forked from dolphin-emu/dolphin
		
	
		
			
				
	
	
		
			94 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			94 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2009 Dolphin Emulator Project
 | |
| // Licensed under GPLv2+
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| // IWYU pragma: private, include "Common/Atomic.h"
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <Windows.h>
 | |
| 
 | |
| #include "Common/Common.h"
 | |
| #include "Common/Intrinsics.h"
 | |
| 
 | |
| // Atomic operations are performed in a single step by the CPU. It is
 | |
| // impossible for other threads to see the operation "half-done."
 | |
| //
 | |
| // Some atomic operations can be combined with different types of memory
 | |
| // barriers called "Acquire semantics" and "Release semantics", defined below.
 | |
| //
 | |
| // Acquire semantics: Future memory accesses cannot be relocated to before the
 | |
| //                    operation.
 | |
| //
 | |
| // Release semantics: Past memory accesses cannot be relocated to after the
 | |
| //                    operation.
 | |
| //
 | |
| // These barriers affect not only the compiler, but also the CPU.
 | |
| //
 | |
| // NOTE: Acquire and Release are not differentiated right now. They perform a
 | |
| // full memory barrier instead of a "one-way" memory barrier. The newest
 | |
| // Windows SDK has Acquire and Release versions of some Interlocked* functions.
 | |
| 
 | |
| namespace Common
 | |
| {
 | |
| 
 | |
| inline void AtomicAdd(volatile u32& target, u32 value)
 | |
| {
 | |
| 	_InterlockedExchangeAdd((volatile LONG*)&target, (LONG)value);
 | |
| }
 | |
| 
 | |
| inline void AtomicAnd(volatile u32& target, u32 value)
 | |
| {
 | |
| 	_InterlockedAnd((volatile LONG*)&target, (LONG)value);
 | |
| }
 | |
| 
 | |
| inline void AtomicIncrement(volatile u32& target)
 | |
| {
 | |
| 	_InterlockedIncrement((volatile LONG*)&target);
 | |
| }
 | |
| 
 | |
| inline void AtomicDecrement(volatile u32& target)
 | |
| {
 | |
| 	_InterlockedDecrement((volatile LONG*)&target);
 | |
| }
 | |
| 
 | |
| inline void AtomicOr(volatile u32& target, u32 value)
 | |
| {
 | |
| 	_InterlockedOr((volatile LONG*)&target, (LONG)value);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline T AtomicLoad(volatile T& src)
 | |
| {
 | |
| 	return src; // 32-bit reads are always atomic.
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline T AtomicLoadAcquire(volatile T& src)
 | |
| {
 | |
| 	T result = src; // 32-bit reads are always atomic.
 | |
| 	_ReadBarrier(); // Compiler instruction only. x86 loads always have acquire semantics.
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| template <typename T, typename U>
 | |
| inline void AtomicStore(volatile T& dest, U value)
 | |
| {
 | |
| 	dest = (T) value; // 32-bit writes are always atomic.
 | |
| }
 | |
| 
 | |
| template <typename T, typename U>
 | |
| inline void AtomicStoreRelease(volatile T& dest, U value)
 | |
| {
 | |
| 	_WriteBarrier(); // Compiler instruction only. x86 stores always have release semantics.
 | |
| 	dest = (T) value; // 32-bit writes are always atomic.
 | |
| }
 | |
| 
 | |
| template <typename T, typename U>
 | |
| inline T* AtomicExchangeAcquire(T* volatile& loc, U newval)
 | |
| {
 | |
| 	return (T*) _InterlockedExchangePointer_acq((void* volatile*) &loc, (void*) newval);
 | |
| }
 | |
| 
 | |
| }
 |