forked from dolphin-emu/dolphin
		
	
		
			
				
	
	
		
			392 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			392 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2013 Dolphin Emulator Project
 | |
| // Licensed under GPLv2+
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| // Dolby Pro Logic 2 decoder from ffdshow-tryout
 | |
| //  * Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
 | |
| //  * Copyright (c) 2004-2006 Milan Cutka
 | |
| //  * based on mplayer HRTF plugin by ylai
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <cstdlib>
 | |
| #include <functional>
 | |
| #include <string.h>
 | |
| #include <vector>
 | |
| 
 | |
| #include "AudioCommon/DPL2Decoder.h"
 | |
| #include "Common/CommonTypes.h"
 | |
| #include "Common/MathUtil.h"
 | |
| 
 | |
| #ifndef M_PI
 | |
| #define M_PI 3.14159265358979323846
 | |
| #endif
 | |
| #ifndef M_SQRT1_2
 | |
| #define M_SQRT1_2 0.70710678118654752440
 | |
| #endif
 | |
| 
 | |
| static int olddelay = -1;
 | |
| static unsigned int oldfreq = 0;
 | |
| static unsigned int dlbuflen;
 | |
| static int cyc_pos;
 | |
| static float l_fwr, r_fwr, lpr_fwr, lmr_fwr;
 | |
| static std::vector<float> fwrbuf_l, fwrbuf_r;
 | |
| static float adapt_l_gain, adapt_r_gain, adapt_lpr_gain, adapt_lmr_gain;
 | |
| static std::vector<float> lf, rf, lr, rr, cf, cr;
 | |
| static float LFE_buf[256];
 | |
| static unsigned int lfe_pos;
 | |
| static float* filter_coefs_lfe;
 | |
| static unsigned int len125;
 | |
| 
 | |
| template <class T, class _ftype_t>
 | |
| static _ftype_t DotProduct(int count, const T* buf, const _ftype_t* coefficients)
 | |
| {
 | |
|   int i;
 | |
|   float sum0 = 0.0f, sum1 = 0.0f, sum2 = 0.0f, sum3 = 0.0f;
 | |
| 
 | |
|   // Unrolled loop
 | |
|   for (i = 0; (i + 3) < count; i += 4)
 | |
|   {
 | |
|     sum0 += buf[i + 0] * coefficients[i + 0];
 | |
|     sum1 += buf[i + 1] * coefficients[i + 1];
 | |
|     sum2 += buf[i + 2] * coefficients[i + 2];
 | |
|     sum3 += buf[i + 3] * coefficients[i + 3];
 | |
|   }
 | |
| 
 | |
|   // Epilogue of unrolled loop
 | |
|   for (; i < count; i++)
 | |
|     sum0 += buf[i] * coefficients[i];
 | |
| 
 | |
|   return sum0 + sum1 + sum2 + sum3;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| static T FIRFilter(const T* buf, int pos, int len, int count, const float* coefficients)
 | |
| {
 | |
|   int count1, count2;
 | |
| 
 | |
|   if (pos >= count)
 | |
|   {
 | |
|     pos -= count;
 | |
|     count1 = count;
 | |
|     count2 = 0;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     count2 = pos;
 | |
|     count1 = count - pos;
 | |
|     pos = len - count1;
 | |
|   }
 | |
| 
 | |
|   // high part of window
 | |
|   const T* ptr = &buf[pos];
 | |
| 
 | |
|   float r1 = DotProduct(count1, ptr, coefficients);
 | |
|   coefficients += count1;
 | |
|   float r2 = DotProduct(count2, buf, coefficients);
 | |
|   return T(r1 + r2);
 | |
| }
 | |
| 
 | |
| /*
 | |
| // Hamming
 | |
| //                        2*pi*k
 | |
