forked from dolphin-emu/dolphin
		
	
		
			
				
	
	
		
			1640 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1640 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2013 Dolphin Emulator Project
 | |
| // Licensed under GPLv2
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| #include "Common.h"
 | |
| #include "x64Emitter.h"
 | |
| #include "x64ABI.h"
 | |
| #include "CPUDetect.h"
 | |
| 
 | |
| namespace Gen
 | |
| {
 | |
| 
 | |
| // TODO(ector): Add EAX special casing, for ever so slightly smaller code.
 | |
| struct NormalOpDef
 | |
| {
 | |
| 	u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, ext;
 | |
| };
 | |
| 
 | |
| static const NormalOpDef nops[11] =
 | |
| {
 | |
| 	{0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0}, //ADD
 | |
| 	{0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 2}, //ADC
 | |
| 
 | |
| 	{0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 5}, //SUB
 | |
| 	{0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 3}, //SBB
 | |
| 
 | |
| 	{0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 4}, //AND
 | |
| 	{0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 1}, //OR
 | |
| 
 | |
| 	{0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 6}, //XOR
 | |
| 	{0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0}, //MOV
 | |
| 
 | |
| 	{0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0}, //TEST (to == from)
 | |
| 	{0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 7}, //CMP
 | |
| 
 | |
| 	{0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 7}, //XCHG
 | |
| };
 | |
| 
 | |
| enum NormalSSEOps
 | |
| {
 | |
| 	sseCMP         = 0xC2,
 | |
| 	sseADD         = 0x58, //ADD
 | |
| 	sseSUB         = 0x5C, //SUB
 | |
| 	sseAND         = 0x54, //AND
 | |
| 	sseANDN        = 0x55, //ANDN
 | |
| 	sseOR          = 0x56,
 | |
| 	sseXOR         = 0x57,
 | |
| 	sseMUL         = 0x59, //MUL
 | |
| 	sseDIV         = 0x5E, //DIV
 | |
| 	sseMIN         = 0x5D, //MIN
 | |
| 	sseMAX         = 0x5F, //MAX
 | |
| 	sseCOMIS       = 0x2F, //COMIS
 | |
| 	sseUCOMIS      = 0x2E, //UCOMIS
 | |
| 	sseSQRT        = 0x51, //SQRT
 | |
| 	sseRSQRT       = 0x52, //RSQRT (NO DOUBLE PRECISION!!!)
 | |
| 	sseMOVAPfromRM = 0x28, //MOVAP from RM
 | |
| 	sseMOVAPtoRM   = 0x29, //MOVAP to RM
 | |
| 	sseMOVUPfromRM = 0x10, //MOVUP from RM
 | |
| 	sseMOVUPtoRM   = 0x11, //MOVUP to RM
 | |
| 	sseMASKMOVDQU  = 0xF7,
 | |
| 	sseLDDQU       = 0xF0,
 | |
| 	sseSHUF        = 0xC6,
 | |
| 	sseMOVNTDQ     = 0xE7,
 | |
| 	sseMOVNTP      = 0x2B,
 | |
| };
 | |
| 
 | |
| 
 | |
| void XEmitter::SetCodePtr(u8 *ptr)
 | |
| {
 | |
| 	code = ptr;
 | |
| }
 | |
| 
 | |
| const u8 *XEmitter::GetCodePtr() const
 | |
| {
 | |
| 	return code;
 | |
| }
 | |
| 
 | |
| u8 *XEmitter::GetWritableCodePtr()
 | |
| {
 | |
| 	return code;
 | |
| }
 | |
| 
 | |
| void XEmitter::ReserveCodeSpace(int bytes)
 | |
| {
 | |
| 	for (int i = 0; i < bytes; i++)
 | |
| 		*code++ = 0xCC;
 | |
| }
 | |
| 
 | |
| const u8 *XEmitter::AlignCode4()
 | |
| {
 | |
| 	int c = int((u64)code & 3);
 | |
| 	if (c)
 | |
| 		ReserveCodeSpace(4-c);
 | |
| 	return code;
 | |
| }
 | |
| 
 | |
| const u8 *XEmitter::AlignCode16()
 | |
| {
 | |
| 	int c = int((u64)code & 15);
 | |
| 	if (c)
 | |
| 		ReserveCodeSpace(16-c);
 | |
| 	return code;
 | |
| }
 | |
| 
 | |
| const u8 *XEmitter::AlignCodePage()
 | |
| {
 | |
| 	int c = int((u64)code & 4095);
 | |
| 	if (c)
 | |
| 		ReserveCodeSpace(4096-c);
 | |
| 	return code;
 | |
| }
 | |
| 
 | |
| void XEmitter::WriteModRM(int mod, int rm, int reg)
 | |
| {
 | |
| 	Write8((u8)((mod << 6) | ((rm & 7) << 3) | (reg & 7)));
 | |
| }
 | |
| 
 | |
| void XEmitter::WriteSIB(int scale, int index, int base)
 | |
| {
 | |
| 	Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
 | |
| }
 | |
| 
 | |
| void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const
 | |
| {
 | |
| 	if (customOp == -1)       customOp = operandReg;
 | |
| #ifdef _M_X64
 | |
| 	u8 op = 0x40;
 | |
| 	if (opBits == 64)         op |= 8;
 | |
| 	if (customOp & 8)         op |= 4;
 | |
| 	if (indexReg & 8)         op |= 2;
 | |
| 	if (offsetOrBaseReg & 8)  op |= 1; //TODO investigate if this is dangerous
 | |
| 	if (op != 0x40 ||
 | |
| 		(bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
 | |
| 		(opBits == 8 && (customOp & 0x10c) == 4)) {
 | |
| 		emit->Write8(op);
 | |
| 		_dbg_assert_(DYNA_REC, (offsetOrBaseReg & 0x100) == 0 || bits != 8);
 | |
| 		_dbg_assert_(DYNA_REC, (customOp & 0x100) == 0 || opBits != 8);
 | |
| 	} else {
 | |
| 		_dbg_assert_(DYNA_REC, (offsetOrBaseReg & 0x10c) == 0 ||
 | |
| 				(offsetOrBaseReg & 0x10c) == 0x104 ||
 | |
| 				bits != 8);
 | |
| 		_dbg_assert_(DYNA_REC, (customOp & 0x10c) == 0 ||
 | |
| 				(customOp & 0x10c) == 0x104 ||
 | |
| 				opBits != 8);
 | |
| 	}
 | |
| 
 | |
| #else
 | |
| 	_dbg_assert_(DYNA_REC, opBits != 64);
 | |
| 	_dbg_assert_(DYNA_REC, (customOp & 8) == 0 || customOp == -1);
 | |
| 	_dbg_assert_(DYNA_REC, (indexReg & 8) == 0);
 | |
| 	_dbg_assert_(DYNA_REC, (offsetOrBaseReg & 8) == 0);
 | |
| 	_dbg_assert_(DYNA_REC, opBits != 8 || (customOp & 0x10c) != 4 || customOp == -1);
 | |
| 	_dbg_assert_(DYNA_REC, bits != 8 || (offsetOrBaseReg & 0x10c) != 4);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
 | |
| 	bool warn_64bit_offset) const
 | |
| {
 | |
| 	if (_operandReg == 0xff)
 | |
| 		_operandReg = (X64Reg)this->operandReg;
 | |
| 	int mod = 0;
 | |
| 	int ireg = indexReg;
 | |
| 	bool SIB = false;
 | |
| 	int _offsetOrBaseReg = this->offsetOrBaseReg;
 | |
| 
 | |
| 	if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address
 | |
| 	{
 | |
| 		// Oh, RIP addressing.
 | |
| 		_offsetOrBaseReg = 5;
 | |
| 		emit->WriteModRM(0, _operandReg&7, 5);
 | |
| 		//TODO : add some checks
 | |
| #ifdef _M_X64
 | |
| 		u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes;
 | |
| 		s64 distance = (s64)offset - (s64)ripAddr;
 | |
| 		_assert_msg_(DYNA_REC, (distance < 0x80000000LL
 | |
| 					&& distance >=  -0x80000000LL) ||
 | |
| 			     !warn_64bit_offset,
 | |
| 			     "WriteRest: op out of range (0x%llx uses 0x%llx)",
 | |
| 			     ripAddr, offset);
 | |
| 		s32 offs = (s32)distance;
 | |
| 		emit->Write32((u32)offs);
 | |
| #else
 | |
| 		emit->Write32((u32)offset);
 | |
| #endif
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (scale == 0)
 | |
| 	{
 | |
| 		// Oh, no memory, Just a reg.
 | |
| 		mod = 3; //11
 | |
| 	}
 | |
| 	else if (scale >= 1)
 | |
| 	{
 | |
| 		//Ah good, no scaling.
