterator_detail::iterator<node> iterator;
node_pointer nodes_;
public:
template <typename Table>
explicit node_holder(Table& b) :
base(b.node_alloc()),
nodes_()
{
if (b.size_) {
typename Table::link_pointer prev = b.get_previous_start();
nodes_ = static_cast<node_pointer>(prev->next_);
prev->next_ = link_pointer();
b.size_ = 0;
}
}
~node_holder();
void node_for_assignment()
{
if (!this->node_ && nodes_) {
this->node_ = nodes_;
nodes_ = static_cast<node_pointer>(nodes_->next_);
this->node_->init(this->node_);
this->node_->next_ = link_pointer();
this->node_constructed_ = true;
this->value_constructed_ = true;
}
}
template <typename T>
inline void assign_impl(T const& v) {
if (this->node_ && this->value_constructed_) {
this->node_->value() = v;
}
else {
this->construct_with_value2(v);
}
}
template <typename T1, typename T2>
inline void assign_impl(std::pair<T1 const, T2> const& v) {
this->construct_with_value2(v);
}
template <typename T>
inline void move_assign_impl(T& v) {
if (this->node_ && this->value_constructed_) {
this->node_->value() = boost::move(v);
}
else {
this->construct_with_value2(boost::move(v));
}
}
template <typename T1, typename T2>
inline void move_assign_impl(std::pair<T1 const, T2>& v) {
this->construct_with_value2(boost::move(v));
}
node_pointer copy_of(value_type const& v)
{
node_for_assignment();
assign_impl(v);
return base::release();
}
node_pointer move_copy_of(value_type& v)
{
node_for_assignment();
move_assign_impl(v);
return base::release();
}
iterator begin() const
{
return iterator(nodes_);
}
};
template <typename Alloc>
node_holder<Alloc>::~node_holder()
{
while (nodes_) {
node_pointer p = nodes_;
nodes_ = static_cast<node_pointer>(p->next_);
boost::unordered::detail::func::destroy_value_impl(this->alloc_,
p->value_ptr());
boost::unordered::detail::func::destroy(boost::addressof(*p));
node_allocator_traits::deallocate(this->alloc_, p, 1);
}
}
///////////////////////////////////////////////////////////////////
//
// Bucket
template <typename NodePointer>
struct bucket
{
typedef NodePointer link_pointer;
link_pointer next_;
bucket() : next_() {}
link_pointer first_from_start()
{
return next_;
}
enum { extra_node = true };
};
struct ptr_bucket
{
typedef ptr_bucket* link_pointer;
link_pointer next_;
ptr_bucket() : next_(0) {}
link_pointer first_from_start()
{
return this;
}
enum { extra_node = false };
};
///////////////////////////////////////////////////////////////////
//
// Hash Policy
template <typename SizeT>
struct prime_policy
{
template <typename Hash, typename T>
static inline SizeT apply_hash(Hash const& hf, T const& x) {
return hf(x);
}
static inline SizeT to_bucket(SizeT bucket_count, SizeT hash) {
return hash % bucket_count;
}
static inline SizeT new_bucket_count(SizeT min) {
return boost::unordered::detail::next_prime(min);
}
static inline SizeT prev_bucket_count(SizeT max) {
return boost::unordered::detail::prev_prime(max);
}
};
template <typename SizeT>
struct mix64_policy
{
template <typename Hash, typename T>
static inline SizeT apply_hash(Hash const& hf, T const& x) {
SizeT key = hf(x);
key = (~key) + (key << 21); // key = (key << 21) - key - 1;
key = key ^ (key >> 24);
key = (key + (key << 3)) + (key << 8); // key * 265
key = key ^ (key >> 14);
key = (key + (key << 2)) + (key << 4); // key * 21
key = key ^ (key >> 28);
key = key + (key << 31);
return key;
}
static inline SizeT to_bucket(SizeT bucket_count, SizeT hash) {
return hash & (bucket_count - 1);
}
static inline SizeT new_bucket_count(SizeT min) {
if (min <= 4) return 4;
--min;
min |= min >> 1;
min |= min >> 2;
min |= min >> 4;
min |= min >> 8;
min |= min >> 16;
min |= min >> 32;
return min + 1;
}
static inline SizeT prev_bucket_count(SizeT max) {
max |= max >> 1;
max |= max >> 2;
max |= max >> 4;
max |= max >> 8;
max |= max >> 16;
max |= max >> 32;
return (max >> 1) + 1;
}
};
template <int digits, int radix>
struct pick_policy_impl {
typedef prime_policy<std::size_t> type;
};
template <>
struct pick_policy_impl<64, 2> {
typedef mix64_policy<std::size_t> type;
};
template <typename T>
struct pick_policy :
pick_policy_impl<
std::numeric_limits<std::size_t>::digits,
std::numeric_limits<std::size_t>::radix> {};
// While the mix policy is generally faster, the prime policy is a lot
// faster when a large number consecutive integers are used, because
// there are no collisions. Since that is probably quite common, use
// prime policy for integeral types. But not the smaller ones, as they
// don't have enough unique values for this to be an issue.