| // w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N
 | |
| //                         N-1
 | |
| //
 | |
| // n window length
 | |
| // w buffer for the window parameters
 | |
| */
 | |
| static void Hamming(int n, float* w)
 | |
| {
 | |
|   float k = float(2 * M_PI / ((float)(n - 1)));  // 2*pi/(N-1)
 | |
| 
 | |
|   // Calculate window coefficients
 | |
|   for (int i = 0; i < n; i++)
 | |
|     *w++ = float(0.54 - 0.46 * cos(k * (float)i));
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| *  FIR filter design
 | |
| ******************************************************************************/
 | |
| 
 | |
| /* Design FIR filter using the Window method
 | |
| 
 | |
| n     filter length must be odd for HP and BS filters
 | |
| w     buffer for the filter taps (must be n long)
 | |
| fc    cutoff frequencies (1 for LP and HP, 2 for BP and BS)
 | |
| 0 < fc < 1 where 1 <=> Fs/2
 | |
| flags window and filter type as defined in filter.h
 | |
| variables are ored together: i.e. LP|HAMMING will give a
 | |
| low pass filter designed using a hamming window
 | |
| opt   beta constant used only when designing using kaiser windows
 | |
| 
 | |
| returns 0 if OK, -1 if fail
 | |
| */
 | |
| static float* DesignFIR(unsigned int* n, float* fc, float opt)
 | |
| {
 | |
|   unsigned int o = *n & 1;                 // Indicator for odd filter length
 | |
|   unsigned int end = ((*n + 1) >> 1) - o;  // Loop end
 | |
| 
 | |
|   float k1 = 2 * float(M_PI);        // 2*pi*fc1
 | |
|   float k2 = 0.5f * (float)(1 - o);  // Constant used if the filter has even length
 | |
|   float g = 0.0f;                    // Gain
 | |
|   float t1;                          // Temporary variables
 | |
|   float fc1;                         // Cutoff frequencies
 | |
| 
 | |
|   // Sanity check
 | |
|   if (*n == 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   fc[0] = MathUtil::Clamp(fc[0], 0.001f, 1.0f);
 | |
| 
 | |
|   float* w = (float*)calloc(sizeof(float), *n);
 | |
| 
 | |
|   // Get window coefficients
 | |
|   Hamming(*n, w);
 | |
| 
 | |
|   fc1 = *fc;
 | |
|   // Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2
 | |
|   fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1 / 2 : 0.25f;
 | |
|   k1 *= fc1;
 | |
| 
 | |
|   // Low pass filter
 | |
| 
 | |
|   // If the filter length is odd, there is one point which is exactly
 | |
|   // in the middle. The value at this point is 2*fCutoff*sin(x)/x,
 | |
|   // where x is zero. To make sure nothing strange happens, we set this
 | |
|   // value separately.
 | |
|   if (o)
 | |
|   {
 | |
|     w[end] = fc1 * w[end] * 2.0f;
 | |
|     g = w[end];
 | |
|   }
 | |
| 
 | |
|   // Create filter
 | |
|   for (u32 i = 0; i < end; i++)
 | |
|   {
 | |
|     t1 = (float)(i + 1) - k2;
 | |
|     w[end - i - 1] = w[*n - end + i] = float(w[end - i - 1] * sin(k1 * t1) / (M_PI * t1));  // Sinc
 | |
|     g += 2 * w[end - i - 1];  // Total gain in filter
 | |
|   }
 | |
| 
 | |
|   // Normalize gain
 | |
|   g = 1 / g;
 | |