 | |
| 		if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5))
 | |
| 		{
 | |
| 			//Okay, we're good. No SIB necessary.
 | |
| 			int ioff = (int)offset;
 | |
| 			if (ioff == 0)
 | |
| 			{
 | |
| 				mod = 0;
 | |
| 			}
 | |
| 			else if (ioff<-128 || ioff>127)
 | |
| 			{
 | |
| 				mod = 2; //32-bit displacement
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				mod = 1; //8-bit displacement
 | |
| 			}
 | |
| 		}
 | |
| 		else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)
 | |
| 		{
 | |
| 			SIB = true;
 | |
| 			mod = 0;
 | |
| 			_offsetOrBaseReg = 5;
 | |
| 		}
 | |
| 		else //if (scale != SCALE_ATREG)
 | |
| 		{
 | |
| 			if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :(
 | |
| 			{
 | |
| 				//So we have to fake it with SIB encoding :(
 | |
| 				SIB = true;
 | |
| 			}
 | |
| 
 | |
| 			if (scale >= SCALE_1 && scale < SCALE_ATREG)
 | |
| 			{
 | |
| 				SIB = true;
 | |
| 			}
 | |
| 
 | |
| 			if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4))
 | |
| 			{
 | |
| 				SIB = true;
 | |
| 				ireg = _offsetOrBaseReg;
 | |
| 			}
 | |
| 
 | |
| 			//Okay, we're fine. Just disp encoding.
 | |
| 			//We need displacement. Which size?
 | |
| 			int ioff = (int)(s64)offset;
 | |
| 			if (ioff < -128 || ioff > 127)
 | |
| 			{
 | |
| 				mod = 2; //32-bit displacement
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				mod = 1; //8-bit displacement
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Okay. Time to do the actual writing
 | |
| 	// ModRM byte:
 | |
| 	int oreg = _offsetOrBaseReg;
 | |
| 	if (SIB)
 | |
| 		oreg = 4;
 | |
| 
 | |
| 	// TODO(ector): WTF is this if about? I don't remember writing it :-)
 | |
| 	//if (RIP)
 | |
| 	//    oreg = 5;
 | |
| 
 | |
| 	emit->WriteModRM(mod, _operandReg&7, oreg&7);
 | |
| 
 | |
| 	if (SIB)
 | |
| 	{
 | |
| 		//SIB byte
 | |
| 		int ss;
 | |
| 		switch (scale)
 | |
| 		{
 | |
| 		case SCALE_NONE: _offsetOrBaseReg = 4; ss = 0; break; //RSP
 | |
| 		case SCALE_1: ss = 0; break;
 | |
| 		case SCALE_2: ss = 1; break;
 | |
| 		case SCALE_4: ss = 2; break;
 | |
| 		case SCALE_8: ss = 3; break;
 | |
| 		case SCALE_NOBASE_2: ss = 1; break;
 | |
| 		case SCALE_NOBASE_4: ss = 2; break;
 | |
| 		case SCALE_NOBASE_8: ss = 3; break;
 | |
| 		case SCALE_ATREG: ss = 0; break;
 | |
| 		default: _assert_msg_(DYNA_REC, 0, "Invalid scale for SIB byte"); ss = 0; break;
 | |
| 		}
 | |
| 		emit->Write8((u8)((ss << 6) | ((ireg&7)<<3) | (_offsetOrBaseReg&7)));
 | |
| 	}
 | |
| 
 | |
| 	if (mod == 1) //8-bit disp
 | |
| 	{
 | |
| 		emit->Write8((u8)(s8)(s32)offset);
 | |
| 	}
 | |
| 	else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) //32-bit disp
 | |
| 	{
 | |
| 		emit->Write32((u32)offset);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| // W = operand extended width (1 if 64-bit)
 | |
| // R = register# upper bit
 | |
| // X = scale amnt upper bit
 | |
| // B = base register# upper bit
 | |
| void XEmitter::Rex(int w, int r, int x, int b)
 | |
| {
 | |
| 	w = w ? 1 : 0;
 | |
| 	r = r ? 1 : 0;
 | |
| 	x = x ? 1 : 0;
 | |
| 	b = b ? 1 : 0;
 | |
| 	u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b));
 | |
| 	if (rx != 0x40)
 | |
| 		Write8(rx);
 | |
| }
 | |
| 
 | |
| void XEmitter::JMP(const u8 *addr, bool force5Bytes)
 | |
| {
 | |
| 	u64 fn = (u64)addr;
 | |
| 	if (!force5Bytes)
 | |
| 	{
 | |
| 		s64 distance = (s64)(fn - ((u64)code + 2));
 | |
| 		_assert_msg_(DYNA_REC, distance >= -0x80 && distance < 0x80,
 | |
| 			     "Jump target too far away, needs force5Bytes = true");
 | |
| 		//8 bits will do
 | |
| 		Write8(0xEB);
 | |
| 		Write8((u8)(s8)distance);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		s64 distance = (s64)(fn - ((u64)code + 5));
 | |
| 
 | |
| 		_assert_msg_(DYNA_REC, distance >= -0x80000000LL
 | |
| 			     && distance < 0x80000000LL,
 | |
| 			     "Jump target too far away, needs indirect register");
 | |
| 		Write8(0xE9);
 | |
| 		Write32((u32)(s32)distance);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void XEmitter::JMPptr(const OpArg &arg2)
 | |
| {
 | |
| 	OpArg arg = arg2;
 | |
| 	if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "JMPptr - Imm argument");
 | |
| 	arg.operandReg = 4;
 | |
| 	arg.WriteRex(this, 0, 0);
 | |
| 	Write8(0xFF);
 | |
| 	arg.WriteRest(this);
 | |
| }
 | |
| 
 | |
| //Can be used to trap other processors, before overwriting their code
 | |
| // not used in dolphin
 | |
| void XEmitter::JMPself()
 | |
| {
 | |
| 	Write8(0xEB);
 | |
| 	Write8(0xFE);
 | |
| }
 | |
| 
 | |
| void XEmitter::CALLptr(OpArg arg)
 | |
| {
 | |
| 	if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "CALLptr - Imm argument");
 | |
| 	arg.operandReg = 2;
 | |
| 	arg.WriteRex(this, 0, 0);
 | |
| 	Write8(0xFF);
 | |
| 	arg.WriteRest(this);
 | |
| }
 | |
| 
 | |
| void XEmitter::CALL(const void *fnptr)
 | |
| {
 | |
| 	u64 distance = u64(fnptr) - (u64(code) + 5);
 | |
| 	_assert_msg_(DYNA_REC, distance < 0x0000000080000000ULL
 | |
| 		     || distance >=  0xFFFFFFFF80000000ULL,
 | |
| 		     "CALL out of range (%p calls %p)", code, fnptr);
 | |
| 	Write8(0xE8);
 | |
| 	Write32(u32(distance));
 | |
| }
 | |
| 
 | |
| FixupBranch XEmitter::J(bool force5bytes)
 | |
| {
 | |
| 	FixupBranch branch;
 | |
| 	branch.type = force5bytes ? 1 : 0;
 | |
| 	branch.ptr = code + (force5bytes ? 5 : 2);
 | |
| 	if (!force5bytes)
 | |
| 	{
 | |
| 		//8 bits will do
 | |
| 		Write8(0xEB);
 | |
| 		Write8(0);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		Write8(0xE9);
 | |
| 		Write32(0);
 | |
| 	}
 | |
| 	return branch;
 | |
| }
 | |
| 
 | |
| FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes)
 | |
| {
 | |
| 	FixupBranch branch;
 | |
| 	branch.type = force5bytes ? 1 : 0;
 | |
| 	branch.ptr = code + (force5bytes ? 6 : 2);
 | |
| 	if (!force5bytes)
 | |
| 	{
 | |
| 		//8 bits will do
 | |
| 		Write8(0x70 + conditionCode);
 | |
| 		Write8(0);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		Write8(0x0F);
 | |
| 		Write8(0x80 + conditionCode);
 | |
| 		Write32(0);
 | |
| 	}
 | |
| 	return branch;
 | |
| }
 | |
| 
 | |
| void XEmitter::J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes)
 | |
| {
 | |
| 	u64 fn = (u64)addr;
 | |
| 	if (!force5Bytes)
 | |
| 	{
 | |
| 		s64 distance = (s64)(fn - ((u64)code + 2));
 | |
| 		_assert_msg_(DYNA_REC, distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true");
 | |
| 		//8 bits will do
 | |
| 		Write8(0x70 + conditionCode);
 | |
| 		Write8((u8)(s8)distance);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		s64 distance = (s64)(fn - ((u64)code + 6));
 | |
| 		_assert_msg_(DYNA_REC, distance >= -0x80000000LL
 | |
| 			     && distance < 0x80000000LL,
 | |
| 			     "Jump target too far away, needs indirect register");
 | |
| 		Write8(0x0F);
 | |
| 		Write8(0x80 + conditionCode);
 | |
| 		Write32((u32)(s32)distance);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void XEmitter::SetJumpTarget(const FixupBranch &branch)
 | |
| {
 | |
| 	if (branch.type == 0)
 | |
| 	{
 | |
| 		s64 distance = (s64)(code - branch.ptr);
 | |
| 		_assert_msg_(DYNA_REC, distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true");
 | |
| 		branch.ptr[-1] = (u8)(s8)distance;
 | |
| 	}
 | |
| 	else if (branch.type == 1)
 | |
| 	{
 | |
| 		s64 distance = (s64)(code - branch.ptr);
 | |
| 		_assert_msg_(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register");
 | |
| 		((s32*)branch.ptr)[-1] = (s32)distance;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // INC/DEC considered harmful on newer CPUs due to partial flag set.