template <>
struct pick_policy<int> {
typedef prime_policy<std::size_t> type;
};
template <>
struct pick_policy<unsigned int> {
typedef prime_policy<std::size_t> type;
};
template <>
struct pick_policy<long> {
typedef prime_policy<std::size_t> type;
};
template <>
struct pick_policy<unsigned long> {
typedef prime_policy<std::size_t> type;
};
// TODO: Maybe not if std::size_t is smaller than long long.
#if !defined(BOOST_NO_LONG_LONG)
template <>
struct pick_policy<long long> {
typedef prime_policy<std::size_t> type;
};
template <>
struct pick_policy<unsigned long long> {
typedef prime_policy<std::size_t> type;
};
#endif
////////////////////////////////////////////////////////////////////////////
// Functions
// Assigning and swapping the equality and hash function objects
// needs strong exception safety. To implement that normally we'd
// require one of them to be known to not throw and the other to
// guarantee strong exception safety. Unfortunately they both only
// have basic exception safety. So to acheive strong exception
// safety we have storage space for two copies, and assign the new
// copies to the unused space. Then switch to using that to use
// them. This is implemented in 'set_hash_functions' which
// atomically assigns the new function objects in a strongly
// exception safe manner.
template <class H, class P, bool NoThrowMoveAssign>
class set_hash_functions;
template <class H, class P>
class functions
{
public:
static const bool nothrow_move_assignable =
boost::is_nothrow_move_assignable<H>::value &&
boost::is_nothrow_move_assignable<P>::value;
static const bool nothrow_move_constructible =
boost::is_nothrow_move_constructible<H>::value &&
boost::is_nothrow_move_constructible<P>::value;
private:
friend class boost::unordered::detail::set_hash_functions<H, P,
nothrow_move_assignable>;
functions& operator=(functions const&);
typedef compressed<H, P> function_pair;
typedef typename boost::aligned_storage<
sizeof(function_pair),
boost::alignment_of<function_pair>::value>::type aligned_function;
bool current_; // The currently active functions.
aligned_function funcs_[2];
function_pair const& current() const {
return *static_cast<function_pair const*>(
static_cast<void const*>(&funcs_[current_]));
}
function_pair& current() {
return *static_cast<function_pair*>(
static_cast<void*>(&funcs_[current_]));
}
void construct(bool which, H const& hf, P const& eq)
{
new((void*) &funcs_[which]) function_pair(hf, eq);
}
void construct(bool which, function_pair const& f,
boost::unordered::detail::false_type =
boost::unordered::detail::false_type())
{
new((void*) &funcs_[which]) function_pair(f);
}
void construct(bool which, function_pair& f,
boost::unordered::detail::true_type)
{
new((void*) &funcs_[which]) function_pair(f,
boost::unordered::detail::move_tag());
}
void destroy(bool which)
{
boost::unordered::detail::func::destroy((function_pair*)(&funcs_[which]));
}
public:
typedef boost::unordered::detail::set_hash_functions<H, P,
nothrow_move_assignable> set_hash_functions;
functions(H const& hf, P const& eq)
: current_(false)
{
construct(current_, hf, eq);
}
functions(functions const& bf)
: current_(false)
{
construct(current_, bf.current());
}
functions(functions& bf, boost::unordered::detail::move_tag)
: current_(false)
{
construct(current_, bf.current(),
boost::unordered::detail::integral_constant<bool,
nothrow_move_constructible>());
}
~functions() {
this->destroy(current_);
}
H const& hash_function() const {
return current().first();
}
P const& key_eq() const {
return current().second();
}
};
template <class H, class P>
class set_hash_functions<H, P, false>
{
set_hash_functions(set_hash_functions const&);
set_hash_functions& operator=(set_hash_functions const&);
typedef functions<H, P> functions_type;
functions_type& functions_;
bool tmp_functions_;
public:
set_hash_functions(functions_type& f, H const& h, P const& p)
: functions_(f),
tmp_functions_(!f.current_)
{
f.construct(tmp_functions_, h, p);
}
set_hash_functions(functions_type& f, functions_type const& other)
: functions_(f),
tmp_functions_(!f.current_)
{
f.construct(tmp_functions_, other.current());
}
~set_hash_functions()
{
functions_.destroy(tmp_functions_);
}
void commit()
{
functions_.current_ = tmp_functions_;
tmp_functions_ = !tmp_functions_;
}
};
template <class H, class P>
class set_hash_functions<H, P, true>
{
set_hash_functions(set_hash_functions const&);
set_hash_functions& operator=(set_hash_functions const&);
typedef functions<H, P> functions_type;
functions_type& functions_;
H hash_;
P pred_;
public:
set_hash_functions(functions_type& f, H const& h, P const& p) :
functions_(f),
hash_(h),
pred_(p) {}
set_hash_functions(functions_type& f, functions_type const& other) :
functions_(f),
hash_(other.hash_function()),
pred_(other.key_eq()) {}
void commit()
{
functions_.current().first() = boost::move(hash_);
functions_.current().second() = boost::move(pred_);
}
};
////////////////////////////////////////////////////////////////////////////
// rvalue parameters when type can't be a BOOST_RV_REF(T) parameter
// e.g. for int
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
# define BOOST_UNORDERED_RV_REF(T) BOOST_RV_REF(T)
#else
struct please_ignore_this_overload {
typedef please_ignore_this_overload type;
};
template <typename T>
struct rv_ref_impl {
typedef BOOST_RV_REF(T) type;
};
template <typename T>
struct rv_ref :
boost::detail::if_true<
boost::is_class<T>::value
>::BOOST_NESTED_TEMPLATE then <
boost::unordered::detail::rv_ref_impl<T>,
please_ignore_this_overload
>::type
{};
# define BOOST_UNORDERED_RV_REF(T) \
typename boost::unordered::detail::rv_ref<T>::type
#endif
////////////////////////////////////////////////////////////////////////////
// convert double to std::size_t
inline std::size_t double_to_size(double f)
{
return f >= static_cast<double>(
(std::numeric_limits<std::size_t>::max)()) ?
(std::numeric_limits<std::size_t>::max)() :
static_cast<std::size_t>(f);
}
// The space used to store values in a node.
template <typename ValueType>
struct value_base
{
typedef ValueType value_type;
typename boost::aligned_storage<
sizeof(value_type),
boost::alignment_of<value_type>::value>::type data_;
void* address() {
return this;
}
value_type& value() {
return *(ValueType*) this;
}
value_type* value_ptr() {
return (ValueType*) this;
}
private:
value_base& operator=(value_base const&);
};
template <typename NodeAlloc>
struct copy_nodes
{
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
node_constructor<NodeAlloc> constructor;
explicit copy_nodes(NodeAlloc& a) : constructor(a) {}
typename node_allocator_traits::pointer create(
typename node_allocator_traits::value_type::value_type const& v)
{
constructor.construct_with_value2(v);
return constructor.release();
}
};
template <typename NodeAlloc>
struct move_nodes
{
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
node_constructor<NodeAlloc> constructor;
explicit move_nodes(NodeAlloc& a) : constructor(a) {}
typename node_allocator_traits::pointer create(
typename node_allocator_traits::value_type::value_type& v)
{
constructor.construct_with_value2(boost::move(v));
return constructor.release();
}
};
template <typename Buckets>
struct assign_nodes
{
node_holder<typename Buckets::node_allocator> holder;
explicit assign_nodes(Buckets& b) : holder(b) {}
typename Buckets::node_pointer create(
typename Buckets::value_type const& v)
{
return holder.copy_of(v);
}
};
template <typename Buckets>
struct move_assign_nodes
{
node_holder<typename Buckets::node_allocator> holder;
explicit move_assign_nodes(Buckets& b) : holder(b) {}
typename Buckets::node_pointer create(
typename Buckets::value_type& v)