|   for (u32 i = 0; i < *n; i++)
 | |
|     w[i] *= g;
 | |
| 
 | |
|   return w;
 | |
| }
 | |
| 
 | |
| static void OnSeek()
 | |
| {
 | |
|   l_fwr = r_fwr = lpr_fwr = lmr_fwr = 0;
 | |
|   std::fill(fwrbuf_l.begin(), fwrbuf_l.end(), 0.0f);
 | |
|   std::fill(fwrbuf_r.begin(), fwrbuf_r.end(), 0.0f);
 | |
|   adapt_l_gain = adapt_r_gain = adapt_lpr_gain = adapt_lmr_gain = 0;
 | |
|   std::fill(lf.begin(), lf.end(), 0.0f);
 | |
|   std::fill(rf.begin(), rf.end(), 0.0f);
 | |
|   std::fill(lr.begin(), lr.end(), 0.0f);
 | |
|   std::fill(rr.begin(), rr.end(), 0.0f);
 | |
|   std::fill(cf.begin(), cf.end(), 0.0f);
 | |
|   std::fill(cr.begin(), cr.end(), 0.0f);
 | |
|   lfe_pos = 0;
 | |
|   memset(LFE_buf, 0, sizeof(LFE_buf));
 | |
| }
 | |
| 
 | |
| static void Done()
 | |
| {
 | |
|   OnSeek();
 | |
| 
 | |
|   if (filter_coefs_lfe)
 | |
|   {
 | |
|     free(filter_coefs_lfe);
 | |
|   }
 | |
| 
 | |
|   filter_coefs_lfe = nullptr;
 | |
| }
 | |
| 
 | |
| static float* CalculateCoefficients125HzLowpass(int rate)
 | |
| {
 | |
|   len125 = 256;
 | |
|   float f = 125.0f / (rate / 2);
 | |
|   float* coeffs = DesignFIR(&len125, &f, 0);
 | |
|   static const float M3_01DB = 0.7071067812f;
 | |
|   for (unsigned int i = 0; i < len125; i++)
 | |
|   {
 | |
|     coeffs[i] *= M3_01DB;
 | |
|   }
 | |
|   return coeffs;
 | |
| }
 | |
| 
 | |
| static float PassiveLock(float x)
 | |
| {
 | |
|   static const float MATAGCLOCK =
 | |
|       0.2f; /* AGC range (around 1) where the matrix behaves passively */
 | |
|   const float x1 = x - 1;
 | |
|   const float ax1s = fabs(x - 1) * (1.0f / MATAGCLOCK);
 | |
|   return x1 - x1 / (1 + ax1s * ax1s) + 1;
 | |
| }
 | |
| 
 | |
| static void MatrixDecode(const float* in, const int k, const int il, const int ir, bool decode_rear,
 | |
|                          const int _dlbuflen, float _l_fwr, float _r_fwr, float _lpr_fwr,
 | |
|                          float _lmr_fwr, float* _adapt_l_gain, float* _adapt_r_gain,
 | |
|                          float* _adapt_lpr_gain, float* _adapt_lmr_gain, float* _lf, float* _rf,
 | |
|                          float* _lr, float* _rr, float* _cf)
 | |
| {
 | |
|   static const float M9_03DB = 0.3535533906f;
 | |
|   static const float MATAGCTRIG = 8.0f;  /* (Fuzzy) AGC trigger */
 | |
|   static const float MATAGCDECAY = 1.0f; /* AGC baseline decay rate (1/samp.) */
 | |
|   static const float MATCOMPGAIN =
 | |
|       0.37f; /* Cross talk compensation gain,  0.50 - 0.55 is full cancellation. */
 | |
| 
 | |
|   const int kr = (k + olddelay) % _dlbuflen;
 | |
|   float l_gain = (_l_fwr + _r_fwr) / (1 + _l_fwr + _l_fwr);
 | |
|   float r_gain = (_l_fwr + _r_fwr) / (1 + _r_fwr + _r_fwr);
 | |
|   // The 2nd axis has strong gain fluctuations, and therefore require
 | |
|   // limits.  The factor corresponds to the 1 / amplification of (Lt
 | |
|   // - Rt) when (Lt, Rt) is strongly correlated. (e.g. during
 | |
|   // dialogues).  It should be bigger than -12 dB to prevent
 | |
|   // distortion.