 | |
| // Use ADD, SUB instead.
 | |
| 
 | |
| /*
 | |
| void XEmitter::INC(int bits, OpArg arg)
 | |
| {
 | |
| 	if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "INC - Imm argument");
 | |
| 	arg.operandReg = 0;
 | |
| 	if (bits == 16) {Write8(0x66);}
 | |
| 	arg.WriteRex(this, bits, bits);
 | |
| 	Write8(bits == 8 ? 0xFE : 0xFF);
 | |
| 	arg.WriteRest(this);
 | |
| }
 | |
| void XEmitter::DEC(int bits, OpArg arg)
 | |
| {
 | |
| 	if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "DEC - Imm argument");
 | |
| 	arg.operandReg = 1;
 | |
| 	if (bits == 16) {Write8(0x66);}
 | |
| 	arg.WriteRex(this, bits, bits);
 | |
| 	Write8(bits == 8 ? 0xFE : 0xFF);
 | |
| 	arg.WriteRest(this);
 | |
| }
 | |
| */
 | |
| 
 | |
| //Single byte opcodes
 | |
| //There is no PUSHAD/POPAD in 64-bit mode.
 | |
| void XEmitter::INT3() {Write8(0xCC);}
 | |
| void XEmitter::RET()  {Write8(0xC3);}
 | |
| void XEmitter::RET_FAST()  {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret
 | |
| 
 | |
| void XEmitter::NOP(int count)
 | |
| {
 | |
| 	// TODO: look up the fastest nop sleds for various sizes
 | |
| 	int i;
 | |
| 	switch (count) {
 | |
| 	case 1:
 | |
| 		Write8(0x90);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		Write8(0x66);
 | |
| 		Write8(0x90);
 | |
| 		break;
 | |
| 	default:
 | |
| 		for (i = 0; i < count; i++) {
 | |
| 			Write8(0x90);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void XEmitter::PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some cpu
 | |
| void XEmitter::CLC()  {Write8(0xF8);} //clear carry
 | |
| void XEmitter::CMC()  {Write8(0xF5);} //flip carry
 | |
| void XEmitter::STC()  {Write8(0xF9);} //set carry
 | |
| 
 | |
| //TODO: xchg ah, al ???
 | |
| void XEmitter::XCHG_AHAL()
 | |
| {
 | |
| 	Write8(0x86);
 | |
| 	Write8(0xe0);
 | |
| 	// alt. 86 c4
 | |
| }
 | |
| 
 | |
| //These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
 | |
| void XEmitter::LAHF() {Write8(0x9F);}
 | |
| void XEmitter::SAHF() {Write8(0x9E);}
 | |
| 
 | |
| void XEmitter::PUSHF() {Write8(0x9C);}
 | |
| void XEmitter::POPF()  {Write8(0x9D);}
 | |
| 
 | |
| void XEmitter::LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);}
 | |
| void XEmitter::MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);}
 | |
| void XEmitter::SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);}
 | |
| 
 | |
| void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
 | |
| {
 | |
| 	if (bits == 16) {Write8(0x66);}
 | |
| 	Rex(bits == 64, 0, 0, (int)reg >> 3);
 | |
| 	Write8(byte + ((int)reg & 7));
 | |
| }
 | |
| 
 | |
| void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
 | |
| {
 | |
| 	if (bits == 16) {Write8(0x66);}
 | |
| 	Rex(bits==64, 0, 0, (int)reg >> 3);
 | |
| 	Write8(byte1);
 | |
| 	Write8(byte2 + ((int)reg & 7));
 | |
| }
 | |
| 
 | |
| void XEmitter::CWD(int bits)
 | |
| {
 | |
| 	if (bits == 16) {Write8(0x66);}
 | |
| 	Rex(bits == 64, 0, 0, 0);
 | |
| 	Write8(0x99);
 | |
| }
 | |
| 
 | |
| void XEmitter::CBW(int bits)
 | |
| {
 | |
| 	if (bits == 8) {Write8(0x66);}
 | |
| 	Rex(bits == 32, 0, 0, 0);
 | |
| 	Write8(0x98);
 | |
| }
 | |
| 
 | |
| //Simple opcodes
 | |
| 
 | |
| 
 | |
| //push/pop do not need wide to be 64-bit
 | |
| void XEmitter::PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);}
 | |
| void XEmitter::POP(X64Reg reg)  {WriteSimple1Byte(32, 0x58, reg);}
 | |
| 
 | |
| void XEmitter::PUSH(int bits, const OpArg ®)
 | |
| {
 | |
| 	if (reg.IsSimpleReg())
 | |
| 		PUSH(reg.GetSimpleReg());
 | |
| 	else if (reg.IsImm())
 | |
| 	{
 | |
| 		switch (reg.GetImmBits())
 | |
| 		{
 | |
| 		case 8:
 | |
| 			Write8(0x6A);
 | |
| 			Write8((u8)(s8)reg.offset);
 | |
| 			break;
 | |
| 		case 16:
 | |
| 			Write8(0x66);
 | |
| 			Write8(0x68);
 | |
| 			Write16((u16)(s16)(s32)reg.offset);
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			Write8(0x68);
 | |
| 			Write32((u32)reg.offset);
 | |
| 			break;
 | |
| 		default:
 | |
| 			_assert_msg_(DYNA_REC, 0, "PUSH - Bad imm bits");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (bits == 16)
 | |
| 			Write8(0x66);
 | |
| 		reg.WriteRex(this, bits, bits);
 | |
| 		Write8(0xFF);
 | |
| 		reg.WriteRest(this, 0, (X64Reg)6);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void XEmitter::POP(int /*bits*/, const OpArg ®)
 | |
| {
 | |
| 	if (reg.IsSimpleReg())
 | |
| 		POP(reg.GetSimpleReg());
 | |
| 	else
 | |
| 		INT3();
 | |
| }
 | |
| 
 | |
| void XEmitter::BSWAP(int bits, X64Reg reg)
 | |
| {
 | |
| 	if (bits >= 32)
 | |
| 	{
 | |
| 		WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
 | |
| 	}
 | |
| 	else if (bits == 16)
 | |
| 	{
 | |
| 		ROL(16, R(reg), Imm8(8));
 | |
| 	}
 | |
| 	else if (bits == 8)
 | |
| 	{
 | |
| 		// Do nothing - can't bswap a single byte...
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "BSWAP - Wrong number of bits");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Undefined opcode - reserved
 | |
| // If we ever need a way to always cause a non-breakpoint hard exception...