{
return holder.move_copy_of(v);
}
};
template <typename Types>
struct table :
boost::unordered::detail::functions<
typename Types::hasher,
typename Types::key_equal>
{
private:
table(table const&);
table& operator=(table const&);
public:
typedef typename Types::node node;
typedef typename Types::bucket bucket;
typedef typename Types::hasher hasher;
typedef typename Types::key_equal key_equal;
typedef typename Types::key_type key_type;
typedef typename Types::extractor extractor;
typedef typename Types::value_type value_type;
typedef typename Types::table table_impl;
typedef typename Types::link_pointer link_pointer;
typedef typename Types::policy policy;
typedef boost::unordered::detail::functions<
typename Types::hasher,
typename Types::key_equal> functions;
typedef typename functions::set_hash_functions set_hash_functions;
typedef typename Types::allocator allocator;
typedef typename boost::unordered::detail::
rebind_wrap<allocator, node>::type node_allocator;
typedef typename boost::unordered::detail::
rebind_wrap<allocator, bucket>::type bucket_allocator;
typedef boost::unordered::detail::allocator_traits<node_allocator>
node_allocator_traits;
typedef boost::unordered::detail::allocator_traits<bucket_allocator>
bucket_allocator_traits;
typedef typename node_allocator_traits::pointer
node_pointer;
typedef typename node_allocator_traits::const_pointer
const_node_pointer;
typedef typename bucket_allocator_traits::pointer
bucket_pointer;
typedef boost::unordered::detail::node_constructor<node_allocator>
node_constructor;
typedef boost::unordered::iterator_detail::
iterator<node> iterator;
typedef boost::unordered::iterator_detail::
c_iterator<node, const_node_pointer> c_iterator;
typedef boost::unordered::iterator_detail::
l_iterator<node, policy> l_iterator;
typedef boost::unordered::iterator_detail::
cl_iterator<node, const_node_pointer, policy> cl_iterator;
////////////////////////////////////////////////////////////////////////
// Members
boost::unordered::detail::compressed<bucket_allocator, node_allocator>
allocators_;
std::size_t bucket_count_;
std::size_t size_;
float mlf_;
std::size_t max_load_;
bucket_pointer buckets_;
////////////////////////////////////////////////////////////////////////
// Data access
bucket_allocator const& bucket_alloc() const
{
return allocators_.first();
}
node_allocator const& node_alloc() const
{
return allocators_.second();
}
bucket_allocator& bucket_alloc()
{
return allocators_.first();
}
node_allocator& node_alloc()
{
return allocators_.second();
}
std::size_t max_bucket_count() const
{
// -1 to account for the start bucket.
return policy::prev_bucket_count(
bucket_allocator_traits::max_size(bucket_alloc()) - 1);
}
bucket_pointer get_bucket(std::size_t bucket_index) const
{
BOOST_ASSERT(buckets_);
return buckets_ + static_cast<std::ptrdiff_t>(bucket_index);
}
link_pointer get_previous_start() const
{
return get_bucket(bucket_count_)->first_from_start();
}
link_pointer get_previous_start(std::size_t bucket_index) const
{
return get_bucket(bucket_index)->next_;
}
iterator begin() const
{
return size_ ? iterator(get_previous_start()->next_) : iterator();
}
iterator begin(std::size_t bucket_index) const
{
if (!size_) return iterator();
link_pointer prev = get_previous_start(bucket_index);
return prev ? iterator(prev->next_) : iterator();
}
std::size_t hash_to_bucket(std::size_t hash_value) const
{
return policy::to_bucket(bucket_count_, hash_value);
}
float load_factor() const
{
BOOST_ASSERT(bucket_count_ != 0);
return static_cast<float>(size_)
/ static_cast<float>(bucket_count_);
}
std::size_t bucket_size(std::size_t index) const
{
iterator it = begin(index);
if (!it.node_) return 0;
std::size_t count = 0;
while(it.node_ && hash_to_bucket(it.node_->hash_) == index)
{
++count;
++it;
}
return count;
}