 | |
|   float lmr_lim_fwr = _lmr_fwr > M9_03DB * _lpr_fwr ? _lmr_fwr : M9_03DB * _lpr_fwr;
 | |
|   float lpr_gain = (_lpr_fwr + lmr_lim_fwr) / (1 + _lpr_fwr + _lpr_fwr);
 | |
|   float lmr_gain = (_lpr_fwr + lmr_lim_fwr) / (1 + lmr_lim_fwr + lmr_lim_fwr);
 | |
|   float lmr_unlim_gain = (_lpr_fwr + _lmr_fwr) / (1 + _lmr_fwr + _lmr_fwr);
 | |
|   float lpr, lmr;
 | |
|   float l_agc, r_agc, lpr_agc, lmr_agc;
 | |
|   float f, d_gain, c_gain, c_agc_cfk;
 | |
| 
 | |
|   /*** AXIS NO. 1: (Lt, Rt) -> (C, Ls, Rs) ***/
 | |
|   /* AGC adaption */
 | |
|   d_gain = (fabs(l_gain - *_adapt_l_gain) + fabs(r_gain - *_adapt_r_gain)) * 0.5f;
 | |
|   f = d_gain * (1.0f / MATAGCTRIG);
 | |
|   f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
 | |
|   *_adapt_l_gain = (1 - f) * *_adapt_l_gain + f * l_gain;
 | |
|   *_adapt_r_gain = (1 - f) * *_adapt_r_gain + f * r_gain;
 | |
|   /* Matrix */
 | |
|   l_agc = in[il] * PassiveLock(*_adapt_l_gain);
 | |
|   r_agc = in[ir] * PassiveLock(*_adapt_r_gain);
 | |
|   _cf[k] = (l_agc + r_agc) * (float)M_SQRT1_2;
 | |
|   if (decode_rear)
 | |
|   {
 | |
|     _lr[kr] = _rr[kr] = (l_agc - r_agc) * (float)M_SQRT1_2;
 | |
|     // Stereo rear channel is steered with the same AGC steering as
 | |
|     // the decoding matrix. Note this requires a fast updating AGC
 | |
|     // at the order of 20 ms (which is the case here).
 | |
|     _lr[kr] *= (_l_fwr + _l_fwr) / (1 + _l_fwr + _r_fwr);
 | |
|     _rr[kr] *= (_r_fwr + _r_fwr) / (1 + _l_fwr + _r_fwr);
 | |
|   }
 | |
| 
 | |
|   /*** AXIS NO. 2: (Lt + Rt, Lt - Rt) -> (L, R) ***/
 | |
|   lpr = (in[il] + in[ir]) * (float)M_SQRT1_2;
 | |
|   lmr = (in[il] - in[ir]) * (float)M_SQRT1_2;
 | |
|   /* AGC adaption */
 | |
|   d_gain = fabs(lmr_unlim_gain - *_adapt_lmr_gain);
 | |
|   f = d_gain * (1.0f / MATAGCTRIG);
 | |
|   f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
 | |
|   *_adapt_lpr_gain = (1 - f) * *_adapt_lpr_gain + f * lpr_gain;
 | |
|   *_adapt_lmr_gain = (1 - f) * *_adapt_lmr_gain + f * lmr_gain;
 | |
|   /* Matrix */
 | |
|   lpr_agc = lpr * PassiveLock(*_adapt_lpr_gain);
 | |
|   lmr_agc = lmr * PassiveLock(*_adapt_lmr_gain);
 | |
|   _lf[k] = (lpr_agc + lmr_agc) * (float)M_SQRT1_2;
 | |
|   _rf[k] = (lpr_agc - lmr_agc) * (float)M_SQRT1_2;
 | |
| 
 | |
|   /*** CENTER FRONT CANCELLATION ***/
 | |
|   // A heuristic approach exploits that Lt + Rt gain contains the
 | |
|   // information about Lt, Rt correlation.  This effectively reshapes
 | |
|   // the front and rear "cones" to concentrate Lt + Rt to C and
 | |
|   // introduce Lt - Rt in L, R.