 | |
| void XEmitter::UD2()
 | |
| {
 | |
| 	Write8(0x0F);
 | |
| 	Write8(0x0B);
 | |
| }
 | |
| 
 | |
| void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg)
 | |
| {
 | |
| 	if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "PREFETCH - Imm argument");;
 | |
| 	arg.operandReg = (u8)level;
 | |
| 	arg.WriteRex(this, 0, 0);
 | |
| 	Write8(0x0F);
 | |
| 	Write8(0x18);
 | |
| 	arg.WriteRest(this);
 | |
| }
 | |
| 
 | |
| void XEmitter::SETcc(CCFlags flag, OpArg dest)
 | |
| {
 | |
| 	if (dest.IsImm()) _assert_msg_(DYNA_REC, 0, "SETcc - Imm argument");
 | |
| 	dest.operandReg = 0;
 | |
| 	dest.WriteRex(this, 0, 0);
 | |
| 	Write8(0x0F);
 | |
| 	Write8(0x90 + (u8)flag);
 | |
| 	dest.WriteRest(this);
 | |
| }
 | |
| 
 | |
| void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
 | |
| {
 | |
| 	if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "CMOVcc - Imm argument");
 | |
| 	src.operandReg = dest;
 | |
| 	src.WriteRex(this, bits, bits);
 | |
| 	Write8(0x0F);
 | |
| 	Write8(0x40 + (u8)flag);
 | |
| 	src.WriteRest(this);
 | |
| }
 | |
| 
 | |
| void XEmitter::WriteMulDivType(int bits, OpArg src, int ext)
 | |
| {
 | |
| 	if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "WriteMulDivType - Imm argument");
 | |
| 	src.operandReg = ext;
 | |
| 	if (bits == 16) Write8(0x66);
 | |
| 	src.WriteRex(this, bits, bits);
 | |
| 	if (bits == 8)
 | |
| 	{
 | |
| 		Write8(0xF6);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		Write8(0xF7);
 | |
| 	}
 | |
| 	src.WriteRest(this);
 | |
| }
 | |
| 
 | |
| void XEmitter::MUL(int bits, OpArg src)  {WriteMulDivType(bits, src, 4);}
 | |
| void XEmitter::DIV(int bits, OpArg src)  {WriteMulDivType(bits, src, 6);}
 | |
| void XEmitter::IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);}
 | |
| void XEmitter::IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);}
 | |
| void XEmitter::NEG(int bits, OpArg src)  {WriteMulDivType(bits, src, 3);}
 | |
| void XEmitter::NOT(int bits, OpArg src)  {WriteMulDivType(bits, src, 2);}
 | |
| 
 | |
| void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2)
 | |
| {
 | |
| 	if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "WriteBitSearchType - Imm argument");
 | |
| 	src.operandReg = (u8)dest;
 | |
| 	if (bits == 16) Write8(0x66);
 | |
| 	src.WriteRex(this, bits, bits);
 | |
| 	Write8(0x0F);
 | |
| 	Write8(byte2);
 | |
| 	src.WriteRest(this);
 | |
| }
 | |
| 
 | |
| void XEmitter::MOVNTI(int bits, OpArg dest, X64Reg src)
 | |
| {
 | |
| 	if (bits <= 16) _assert_msg_(DYNA_REC, 0, "MOVNTI - bits<=16");
 | |
| 	WriteBitSearchType(bits, src, dest, 0xC3);
 | |
| }
 | |
| 
 | |
| void XEmitter::BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit
 | |
| void XEmitter::BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit
 | |
| 
 | |
| void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
 | |
| {
 | |
| 	if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVSX - Imm argument");
 | |
| 	if (dbits == sbits) {
 | |
| 		MOV(dbits, R(dest), src);
 | |
| 		return;
 | |
| 	}
 | |
| 	src.operandReg = (u8)dest;
 | |
| 	if (dbits == 16) Write8(0x66);
 | |
| 	src.WriteRex(this, dbits, sbits);
 | |
| 	if (sbits == 8)
 | |
| 	{
 | |
| 		Write8(0x0F);
 | |
| 		Write8(0xBE);
 | |
| 	}
 | |
| 	else if (sbits == 16)
 | |
| 	{
 | |
| 		Write8(0x0F);
 | |
| 		Write8(0xBF);
 | |
| 	}
 | |
| 	else if (sbits == 32 && dbits == 64)
 | |
| 	{
 | |
| 		Write8(0x63);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		Crash();
 | |
| 	}
 | |
| 	src.WriteRest(this);
 | |
| }
 | |
| 
 | |
| void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
 | |
| {
 | |
| 	if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVZX - Imm argument");
 | |
| 	if (dbits == sbits) {
 | |
| 		MOV(dbits, R(dest), src);
 | |
| 		return;
 | |
| 	}
 | |
| 	src.operandReg = (u8)dest;
 | |
| 	if (dbits == 16) Write8(0x66);
 | |
| 	//the 32bit result is automatically zero extended to 64bit
 | |
| 	src.WriteRex(this, dbits == 64 ? 32 : dbits, sbits);
 | |
| 	if (sbits == 8)
 | |
| 	{
 | |
| 		Write8(0x0F);
 | |
| 		Write8(0xB6);
 | |
| 	}
 | |
| 	else if (sbits == 16)
 | |
| 	{
 | |
| 		Write8(0x0F);
 | |
| 		Write8(0xB7);
 | |
| 	}
 | |
| 	else if (sbits == 32 && dbits == 64)
 | |
| 	{
 | |
| 		Write8(0x8B);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		Crash();
 | |
| 	}
 | |
| 	src.WriteRest(this);
 | |
| }
 | |
| 
 | |
| 
 | |
| void XEmitter::LEA(int bits, X64Reg dest, OpArg src)
 | |
| {
 | |
| 	if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "LEA - Imm argument");
 | |
| 	src.operandReg = (u8)dest;
 | |
| 	if (bits == 16) Write8(0x66); //TODO: performance warning
 | |
| 	src.WriteRex(this, bits, bits);
 | |
| 	Write8(0x8D);
 | |
| 	src.WriteRest(this, 0, (X64Reg)0xFF, bits == 64);
 | |
| }
 | |
| 
 | |
| //shift can be either imm8 or cl
 | |
| void XEmitter::WriteShift(int bits, OpArg dest, OpArg &shift, int ext)
 | |
| {
 | |
| 	bool writeImm = false;
 | |
| 	if (dest.IsImm())
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "WriteShift - can't shift imms");
 | |
| 	}
 | |
| 	if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "WriteShift - illegal argument");
 | |
| 	}
 | |
| 	dest.operandReg = ext;
 | |
| 	if (bits == 16) Write8(0x66);
 | |
| 	dest.WriteRex(this, bits, bits, 0);
 | |
| 	if (shift.GetImmBits() == 8)
 | |
| 	{
 | |
| 		//ok an imm
 | |
| 		u8 imm = (u8)shift.offset;
 | |
| 		if (imm == 1)
 | |
| 		{
 | |
| 			Write8(bits == 8 ? 0xD0 : 0xD1);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			writeImm = true;
 | |
| 			Write8(bits == 8 ? 0xC0 : 0xC1);
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		Write8(bits == 8 ? 0xD2 : 0xD3);
 | |
| 	}
 | |
| 	dest.WriteRest(this, writeImm ? 1 : 0);
 | |
| 	if (writeImm)
 | |
| 		Write8((u8)shift.offset);
 | |
| }
 | |
| 
 | |
| // large rotates and shift are slower on intel than amd
 | |
| // intel likes to rotate by 1, and the op is smaller too
 | |
| void XEmitter::ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);}
 | |
| void XEmitter::ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);}
 | |
| void XEmitter::RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);}
 | |
| void XEmitter::RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);}
 | |
| void XEmitter::SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);}
 | |
| void XEmitter::SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);}
 | |
| void XEmitter::SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);}
 | |
| 
 | |
| // index can be either imm8 or register, don't use memory destination because it's slow
 | |
| void XEmitter::WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext)
 | |
| {
 | |
| 	if (dest.IsImm())
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "WriteBitTest - can't test imms");
 | |
| 	}
 | |
| 	if ((index.IsImm() && index.GetImmBits() != 8))
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "WriteBitTest - illegal argument");
 | |
| 	}
 | |
| 	if (bits == 16) Write8(0x66);
 | |
| 	if (index.IsImm())
 | |
| 	{
 | |
| 		dest.WriteRex(this, bits, bits);
 | |
| 		Write8(0x0F); Write8(0xBA);
 | |
| 		dest.WriteRest(this, 1, (X64Reg)ext);
 | |
| 		Write8((u8)index.offset);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		X64Reg operand = index.GetSimpleReg();
 | |
| 		dest.WriteRex(this, bits, bits, operand);
 | |
| 		Write8(0x0F); Write8(0x83 + 8*ext);
 | |
| 		dest.WriteRest(this, 1, operand);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void XEmitter::BT(int bits, OpArg dest, OpArg index)  {WriteBitTest(bits, dest, index, 4);}
 | |
| void XEmitter::BTS(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 5);}
 | |
| void XEmitter::BTR(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 6);}
 | |
| void XEmitter::BTC(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 7);}
 | |
| 
 | |
| //shift can be either imm8 or cl
 | |
| void XEmitter::SHRD(int bits, OpArg dest, OpArg src, OpArg shift)
 | |
| {
 | |
| 	if (dest.IsImm())
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "SHRD - can't use imms as destination");
 | |
| 	}
 | |
| 	if (!src.IsSimpleReg())
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "SHRD - must use simple register as source");
 | |
| 	}
 | |
| 	if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "SHRD - illegal shift");
 | |
| 	}
 | |
| 	if (bits == 16) Write8(0x66);
 | |
| 	X64Reg operand = src.GetSimpleReg();
 | |
| 	dest.WriteRex(this, bits, bits, operand);
 | |
| 	if (shift.GetImmBits() == 8)
 | |
| 	{
 | |
| 		Write8(0x0F); Write8(0xAC);
 | |
| 		dest.WriteRest(this, 1, operand);
 | |
| 		Write8((u8)shift.offset);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		Write8(0x0F); Write8(0xAD);
 | |
| 		dest.WriteRest(this, 0, operand);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void XEmitter::SHLD(int bits, OpArg dest, OpArg src, OpArg shift)
 | |
| {
 | |
| 	if (dest.IsImm())
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "SHLD - can't use imms as destination");
 | |
| 	}
 | |
| 	if (!src.IsSimpleReg())