////////////////////////////////////////////////////////////////////////
// Load methods
std::size_t max_size() const
{
using namespace std;
// size < mlf_ * count
return boost::unordered::detail::double_to_size(ceil(
static_cast<double>(mlf_) *
static_cast<double>(max_bucket_count())
)) - 1;
}
void recalculate_max_load()
{
using namespace std;
// From 6.3.1/13:
// Only resize when size >= mlf_ * count
max_load_ = buckets_ ? boost::unordered::detail::double_to_size(ceil(
static_cast<double>(mlf_) *
static_cast<double>(bucket_count_)
)) : 0;
}
void max_load_factor(float z)
{
BOOST_ASSERT(z > 0);
mlf_ = (std::max)(z, minimum_max_load_factor);
recalculate_max_load();
}
std::size_t min_buckets_for_size(std::size_t size) const
{
BOOST_ASSERT(mlf_ >= minimum_max_load_factor);
using namespace std;
// From 6.3.1/13:
// size < mlf_ * count
// => count > size / mlf_
//
// Or from rehash post-condition:
// count > size / mlf_
return policy::new_bucket_count(
boost::unordered::detail::double_to_size(floor(
static_cast<double>(size) /
static_cast<double>(mlf_))) + 1);
}
////////////////////////////////////////////////////////////////////////
// Constructors
table(std::size_t num_buckets,
hasher const& hf,
key_equal const& eq,
node_allocator const& a) :
functions(hf, eq),
allocators_(a,a),
bucket_count_(policy::new_bucket_count(num_buckets)),
size_(0),
mlf_(1.0f),
max_load_(0),
buckets_()
{}
table(table const& x, node_allocator const& a) :
functions(x),
allocators_(a,a),
bucket_count_(x.min_buckets_for_size(x.size_)),
size_(0),
mlf_(x.mlf_),
max_load_(0),
buckets_()
{}
table(table& x, boost::unordered::detail::move_tag m) :
functions(x, m),
allocators_(x.allocators_, m),
bucket_count_(x.bucket_count_),
size_(x.size_),
mlf_(x.mlf_),
max_load_(x.max_load_),
buckets_(x.buckets_)
{
x.buckets_ = bucket_pointer();
x.size_ = 0;
x.max_load_ = 0;
}
table(table& x, node_allocator const& a,
boost::unordered::detail::move_tag m) :
functions(x, m),
allocators_(a, a),
bucket_count_(x.bucket_count_),
size_(0),
mlf_(x.mlf_),
max_load_(x.max_load_),
buckets_()
{}
////////////////////////////////////////////////////////////////////////
// Initialisation.
void init(table const& x)
{
if (x.size_) {
create_buckets(bucket_count_);
copy_nodes<node_allocator> node_creator(node_alloc());
table_impl::fill_buckets(x.begin(), *this, node_creator);
}
}
void move_init(table& x)
{
if(node_alloc() == x.node_alloc()) {
move_buckets_from(x);
}
else if(x.size_) {
// TODO: Could pick new bucket size?
create_buckets(bucket_count_);
move_nodes<node_allocator> node_creator(node_alloc());
node_holder<node_allocator> nodes(x);
table_impl::fill_buckets(nodes.begin(), *this, node_creator);
}
}
////////////////////////////////////////////////////////////////////////
// Create buckets
void create_buckets(std::size_t new_count)
{
boost::unordered::detail::array_constructor<bucket_allocator>
constructor(bucket_alloc());
// Creates an extra bucket to act as the start node.
constructor.construct(bucket(), new_count + 1);
if (buckets_)
{
// Copy the nodes to the new buckets, including the dummy
// node if there is one.
(constructor.get() +
static_cast<std::ptrdiff_t>(new_count))->next_ =
(buckets_ + static_cast<std::ptrdiff_t>(
bucket_count_))->next_;
destroy_buckets();
}
else if (bucket::extra_node)
{
node_constructor a(node_alloc());
a.construct();
(constructor.get() +
static_cast<std::ptrdiff_t>(new_count))->next_ =
a.release();
}
bucket_count_ = new_count;
buckets_ = constructor.release();
recalculate_max_load();
}
////////////////////////////////////////////////////////////////////////
// Swap and Move
void swap_allocators(table& other, false_type)
{
boost::unordered::detail::func::ignore_unused_variable_warning(other);
// According to 23.2.1.8, if propagate_on_container_swap is
// false the behaviour is undefined unless the allocators
// are equal.