 | |
|   /* 0.67677 is the empirical lower bound for lpr_gain. */
 | |
|   c_gain = 8 * (*_adapt_lpr_gain - 0.67677f);
 | |
|   c_gain = c_gain > 0 ? c_gain : 0;
 | |
|   // c_gain should not be too high, not even reaching full
 | |
|   // cancellation (~ 0.50 - 0.55 at current AGC implementation), or
 | |
|   // the center will sound too narrow. */
 | |
|   c_gain = MATCOMPGAIN / (1 + c_gain * c_gain);
 | |
|   c_agc_cfk = c_gain * _cf[k];
 | |
|   _lf[k] -= c_agc_cfk;
 | |
|   _rf[k] -= c_agc_cfk;
 | |
|   _cf[k] += c_agc_cfk + c_agc_cfk;
 | |
| }
 | |
| 
 | |
| void DPL2Decode(float* samples, int numsamples, float* out)
 | |
| {
 | |
|   static const unsigned int FWRDURATION = 240;  // FWR average duration (samples)
 | |
|   static const int cfg_delay = 0;
 | |
|   static const unsigned int fmt_freq = 48000;
 | |
|   static const unsigned int fmt_nchannels = 2;  // input channels
 | |
| 
 | |
|   int cur = 0;
 | |
| 
 | |
|   if (olddelay != cfg_delay || oldfreq != fmt_freq)
 | |
|   {
 | |
|     Done();
 | |
|     olddelay = cfg_delay;
 | |
|     oldfreq = fmt_freq;
 | |
|     dlbuflen = std::max(FWRDURATION, (fmt_freq * cfg_delay / 1000));  //+(len7000-1);
 | |
|     cyc_pos = dlbuflen - 1;
 | |
|     fwrbuf_l.resize(dlbuflen);
 | |
|     fwrbuf_r.resize(dlbuflen);
 | |
|     lf.resize(dlbuflen);
 | |
|     rf.resize(dlbuflen);
 | |
|     lr.resize(dlbuflen);
 | |
|     rr.resize(dlbuflen);
 | |
|     cf.resize(dlbuflen);
 | |
|     cr.resize(dlbuflen);
 | |
|     filter_coefs_lfe = CalculateCoefficients125HzLowpass(fmt_freq);
 | |
|     lfe_pos = 0;
 | |
|     memset(LFE_buf, 0, sizeof(LFE_buf));
 | |
|   }
 | |
| 
 | |
|   float* in = samples;                           // Input audio data
 | |
|   float* end = in + numsamples * fmt_nchannels;  // Loop end
 | |
| 
 | |
|   while (in < end)
 | |
|   {
 | |
|     const int k = cyc_pos;
 | |
| 
 | |
|     const int fwr_pos = (k + FWRDURATION) % dlbuflen;
 | |
|     /* Update the full wave rectified total amplitude */
 | |
|     /* Input matrix decoder */
 | |
|     l_fwr += fabs(in[0]) - fabs(fwrbuf_l[fwr_pos]);
 | |
|     r_fwr += fabs(in[1]) - fabs(fwrbuf_r[fwr_pos]);
 | |
|     lpr_fwr += fabs(in[0] + in[1]) - fabs(fwrbuf_l[fwr_pos] + fwrbuf_r[fwr_pos]);
 | |
|     lmr_fwr += fabs(in[0] - in[1]) - fabs(fwrbuf_l[fwr_pos] - fwrbuf_r[fwr_pos]);
 | |
| 
 | |
|     /* Matrix encoded 2 channel sources */
 | |
|     fwrbuf_l[k] = in[0];
 | |
|     fwrbuf_r[k] = in[1];
 | |
|     MatrixDecode(in, k, 0, 1, true, dlbuflen, l_fwr, r_fwr, lpr_fwr, lmr_fwr, &adapt_l_gain,
 | |
|                  &adapt_r_gain, &adapt_lpr_gain, &adapt_lmr_gain, &lf[0], &rf[0], &lr[0], &rr[0],
 | |
|                  &cf[0]);
 | |
| 
 | |
|     out[cur + 0] = lf[k];
 | |
|     out[cur + 1] = rf[k];
 | |
|     out[cur + 2] = cf[k];
 | |
|     LFE_buf[lfe_pos] = (lf[k] + rf[k] + 2.0f * cf[k] + lr[k] + rr[k]) / 2.0f;
 | |
|     out[cur + 3] = FIRFilter(LFE_buf, lfe_pos, len125, len125, filter_coefs_lfe);
 | |
|     lfe_pos++;
 | |
|     if (lfe_pos == len125)
 | |
|     {
 | |
|       lfe_pos = 0;
 | |
|     }
 | |
|     out[cur + 4] = lr[k];
 | |
|     out[cur + 5] = rr[k];
 | |
|     // Next sample...
 | |
|     in += 2;
 | |
|     cur += 6;
 | |
|     cyc_pos--;
 | |
|     if (cyc_pos < 0)
 | |
|     {
 | |
|       cyc_pos += dlbuflen;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DPL2Reset()
 | |
| {
 | |
|   olddelay = -1;
 | |
|   oldfreq = 0;
 | |
|   filter_coefs_lfe = nullptr;
 | |
| }
 |