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "SHLD - must use simple register as source");
 | |
| 	}
 | |
| 	if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "SHLD - illegal shift");
 | |
| 	}
 | |
| 	if (bits == 16) Write8(0x66);
 | |
| 	X64Reg operand = src.GetSimpleReg();
 | |
| 	dest.WriteRex(this, bits, bits, operand);
 | |
| 	if (shift.GetImmBits() == 8)
 | |
| 	{
 | |
| 		Write8(0x0F); Write8(0xA4);
 | |
| 		dest.WriteRest(this, 1, operand);
 | |
| 		Write8((u8)shift.offset);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		Write8(0x0F); Write8(0xA5);
 | |
| 		dest.WriteRest(this, 0, operand);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void OpArg::WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg _operandReg, int bits)
 | |
| {
 | |
| 	if (bits == 16)
 | |
| 		emit->Write8(0x66);
 | |
| 
 | |
| 	this->operandReg = (u8)_operandReg;
 | |
| 	WriteRex(emit, bits, bits);
 | |
| 	emit->Write8(op);
 | |
| 	WriteRest(emit);
 | |
| }
 | |
| 
 | |
| //operand can either be immediate or register
 | |
| void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const
 | |
| {
 | |
| 	X64Reg _operandReg = (X64Reg)this->operandReg;
 | |
| 	if (IsImm())
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order");
 | |
| 	}
 | |
| 
 | |
| 	if (bits == 16)
 | |
| 		emit->Write8(0x66);
 | |
| 
 | |
| 	int immToWrite = 0;
 | |
| 
 | |
| 	if (operand.IsImm())
 | |
| 	{
 | |
| 		_operandReg = (X64Reg)0;
 | |
| 		WriteRex(emit, bits, bits);
 | |
| 
 | |
| 		if (!toRM)
 | |
| 		{
 | |
| 			_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)");
 | |
| 		}
 | |
| 
 | |
| 		if (operand.scale == SCALE_IMM8 && bits == 8)
 | |
| 		{
 | |
| 			emit->Write8(nops[op].imm8);
 | |
| 			immToWrite = 8;
 | |
| 		}
 | |
| 		else if ((operand.scale == SCALE_IMM16 && bits == 16) ||
 | |
| 				 (operand.scale == SCALE_IMM32 && bits == 32) ||
 | |
| 				 (operand.scale == SCALE_IMM32 && bits == 64))
 | |
| 		{
 | |
| 			emit->Write8(nops[op].imm32);
 | |
| 			immToWrite = bits == 16 ? 16 : 32;
 | |
| 		}
 | |
| 		else if ((operand.scale == SCALE_IMM8 && bits == 16) ||
 | |
| 				 (operand.scale == SCALE_IMM8 && bits == 32) ||
 | |
| 				 (operand.scale == SCALE_IMM8 && bits == 64))
 | |
| 		{
 | |
| 			emit->Write8(nops[op].simm8);
 | |
| 			immToWrite = 8;
 | |
| 		}
 | |
| 		else if (operand.scale == SCALE_IMM64 && bits == 64)
 | |
| 		{
 | |
| 			if (op == nrmMOV)
 | |
| 			{
 | |
| 				emit->Write8(0xB8 + (offsetOrBaseReg & 7));
 | |
| 				emit->Write64((u64)operand.offset);
 | |
| 				return;
 | |
| 			}
 | |
| 			_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm");
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
 | |
| 		}
 | |
| 		_operandReg = (X64Reg)nops[op].ext; //pass extension in REG of ModRM
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		_operandReg = (X64Reg)operand.offsetOrBaseReg;
 | |
| 		WriteRex(emit, bits, bits, _operandReg);
 | |
| 		// mem/reg or reg/reg op
 | |
| 		if (toRM)
 | |
| 		{
 | |
| 			emit->Write8(bits == 8 ? nops[op].toRm8 : nops[op].toRm32);
 | |
| 			// _assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH4");
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			emit->Write8(bits == 8 ? nops[op].fromRm8 : nops[op].fromRm32);
 | |
| 			// _assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH5");
 | |
| 		}
 | |
| 	}
 | |
| 	WriteRest(emit, immToWrite>>3, _operandReg);
 | |
| 	switch (immToWrite)
 | |
| 	{
 | |
| 	case 0:
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		emit->Write8((u8)operand.offset);
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		emit->Write16((u16)operand.offset);
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		emit->Write32((u32)operand.offset);
 | |
| 		break;
 | |
| 	default:
 | |
| 		_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2)
 | |
| {
 | |
| 	if (a1.IsImm())
 | |
| 	{
 | |
| 		//Booh! Can't write to an imm
 | |
| 		_assert_msg_(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (a2.IsImm())
 | |
| 	{
 | |
| 		a1.WriteNormalOp(emit, true, op, a2, bits);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (a1.IsSimpleReg())
 | |
| 		{
 | |
| 			a2.WriteNormalOp(emit, false, op, a1, bits);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			a1.WriteNormalOp(emit, true, op, a2, bits);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void XEmitter::ADD (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmADD, a1, a2);}
 | |
| void XEmitter::ADC (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmADC, a1, a2);}
 | |
| void XEmitter::SUB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmSUB, a1, a2);}
 | |
| void XEmitter::SBB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmSBB, a1, a2);}
 | |
| void XEmitter::AND (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmAND, a1, a2);}
 | |
| void XEmitter::OR  (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmOR , a1, a2);}
 | |
| void XEmitter::XOR (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXOR, a1, a2);}
 | |
| void XEmitter::MOV (int bits, const OpArg &a1, const OpArg &a2)
 | |
| {
 | |
| #ifdef _DEBUG
 | |
| 	_assert_msg_(DYNA_REC, !a1.IsSimpleReg() || !a2.IsSimpleReg() || a1.GetSimpleReg() != a2.GetSimpleReg(), "Redundant MOV @ %p - bug in JIT?",
 | |
| 				 code);
 | |
| #endif
 | |
| 	WriteNormalOp(this, bits, nrmMOV, a1, a2);
 | |
| }
 | |
| void XEmitter::TEST(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmTEST, a1, a2);}
 | |
| void XEmitter::CMP (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmCMP, a1, a2);}
 | |
| void XEmitter::XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);}
 | |
| 
 | |
| void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2)
 | |
| {
 | |
| 	if (bits == 8) {
 | |
| 		_assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (a1.IsImm()) {
 | |
| 		_assert_msg_(DYNA_REC, 0, "IMUL - second arg cannot be imm!");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!a2.IsImm())
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, 0, "IMUL - third arg must be imm!");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (bits == 16)
 | |
| 		Write8(0x66);
 | |
| 	a1.WriteRex(this, bits, bits, regOp);
 | |
| 
 | |
| 	if (a2.GetImmBits() == 8) {
 | |
| 		Write8(0x6B);
 | |
| 		a1.WriteRest(this, 1, regOp);
 | |
| 		Write8((u8)a2.offset);
 | |
| 	} else {
 | |
| 		Write8(0x69);
 | |
| 		if (a2.GetImmBits() == 16 && bits == 16) {
 | |
| 			a1.WriteRest(this, 2, regOp);
 | |
| 			Write16((u16)a2.offset);
 | |
| 		} else if (a2.GetImmBits() == 32 &&
 | |
| 			(bits == 32 || bits == 64)) {
 | |
| 				a1.WriteRest(this, 4, regOp);
 | |
| 				Write32((u32)a2.offset);
 | |
| 		} else {
 | |
| 			_assert_msg_(DYNA_REC, 0, "IMUL - unhandled case!");
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a)
 | |
| {
 | |
| 	if (bits == 8) {
 | |
| 		_assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (a.IsImm())
 | |
| 	{
 | |
| 		IMUL(bits, regOp, R(regOp), a) ;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (bits == 16)
 | |
| 		Write8(0x66);
 | |
| 	a.WriteRex(this, bits, bits, regOp);
 | |
| 	Write8(0x0F);
 | |
| 	Write8(0xAF);
 | |
| 	a.WriteRest(this, 0, regOp);
 | |
| }
 | |
| 
 | |
| 
 | |
| void XEmitter::WriteSSEOp(int size, u8 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes)
 | |
| {
 | |
| 	if (size == 64 && packed)
 | |
| 		Write8(0x66); //this time, override goes upwards
 | |
| 	if (!packed)
 | |
| 		Write8(size == 64 ? 0xF2 : 0xF3);
 | |
| 	arg.operandReg = regOp;
 | |
| 	arg.WriteRex(this, 0, 0);
 | |
| 	Write8(0x0F);
 | |
| 	Write8(sseOp);
 | |
| 	arg.WriteRest(this, extrabytes);
 | |
| }
 | |
| 
 | |
| void XEmitter::MOVD_xmm(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x6E, true, dest, arg, 0);}
 | |
| void XEmitter::MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(64, 0x7E, true, src, arg, 0);}
 | |
| 
 | |
| void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) {
 | |
| #ifdef _M_X64
 | |
| 		// Alternate encoding
 | |
| 		// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
 | |
| 		arg.operandReg = dest;
 | |
| 		Write8(0x66);
 | |
| 		arg.WriteRex(this, 64, 0);
 | |
| 		Write8(0x0f);
 | |
| 		Write8(0x6E);
 | |
| 		arg.WriteRest(this, 0);
 | |
| #else
 | |
| 		arg.operandReg = dest;
 | |
| 		Write8(0xF3);
 | |
| 		Write8(0x0f);
 | |
| 		Write8(0x7E);
 | |
| 		arg.WriteRest(this, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) {
 | |
| 	if (arg.IsSimpleReg())
 | |
| 		PanicAlert("Emitter: MOVQ_xmm doesn't support single registers as destination");
 | |
| 	if (src > 7)
 | |
| 	{
 | |
| 		// Alternate encoding
 | |
| 		// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
 | |
| 		arg.operandReg = src;
 | |
| 		Write8(0x66);
 | |
| 		arg.WriteRex(this, 64, 0);
 | |
| 		Write8(0x0f);
 | |
| 		Write8(0x7E);
 | |
| 		arg.WriteRest(this, 0);
 | |
| 	} else {
 | |
| 		arg.operandReg = src;
 | |
| 		arg.WriteRex(this, 0, 0);
 | |
| 		Write8(0x66);
 | |
| 		Write8(0x0f);
 | |
| 		Write8(0xD6);
 | |
| 		arg.WriteRest(this, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void XEmitter::WriteMXCSR(OpArg arg, int ext)
 | |
| {
 | |
| 	if (arg.IsImm() || arg.IsSimpleReg())
 | |
| 		_assert_msg_(DYNA_REC, 0, "MXCSR - invalid operand");
 | |
| 
 | |
| 	arg.operandReg = ext;
 | |
| 	arg.WriteRex(this, 0, 0);
 | |
| 	Write8(0x0F);
 | |
| 	Write8(0xAE);
 | |
| 	arg.WriteRest(this);
 | |
| }
 | |
| 
 | |
| void XEmitter::STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);}
 | |
| void XEmitter::LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);}
 | |
| 
 | |
| void XEmitter::MOVNTDQ(OpArg arg, X64Reg regOp)   {WriteSSEOp(64, sseMOVNTDQ, true, regOp, arg);}
 | |
| void XEmitter::MOVNTPS(OpArg arg, X64Reg regOp)   {WriteSSEOp(32, sseMOVNTP, true, regOp, arg);}
 | |
| void XEmitter::MOVNTPD(OpArg arg, X64Reg regOp)   {WriteSSEOp(64, sseMOVNTP, true, regOp, arg);}
 | |
| 
 | |
| void XEmitter::ADDSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseADD, false, regOp, arg);}
 | |
| void XEmitter::ADDSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseADD, false, regOp, arg);}
 | |
| void XEmitter::SUBSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseSUB, false, regOp, arg);}
 | |
| void XEmitter::SUBSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseSUB, false, regOp, arg);}
 | |
| void XEmitter::CMPSS(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(32, sseCMP, false, regOp, arg,1); Write8(compare);}
 | |
| void XEmitter::CMPSD(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(64, sseCMP, false, regOp, arg,1); Write8(compare);}
 | |
| void XEmitter::MULSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMUL, false, regOp, arg);}
 | |
| void XEmitter::MULSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMUL, false, regOp, arg);}
 | |
| void XEmitter::DIVSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseDIV, false, regOp, arg);}
 | |
| void XEmitter::DIVSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseDIV, false, regOp, arg);}
 | |
| void XEmitter::MINSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMIN, false, regOp, arg);}
 | |
| void XEmitter::MINSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMIN, false, regOp, arg);}
 | |
| void XEmitter::MAXSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMAX, false, regOp, arg);}
 | |
| void XEmitter::MAXSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMAX, false, regOp, arg);}
 | |
| void XEmitter::SQRTSS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseSQRT, false, regOp, arg);}
 | |
| void XEmitter::SQRTSD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseSQRT, false, regOp, arg);}
 | |
| void XEmitter::RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, false, regOp, arg);}
 | |
| 
 | |
| void XEmitter::ADDPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseADD, true, regOp, arg);}
 | |
| void XEmitter::ADDPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseADD, true, regOp, arg);}
 | |
| void XEmitter::SUBPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseSUB, true, regOp, arg);}
 | |
| void XEmitter::SUBPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseSUB, true, regOp, arg);}
 | |
| void XEmitter::CMPPS(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(32, sseCMP, true, regOp, arg,1); Write8(compare);}
 | |
| void XEmitter::CMPPD(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(64, sseCMP, true, regOp, arg,1); Write8(compare);}
 | |
| void XEmitter::ANDPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseAND, true, regOp, arg);}
 | |
| void XEmitter::ANDPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseAND, true, regOp, arg);}
 | |
| void XEmitter::ANDNPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseANDN, true, regOp, arg);}
 | |
| void XEmitter::ANDNPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseANDN, true, regOp, arg);}
 | |
| void XEmitter::ORPS(X64Reg regOp, OpArg arg)    {WriteSSEOp(32, sseOR, true, regOp, arg);}
 | |
| void XEmitter::ORPD(X64Reg regOp, OpArg arg)    {WriteSSEOp(64, sseOR, true, regOp, arg);}
 | |
| void XEmitter::XORPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseXOR, true, regOp, arg);}
 | |
| void XEmitter::XORPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseXOR, true, regOp, arg);}
 | |
| void XEmitter::MULPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMUL, true, regOp, arg);}
 | |
| void XEmitter::MULPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMUL, true, regOp, arg);}
 | |
| void XEmitter::DIVPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseDIV, true, regOp, arg);}
 | |
| void XEmitter::DIVPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseDIV, true, regOp, arg);}
 | |
| void XEmitter::MINPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMIN, true, regOp, arg);}
 | |
| void XEmitter::MINPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMIN, true, regOp, arg);}
 | |
| void XEmitter::MAXPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMAX, true, regOp, arg);}
 | |
| void XEmitter::MAXPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMAX, true, regOp, arg);}
 | |
| void XEmitter::SQRTPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseSQRT, true, regOp, arg);}
 | |
| void XEmitter::SQRTPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseSQRT, true, regOp, arg);}
 | |
| void XEmitter::RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, true, regOp, arg);}
 | |
| void XEmitter::SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(32, sseSHUF, true, regOp, arg,1); Write8(shuffle);}
 | |
| void XEmitter::SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(64, sseSHUF, true, regOp, arg,1); Write8(shuffle);}
 | |
| 
 | |
| void XEmitter::COMISS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseCOMIS, true, regOp, arg);} //weird that these should be packed
 | |
| void XEmitter::COMISD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseCOMIS, true, regOp, arg);} //ordered
 | |
| void XEmitter::UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseUCOMIS, true, regOp, arg);} //unordered
 | |
| void XEmitter::UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseUCOMIS, true, regOp, arg);}
 | |
| 
 | |
| void XEmitter::MOVAPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseMOVAPfromRM, true, regOp, arg);}
 | |
| void XEmitter::MOVAPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseMOVAPfromRM, true, regOp, arg);}
 | |
| void XEmitter::MOVAPS(OpArg arg, X64Reg regOp)  {WriteSSEOp(32, sseMOVAPtoRM, true, regOp, arg);}
 | |
| void XEmitter::MOVAPD(OpArg arg, X64Reg regOp)  {WriteSSEOp(64, sseMOVAPtoRM, true, regOp, arg);}
 | |
| 
 | |
| void XEmitter::MOVUPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseMOVUPfromRM, true, regOp, arg);}
 | |
| void XEmitter::MOVUPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseMOVUPfromRM, true, regOp, arg);}
 | |
| void XEmitter::MOVUPS(OpArg arg, X64Reg regOp)  {WriteSSEOp(32, sseMOVUPtoRM, true, regOp, arg);}
 | |
| void XEmitter::MOVUPD(OpArg arg, X64Reg regOp)  {WriteSSEOp(64, sseMOVUPtoRM, true, regOp, arg);}
 | |
| 
 | |
| void XEmitter::MOVSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMOVUPfromRM, false, regOp, arg);}
 | |
| void XEmitter::MOVSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMOVUPfromRM, false, regOp, arg);}
 | |
| void XEmitter::MOVSS(OpArg arg, X64Reg regOp)   {WriteSSEOp(32, sseMOVUPtoRM, false, regOp, arg);}
 | |
| void XEmitter::MOVSD(OpArg arg, X64Reg regOp)   {WriteSSEOp(64, sseMOVUPtoRM, false, regOp, arg);}
 | |
| 
 | |
| void XEmitter::CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, true, regOp, arg);}
 | |
| void XEmitter::CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, true, regOp, arg);}
 | |
| 
 | |
| void XEmitter::CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, false, regOp, arg);}
 | |
| void XEmitter::CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, false, regOp, arg);}
 | |
| void XEmitter::CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x2D, false, regOp, arg);}
 | |
| 
 | |
| void XEmitter::CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0xE6, false, regOp, arg);}
 | |
| void XEmitter::CVTDQ2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5B, true, regOp, arg);}
 | |
| void XEmitter::CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0xE6, false, regOp, arg);}
 | |
| void XEmitter::CVTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5B, true, regOp, arg);}
 | |
| 
 | |
| void XEmitter::CVTTSS2SI(X64Reg xregdest, OpArg arg) {WriteSSEOp(32, 0x2C, false, xregdest, arg);}
 | |
| void XEmitter::CVTTPS2DQ(X64Reg xregdest, OpArg arg) {WriteSSEOp(32, 0x5B, false, xregdest, arg);}
 | |
| 
 | |
| void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src)  {WriteSSEOp(64, sseMASKMOVDQU, true, dest, R(src));}
 | |
| 
 | |
| void XEmitter::MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x50, true, dest, arg);}
 | |
| void XEmitter::MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x50, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::LDDQU(X64Reg dest, OpArg arg)    {WriteSSEOp(64, sseLDDQU, false, dest, arg);} // For integer data only
 | |
| 
 | |
| // THESE TWO ARE UNTESTED.
 | |
| void XEmitter::UNPCKLPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x14, true, dest, arg);}
 | |
| void XEmitter::UNPCKHPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x15, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x14, true, dest, arg);}
 | |
| void XEmitter::UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x15, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::MOVDDUP(X64Reg regOp, OpArg arg)
 | |
| {
 | |
| 	if (cpu_info.bSSE3)
 | |
| 	{
 | |
| 		WriteSSEOp(64, 0x12, false, regOp, arg); //SSE3 movddup
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		// Simulate this instruction with SSE2 instructions
 | |
| 		if (!arg.IsSimpleReg(regOp))
 | |
| 			MOVSD(regOp, arg);
 | |
| 		UNPCKLPD(regOp, R(regOp));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| //There are a few more left
 | |
| 
 | |
| // Also some integer instructions are missing
 | |
| void XEmitter::PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x6B, true, dest, arg);}
 | |
| void XEmitter::PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x63, true, dest, arg);}
 | |
| //void PACKUSDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x66, true, dest, arg);} // WRONG
 | |
| void XEmitter::PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x67, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x60, true, dest, arg);}
 | |
| void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x61, true, dest, arg);}
 | |
| void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x62, true, dest, arg);}
 | |
| //void PUNPCKLQDQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x60, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::PSRLW(X64Reg reg, int shift) {
 | |
| 	WriteSSEOp(64, 0x71, true, (X64Reg)2, R(reg));
 | |
| 	Write8(shift);
 | |
| }
 | |
| 
 | |
| void XEmitter::PSRLD(X64Reg reg, int shift) {
 | |
| 	WriteSSEOp(64, 0x72, true, (X64Reg)2, R(reg));
 | |
| 	Write8(shift);
 | |
| }
 | |
| 
 | |
| void XEmitter::PSRLQ(X64Reg reg, int shift) {
 | |
| 	WriteSSEOp(64, 0x73, true, (X64Reg)2, R(reg));
 | |
| 	Write8(shift);
 | |
| }
 | |
| 
 | |
| void XEmitter::PSLLW(X64Reg reg, int shift) {
 | |
| 	WriteSSEOp(64, 0x71, true, (X64Reg)6, R(reg));
 | |
| 	Write8(shift);
 | |
| }
 | |
| 
 | |
| void XEmitter::PSLLD(X64Reg reg, int shift) {
 | |
| 	WriteSSEOp(64, 0x72, true, (X64Reg)6, R(reg));
 | |
| 	Write8(shift);
 | |
| }
 | |
| 
 | |
| void XEmitter::PSLLQ(X64Reg reg, int shift) {
 | |
| 	WriteSSEOp(64, 0x73, true, (X64Reg)6, R(reg));
 | |
| 	Write8(shift);
 | |
| }
 | |
| 
 | |
| // WARNING not REX compatible
 | |
| void XEmitter::PSRAW(X64Reg reg, int shift) {
 | |
| 	if (reg > 7)
 | |
| 		PanicAlert("The PSRAW-emitter does not support regs above 7");
 | |
| 	Write8(0x66);
 | |
| 	Write8(0x0f);
 | |
| 	Write8(0x71);
 | |
| 	Write8(0xE0 | reg);
 | |
| 	Write8(shift);
 | |
| }
 | |
| 
 | |
| // WARNING not REX compatible
 | |
| void XEmitter::PSRAD(X64Reg reg, int shift) {
 | |
| 	if (reg > 7)
 | |
| 		PanicAlert("The PSRAD-emitter does not support regs above 7");
 | |
| 	Write8(0x66);
 | |
| 	Write8(0x0f);
 | |
| 	Write8(0x72);
 | |
| 	Write8(0xE0 | reg);
 | |
| 	Write8(shift);
 | |
| }
 | |
| 
 | |
| void XEmitter::PSHUFB(X64Reg dest, OpArg arg) {
 | |
| 	if (!cpu_info.bSSSE3) {
 | |
| 		PanicAlert("Trying to use PSHUFB on a system that doesn't support it. Bad programmer.");
 | |
| 	}
 | |
| 	Write8(0x66);
 | |
| 	arg.operandReg = dest;
 | |
| 	arg.WriteRex(this, 0, 0);
 | |
| 	Write8(0x0f);
 | |
| 	Write8(0x38);
 | |
| 	Write8(0x00);
 | |
| 	arg.WriteRest(this, 0);
 | |
| }
 | |
| 
 | |
| void XEmitter::PAND(X64Reg dest, OpArg arg)     {WriteSSEOp(64, 0xDB, true, dest, arg);}
 | |
| void XEmitter::PANDN(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xDF, true, dest, arg);}
 | |
| void XEmitter::PXOR(X64Reg dest, OpArg arg)     {WriteSSEOp(64, 0xEF, true, dest, arg);}
 | |
| void XEmitter::POR(X64Reg dest, OpArg arg)      {WriteSSEOp(64, 0xEB, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::PADDB(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xFC, true, dest, arg);}
 | |
| void XEmitter::PADDW(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xFD, true, dest, arg);}
 | |
| void XEmitter::PADDD(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xFE, true, dest, arg);}
 | |
| void XEmitter::PADDQ(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xD4, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::PADDSB(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xEC, true, dest, arg);}
 | |
| void XEmitter::PADDSW(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xED, true, dest, arg);}
 | |
| void XEmitter::PADDUSB(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0xDC, true, dest, arg);}
 | |
| void XEmitter::PADDUSW(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0xDD, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::PSUBB(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xF8, true, dest, arg);}
 | |
| void XEmitter::PSUBW(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xF9, true, dest, arg);}
 | |
| void XEmitter::PSUBD(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xFA, true, dest, arg);}
 | |
| void XEmitter::PSUBQ(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xDB, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::PSUBSB(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xE8, true, dest, arg);}
 | |
| void XEmitter::PSUBSW(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xE9, true, dest, arg);}
 | |
| void XEmitter::PSUBUSB(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0xD8, true, dest, arg);}
 | |
| void XEmitter::PSUBUSW(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0xD9, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::PAVGB(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xE0, true, dest, arg);}
 | |
| void XEmitter::PAVGW(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xE3, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::PCMPEQB(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x74, true, dest, arg);}
 | |
| void XEmitter::PCMPEQW(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x75, true, dest, arg);}
 | |
| void XEmitter::PCMPEQD(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x76, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::PCMPGTB(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x64, true, dest, arg);}
 | |
| void XEmitter::PCMPGTW(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x65, true, dest, arg);}
 | |
| void XEmitter::PCMPGTD(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x66, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::PEXTRW(X64Reg dest, OpArg arg, u8 subreg)    {WriteSSEOp(64, 0xC5, true, dest, arg); Write8(subreg);}