BOOST_ASSERT(node_alloc() == other.node_alloc());
}
void swap_allocators(table& other, true_type)
{
allocators_.swap(other.allocators_);
}
// Only swaps the allocators if propagate_on_container_swap
void swap(table& x)
{
set_hash_functions op1(*this, x);
set_hash_functions op2(x, *this);
// I think swap can throw if Propagate::value,
// since the allocators' swap can throw. Not sure though.
swap_allocators(x,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_swap::value>());
boost::swap(buckets_, x.buckets_);
boost::swap(bucket_count_, x.bucket_count_);
boost::swap(size_, x.size_);
std::swap(mlf_, x.mlf_);
std::swap(max_load_, x.max_load_);
op1.commit();
op2.commit();
}
void move_buckets_from(table& other)
{
BOOST_ASSERT(node_alloc() == other.node_alloc());
BOOST_ASSERT(!buckets_);
buckets_ = other.buckets_;
bucket_count_ = other.bucket_count_;
size_ = other.size_;
other.buckets_ = bucket_pointer();
other.size_ = 0;
other.max_load_ = 0;
}
////////////////////////////////////////////////////////////////////////
// Delete/destruct
~table()
{
delete_buckets();
}
void delete_node(link_pointer prev)
{
node_pointer n = static_cast<node_pointer>(prev->next_);
prev->next_ = n->next_;
boost::unordered::detail::func::destroy_value_impl(node_alloc(),
n->value_ptr());
boost::unordered::detail::func::destroy(boost::addressof(*n));
node_allocator_traits::deallocate(node_alloc(), n, 1);
--size_;
}
std::size_t delete_nodes(link_pointer prev, link_pointer end)
{
BOOST_ASSERT(prev->next_ != end);
std::size_t count = 0;
do {
delete_node(prev);
++count;
} while (prev->next_ != end);
return count;
}
void delete_buckets()
{
if(buckets_) {
if (size_) delete_nodes(get_previous_start(), link_pointer());
if (bucket::extra_node) {
node_pointer n = static_cast<node_pointer>(
get_bucket(bucket_count_)->next_);
boost::unordered::detail::func::destroy(
boost::addressof(*n));
node_allocator_traits::deallocate(node_alloc(), n, 1);
}
destroy_buckets();
buckets_ = bucket_pointer();
max_load_ = 0;
}
BOOST_ASSERT(!size_);
}
void clear()
{
if (!size_) return;
delete_nodes(get_previous_start(), link_pointer());
clear_buckets();
BOOST_ASSERT(!size_);
}
void clear_buckets()
{
bucket_pointer end = get_bucket(bucket_count_);
for(bucket_pointer it = buckets_; it != end; ++it)
{
it->next_ = node_pointer();
}
}
void destroy_buckets()
{
bucket_pointer end = get_bucket(bucket_count_ + 1);
for(bucket_pointer it = buckets_; it != end; ++it)
{
boost::unordered::detail::func::destroy(
boost::addressof(*it));
}
bucket_allocator_traits::deallocate(bucket_alloc(),
buckets_, bucket_count_ + 1);
}
////////////////////////////////////////////////////////////////////////
// Fix buckets after delete
//
std::size_t fix_bucket(std::size_t bucket_index, link_pointer prev)
{
link_pointer end = prev->next_;
std::size_t bucket_index2 = bucket_index;
if (end)
{
bucket_index2 = hash_to_bucket(
static_cast<node_pointer>(end)->hash_);
// If begin and end are in the same bucket, then
// there's nothing to do.
if (bucket_index == bucket_index2) return bucket_index2;
// Update the bucket containing end.
get_bucket(bucket_index2)->next_ = prev;
}
// Check if this bucket is now empty.
bucket_pointer this_bucket = get_bucket(bucket_index);
if (this_bucket->next_ == prev)
this_bucket->next_ = link_pointer();
return bucket_index2;
}
////////////////////////////////////////////////////////////////////////
// Assignment
void assign(table const& x)
{
if (this != boost::addressof(x))
{
assign(x,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_copy_assignment::value>());
}
}
void assign(table const& x, false_type)
{
// Strong exception safety.
set_hash_functions new_func_this(*this, x);
new_func_this.commit();
mlf_ = x.mlf_;
recalculate_max_load();
if (!size_ && !x.size_) return;
if (x.size_ >= max_load_) {
create_buckets(min_buckets_for_size(x.size_));
}
else {
clear_buckets();
}
// assign_nodes takes ownership of the container's elements,
// assigning to them if possible, and deleting any that are
// left over.
assign_nodes<table> node_creator(*this);
table_impl::fill_buckets(x.begin(), *this, node_creator);
}
void assign(table const& x, true_type)
{
if (node_alloc() == x.node_alloc()) {
allocators_.assign(x.allocators_);
assign(x, false_type());
}
else {
set_hash_functions new_func_this(*this, x);
// Delete everything with current allocators before assigning
// the new ones.