 | |
| void XEmitter::PINSRW(X64Reg dest, OpArg arg, u8 subreg)    {WriteSSEOp(64, 0xC4, true, dest, arg); Write8(subreg);}
 | |
| 
 | |
| void XEmitter::PMADDWD(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0xF5, true, dest, arg); }
 | |
| void XEmitter::PSADBW(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xF6, true, dest, arg);}
 | |
| 
 | |
| void XEmitter::PMAXSW(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xEE, true, dest, arg); }
 | |
| void XEmitter::PMAXUB(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xDE, true, dest, arg); }
 | |
| void XEmitter::PMINSW(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xEA, true, dest, arg); }
 | |
| void XEmitter::PMINUB(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xDA, true, dest, arg); }
 | |
| 
 | |
| void XEmitter::PMOVMSKB(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xD7, true, dest, arg); }
 | |
| 
 | |
| void XEmitter::PSHUFLW(X64Reg regOp, OpArg arg, u8 shuffle)   {WriteSSEOp(64, 0x70, false, regOp, arg, 1); Write8(shuffle);}
 | |
| 
 | |
| // Prefixes
 | |
| 
 | |
| void XEmitter::LOCK()  { Write8(0xF0); }
 | |
| void XEmitter::REP()   { Write8(0xF3); }
 | |
| void XEmitter::REPNE() { Write8(0xF2); }
 | |
| 
 | |
| void XEmitter::FWAIT()
 | |
| {
 | |
| 	Write8(0x9B);
 | |
| }
 | |
| 
 | |
| void XEmitter::RTDSC() { Write8(0x0F); Write8(0x31); }
 | |
| 
 | |
| // helper routines for setting pointers
 | |
| void XEmitter::CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2)
 | |
| {
 | |
| 	using namespace Gen;
 | |
| #ifdef _M_X64
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| 	MOV(32, R(RCX), Imm32(arg0));
 | |
| 	MOV(32, R(RDX), Imm32(arg1));
 | |
| 	MOV(32, R(R8),  Imm32(arg2));
 | |
| 	CALL(fnptr);
 | |
| #else
 | |
| 	MOV(32, R(RDI), Imm32(arg0));
 | |
| 	MOV(32, R(RSI), Imm32(arg1));
 | |
| 	MOV(32, R(RDX), Imm32(arg2));
 | |
| 	CALL(fnptr);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| 	ABI_AlignStack(3 * 4);
 | |
| 	PUSH(32, Imm32(arg2));
 | |
| 	PUSH(32, Imm32(arg1));
 | |
| 	PUSH(32, Imm32(arg0));
 | |
| 	CALL(fnptr);
 | |
| #ifdef _WIN32
 | |
| 	// don't inc stack
 | |
| #else
 | |
| 	ABI_RestoreStack(3 * 4);
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void XEmitter::CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3)
 | |
| {
 | |
| 	using namespace Gen;
 | |
| #ifdef _M_X64
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| 	MOV(32, R(RCX), Imm32(arg0));
 | |
| 	MOV(32, R(RDX), Imm32(arg1));
 | |
| 	MOV(32, R(R8), Imm32(arg2));
 | |
| 	MOV(32, R(R9), Imm32(arg3));
 | |
| 	CALL(fnptr);
 | |
| #else
 | |
| 	MOV(32, R(RDI), Imm32(arg0));
 | |
| 	MOV(32, R(RSI), Imm32(arg1));
 | |
| 	MOV(32, R(RDX), Imm32(arg2));
 | |
| 	MOV(32, R(RCX), Imm32(arg3));
 | |
| 	CALL(fnptr);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| 	ABI_AlignStack(4 * 4);
 | |
| 	PUSH(32, Imm32(arg3));
 | |
| 	PUSH(32, Imm32(arg2));
 | |
| 	PUSH(32, Imm32(arg1));
 | |
| 	PUSH(32, Imm32(arg0));
 | |
| 	CALL(fnptr);
 | |
| #ifdef _WIN32
 | |
| 	// don't inc stack
 | |
| #else
 | |
| 	ABI_RestoreStack(4 * 4);
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void XEmitter::CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
 | |
| {
 | |
| 	using namespace Gen;
 | |
| #ifdef _M_X64
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| 	MOV(32, R(RCX), Imm32(arg0));
 | |
| 	MOV(32, R(RDX), Imm32(arg1));
 | |
| 	MOV(32, R(R8),  Imm32(arg2));
 | |
| 	MOV(32, R(R9),  Imm32(arg3));
 | |
| 	MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
 | |
| 	CALL(fnptr);
 | |
| #else
 | |
| 	MOV(32, R(RDI), Imm32(arg0));
 | |
| 	MOV(32, R(RSI), Imm32(arg1));
 | |
| 	MOV(32, R(RDX), Imm32(arg2));
 | |
| 	MOV(32, R(RCX), Imm32(arg3));
 | |
| 	MOV(32, R(R8),  Imm32(arg4));
 | |
| 	CALL(fnptr);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| 	ABI_AlignStack(5 * 4);
 | |
| 	PUSH(32, Imm32(arg4));
 | |
| 	PUSH(32, Imm32(arg3));
 | |
| 	PUSH(32, Imm32(arg2));
 | |
| 	PUSH(32, Imm32(arg1));
 | |
| 	PUSH(32, Imm32(arg0));
 | |
| 	CALL(fnptr);
 | |
| #ifdef _WIN32
 | |
| 	// don't inc stack
 | |
| #else
 | |
| 	ABI_RestoreStack(5 * 4);
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void XEmitter::CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5)
 | |
| {
 | |
| 	using namespace Gen;
 | |
| #ifdef _M_X64
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| 	MOV(32, R(RCX), Imm32(arg0));
 | |
| 	MOV(32, R(RDX), Imm32(arg1));
 | |
| 	MOV(32, R(R8), Imm32(arg2));
 | |
| 	MOV(32, R(R9), Imm32(arg3));
 | |
| 	MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
 | |
| 	MOV(32, MDisp(RSP, 0x28), Imm32(arg5));
 | |
| 	CALL(fnptr);
 | |
| #else
 | |
| 	MOV(32, R(RDI), Imm32(arg0));
 | |
| 	MOV(32, R(RSI), Imm32(arg1));
 | |
| 	MOV(32, R(RDX), Imm32(arg2));
 | |
| 	MOV(32, R(RCX), Imm32(arg3));
 | |
| 	MOV(32, R(R8), Imm32(arg4));
 | |
| 	MOV(32, R(R9), Imm32(arg5));
 | |
| 	CALL(fnptr);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| 	ABI_AlignStack(6 * 4);
 | |
| 	PUSH(32, Imm32(arg5));
 | |
| 	PUSH(32, Imm32(arg4));
 | |
| 	PUSH(32, Imm32(arg3));
 | |
| 	PUSH(32, Imm32(arg2));
 | |
| 	PUSH(32, Imm32(arg1));
 | |
| 	PUSH(32, Imm32(arg0));
 | |
| 	CALL(fnptr);
 | |
| #ifdef _WIN32
 | |
| 	// don't inc stack
 | |
| #else
 | |
| 	ABI_RestoreStack(6 * 4);
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef _M_X64
 | |
| 
 | |
| // See header
 | |
| void XEmitter::___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2) {
 | |
| 	MOV(32, R(RCX), Imm32(arg0));
 | |
| 	MOV(32, R(RDX), Imm32(arg1));
 | |
| 	MOV(32, R(R8), Imm32(arg2));
 | |
| 	CALLptr(M(impptr));
 | |
| }
 | |
| void XEmitter::___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3) {
 | |
| 	MOV(32, R(RCX), Imm32(arg0));
 | |
| 	MOV(32, R(RDX), Imm32(arg1));
 | |
| 	MOV(32, R(R8), Imm32(arg2));
 | |
| 	MOV(32, R(R9), Imm32(arg3));
 | |
| 	CALLptr(M(impptr));
 | |
| }
 | |
| void XEmitter::___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4) {
 | |
| 	MOV(32, R(RCX), Imm32(arg0));
 | |
| 	MOV(32, R(RDX), Imm32(arg1));
 | |
| 	MOV(32, R(R8), Imm32(arg2));
 | |
| 	MOV(32, R(R9), Imm32(arg3));
 | |
| 	MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
 | |
| 	CALLptr(M(impptr));
 | |
| }
 | |
| void XEmitter::___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5) {
 | |
| 	MOV(32, R(RCX), Imm32(arg0));
 | |
| 	MOV(32, R(RDX), Imm32(arg1));
 | |
| 	MOV(32, R(R8), Imm32(arg2));
 | |
| 	MOV(32, R(R9), Imm32(arg3));
 | |
| 	MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
 | |
| 	MOV(32, MDisp(RSP, 0x28), Imm32(arg5));
 | |
| 	CALLptr(M(impptr));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| }
 |