delete_buckets();
allocators_.assign(x.allocators_);
// Copy over other data, all no throw.
new_func_this.commit();
mlf_ = x.mlf_;
bucket_count_ = min_buckets_for_size(x.size_);
max_load_ = 0;
// Finally copy the elements.
if (x.size_) {
create_buckets(bucket_count_);
copy_nodes<node_allocator> node_creator(node_alloc());
table_impl::fill_buckets(x.begin(), *this, node_creator);
}
}
}
void move_assign(table& x)
{
if (this != boost::addressof(x))
{
move_assign(x,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_move_assignment::value>());
}
}
void move_assign(table& x, true_type)
{
delete_buckets();
allocators_.move_assign(x.allocators_);
move_assign_no_alloc(x);
}
void move_assign(table& x, false_type)
{
if (node_alloc() == x.node_alloc()) {
delete_buckets();
move_assign_no_alloc(x);
}
else {
set_hash_functions new_func_this(*this, x);
new_func_this.commit();
mlf_ = x.mlf_;
recalculate_max_load();
if (!size_ && !x.size_) return;
if (x.size_ >= max_load_) {
create_buckets(min_buckets_for_size(x.size_));
}
else {
clear_buckets();
}
// move_assign_nodes takes ownership of the container's
// elements, assigning to them if possible, and deleting
// any that are left over.
move_assign_nodes<table> node_creator(*this);
node_holder<node_allocator> nodes(x);
table_impl::fill_buckets(nodes.begin(), *this, node_creator);
}
}
void move_assign_no_alloc(table& x)
{
set_hash_functions new_func_this(*this, x);
// No throw from here.
mlf_ = x.mlf_;
max_load_ = x.max_load_;
move_buckets_from(x);
new_func_this.commit();
}
// Accessors
key_type const& get_key(value_type const& x) const
{
return extractor::extract(x);
}
std::size_t hash(key_type const& k) const
{
return policy::apply_hash(this->hash_function(), k);
}
// Find Node
template <typename Key, typename Hash, typename Pred>
iterator generic_find_node(
Key const& k,
Hash const& hf,
Pred const& eq) const
{
return static_cast<table_impl const*>(this)->
find_node_impl(policy::apply_hash(hf, k), k, eq);
}
iterator find_node(
std::size_t key_hash,
key_type const& k) const
{
return static_cast<table_impl const*>(this)->
find_node_impl(key_hash, k, this->key_eq());
}
iterator find_node(key_type const& k) const
{
return static_cast<table_impl const*>(this)->
find_node_impl(hash(k), k, this->key_eq());
}
iterator find_matching_node(iterator n) const
{
// TODO: Does this apply to C++11?
//
// For some stupid reason, I decided to support equality comparison
// when different hash functions are used. So I can't use the hash
// value from the node here.
return find_node(get_key(*n));
}
// Reserve and rehash
void reserve_for_insert(std::size_t);
void rehash(std::size_t);
void reserve(std::size_t);
};
////////////////////////////////////////////////////////////////////////////
// Reserve & Rehash
// basic exception safety
template <typename Types>
inline void table<Types>::reserve_for_insert(std::size_t size)
{
if (!buckets_) {
create_buckets((std::max)(bucket_count_,
min_buckets_for_size(size)));
}
// According to the standard this should be 'size >= max_load_',
// but I think this is better, defect report filed.
else if(size > max_load_) {
std::size_t num_buckets
= min_buckets_for_size((std::max)(size,
size_ + (size_ >> 1)));
if (num_buckets != bucket_count_)
static_cast<table_impl*>(this)->rehash_impl(num_buckets);
}
}
// if hash function throws, basic exception safety
// strong otherwise.
template <typename Types>
inline void table<Types>::rehash(std::size_t min_buckets)
{
using namespace std;
if(!size_) {
delete_buckets();
bucket_count_ = policy::new_bucket_count(min_buckets);
}
else {
min_buckets = policy::new_bucket_count((std::max)(min_buckets,
boost::unordered::detail::double_to_size(floor(
static_cast<double>(size_) /
static_cast<double>(mlf_))) + 1));
if(min_buckets != bucket_count_)
static_cast<table_impl*>(this)->rehash_impl(min_buckets);
}
}
template <typename Types>
inline void table<Types>::reserve(std::size_t num_elements)
{
rehash(static_cast<std::size_t>(
std::ceil(static_cast<double>(num_elements) / mlf_)));
}
}}}
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif