forked from dolphin-emu/dolphin
		
	
		
			
				
	
	
		
			1743 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1743 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2016 Dolphin Emulator Project
 | |
| // Licensed under GPLv2+
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| #include "VideoBackends/Vulkan/Renderer.h"
 | |
| 
 | |
| #include <cstddef>
 | |
| #include <cstdio>
 | |
| #include <limits>
 | |
| #include <string>
 | |
| 
 | |
| #include "Common/Logging/Log.h"
 | |
| #include "Common/MsgHandler.h"
 | |
| 
 | |
| #include "Core/Core.h"
 | |
| 
 | |
| #include "VideoBackends/Vulkan/BoundingBox.h"
 | |
| #include "VideoBackends/Vulkan/CommandBufferManager.h"
 | |
| #include "VideoBackends/Vulkan/FramebufferManager.h"
 | |
| #include "VideoBackends/Vulkan/ObjectCache.h"
 | |
| #include "VideoBackends/Vulkan/RasterFont.h"
 | |
| #include "VideoBackends/Vulkan/StagingTexture2D.h"
 | |
| #include "VideoBackends/Vulkan/StateTracker.h"
 | |
| #include "VideoBackends/Vulkan/SwapChain.h"
 | |
| #include "VideoBackends/Vulkan/TextureCache.h"
 | |
| #include "VideoBackends/Vulkan/Util.h"
 | |
| #include "VideoBackends/Vulkan/VulkanContext.h"
 | |
| 
 | |
| #include "VideoCommon/AVIDump.h"
 | |
| #include "VideoCommon/BPFunctions.h"
 | |
| #include "VideoCommon/BPMemory.h"
 | |
| #include "VideoCommon/OnScreenDisplay.h"
 | |
| #include "VideoCommon/PixelEngine.h"
 | |
| #include "VideoCommon/PixelShaderManager.h"
 | |
| #include "VideoCommon/SamplerCommon.h"
 | |
| #include "VideoCommon/TextureCacheBase.h"
 | |
| #include "VideoCommon/VideoConfig.h"
 | |
| 
 | |
| namespace Vulkan
 | |
| {
 | |
| Renderer::Renderer(std::unique_ptr<SwapChain> swap_chain) : m_swap_chain(std::move(swap_chain))
 | |
| {
 | |
|   g_Config.bRunning = true;
 | |
|   UpdateActiveConfig();
 | |
| 
 | |
|   // Set to something invalid, forcing all states to be re-initialized.
 | |
|   for (size_t i = 0; i < m_sampler_states.size(); i++)
 | |
|     m_sampler_states[i].bits = std::numeric_limits<decltype(m_sampler_states[i].bits)>::max();
 | |
| 
 | |
|   // These have to be initialized before FramebufferManager is created.
 | |
|   // If running surfaceless, assume a window size of MAX_XFB_{WIDTH,HEIGHT}.
 | |
|   FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH);
 | |
|   FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT);
 | |
|   s_backbuffer_width = m_swap_chain ? m_swap_chain->GetWidth() : MAX_XFB_WIDTH;
 | |
|   s_backbuffer_height = m_swap_chain ? m_swap_chain->GetHeight() : MAX_XFB_HEIGHT;
 | |
|   s_last_efb_scale = g_ActiveConfig.iEFBScale;
 | |
|   UpdateDrawRectangle();
 | |
|   CalculateTargetSize();
 | |
|   PixelShaderManager::SetEfbScaleChanged();
 | |
| }
 | |
| 
 | |
| Renderer::~Renderer()
 | |
| {
 | |
|   g_Config.bRunning = false;
 | |
|   UpdateActiveConfig();
 | |
| 
 | |
|   // Ensure all frames are written to frame dump at shutdown.
 | |
|   if (m_frame_dumping_active)
 | |
|     EndFrameDumping();
 | |
| 
 | |
|   DestroyFrameDumpResources();
 | |
|   DestroyShaders();
 | |
|   DestroySemaphores();
 | |
| }
 | |
| 
 | |
| Renderer* Renderer::GetInstance()
 | |
| {
 | |
|   return static_cast<Renderer*>(g_renderer.get());
 | |
| }
 | |
| 
 | |
| bool Renderer::Initialize()
 | |
| {
 | |
|   BindEFBToStateTracker();
 | |
| 
 | |
|   if (!CreateSemaphores())
 | |
|   {
 | |
|     PanicAlert("Failed to create semaphores.");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!CompileShaders())
 | |
|   {
 | |
|     PanicAlert("Failed to compile shaders.");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   m_raster_font = std::make_unique<RasterFont>();
 | |
|   if (!m_raster_font->Initialize())
 | |
|   {
 | |
|     PanicAlert("Failed to initialize raster font.");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   m_bounding_box = std::make_unique<BoundingBox>();
 | |
|   if (!m_bounding_box->Initialize())
 | |
|   {
 | |
|     PanicAlert("Failed to initialize bounding box.");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (g_vulkan_context->SupportsBoundingBox())
 | |
|   {
 | |
|     // Bind bounding box to state tracker
 | |
|     StateTracker::GetInstance()->SetBBoxBuffer(m_bounding_box->GetGPUBuffer(),
 | |
|                                                m_bounding_box->GetGPUBufferOffset(),
 | |
|                                                m_bounding_box->GetGPUBufferSize());
 | |
|   }
 | |
| 
 | |
|   // Ensure all pipelines previously used by the game have been created.
 | |
|   StateTracker::GetInstance()->LoadPipelineUIDCache();
 | |
| 
 | |
|   // Various initialization routines will have executed commands on the command buffer.
 | |
|   // Execute what we have done before beginning the first frame.
 | |
|   g_command_buffer_mgr->PrepareToSubmitCommandBuffer();
 | |
|   g_command_buffer_mgr->SubmitCommandBuffer(false);
 | |
|   BeginFrame();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Renderer::CreateSemaphores()
 | |
| {
 | |
|   // Create two semaphores, one that is triggered when the swapchain buffer is ready, another after
 | |
|   // submit and before present
 | |
|   VkSemaphoreCreateInfo semaphore_info = {
 | |
|       VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,  // VkStructureType          sType
 | |
|       nullptr,                                  // const void*              pNext
 | |
|       0                                         // VkSemaphoreCreateFlags   flags
 | |
|   };
 | |
| 
 | |
|   VkResult res;
 | |
|   if ((res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr,
 | |
|                                &m_image_available_semaphore)) != VK_SUCCESS ||
 | |
|       (res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr,
 | |
|                                &m_rendering_finished_semaphore)) != VK_SUCCESS)
 | |
|   {
 | |
|     LOG_VULKAN_ERROR(res, "vkCreateSemaphore failed: ");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Renderer::DestroySemaphores()
 | |
| {
 | |
|   if (m_image_available_semaphore)
 | |
|   {
 | |
|     vkDestroySemaphore(g_vulkan_context->GetDevice(), m_image_available_semaphore, nullptr);
 | |
|     m_image_available_semaphore = VK_NULL_HANDLE;
 | |
|   }
 | |
| 
 | |
|   if (m_rendering_finished_semaphore)
 | |
|   {
 | |
|     vkDestroySemaphore(g_vulkan_context->GetDevice(), m_rendering_finished_semaphore, nullptr);
 | |
|     m_rendering_finished_semaphore = VK_NULL_HANDLE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::RenderText(const std::string& text, int left, int top, u32 color)
 | |
| {
 | |
|   u32 backbuffer_width = m_swap_chain->GetWidth();
 | |
|   u32 backbuffer_height = m_swap_chain->GetHeight();
 | |
| 
 | |
|   m_raster_font->PrintMultiLineText(m_swap_chain->GetRenderPass(), text,
 | |
|                                     left * 2.0f / static_cast<float>(backbuffer_width) - 1,
 | |
|                                     1 - top * 2.0f / static_cast<float>(backbuffer_height),
 | |
|                                     backbuffer_width, backbuffer_height, color);
 | |
| }
 | |
| 
 | |
| u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
 | |
| {
 | |
|   if (type == PEEK_COLOR)
 | |
|   {
 | |
|     u32 color = FramebufferManager::GetInstance()->PeekEFBColor(x, y);
 | |
| 
 | |
|     // a little-endian value is expected to be returned
 | |
|     color = ((color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000));
 | |
| 
 | |
|     // check what to do with the alpha channel (GX_PokeAlphaRead)
 | |
|     PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode();
 | |
| 
 | |
|     if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24)
 | |
|     {
 | |
|       color = RGBA8ToRGBA6ToRGBA8(color);
 | |
|     }
 | |
|     else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
 | |
|     {
 | |
|       color = RGBA8ToRGB565ToRGBA8(color);
 | |
|     }
 | |
|     if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24)
 | |
|     {
 | |
|       color |= 0xFF000000;
 | |
|     }
 | |
| 
 | |
|     if (alpha_read_mode.ReadMode == 2)
 | |
|     {
 | |
|       return color;  // GX_READ_NONE
 | |
|     }
 | |
|     else if (alpha_read_mode.ReadMode == 1)
 | |
|     {
 | |
|       return color | 0xFF000000;  // GX_READ_FF
 | |
|     }
 | |
|     else /*if(alpha_read_mode.ReadMode == 0)*/
 | |
|     {
 | |
|       return color & 0x00FFFFFF;  // GX_READ_00
 | |
|     }
 | |
|   }
 | |
|   else  // if (type == PEEK_Z)
 | |
|   {
 | |
|     // Depth buffer is inverted for improved precision near far plane
 | |
|     float depth = 1.0f - FramebufferManager::GetInstance()->PeekEFBDepth(x, y);
 | |
|     u32 ret = 0;
 | |
| 
 | |
|     if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
 | |
|     {
 | |
|       // if Z is in 16 bit format you must return a 16 bit integer
 | |
|       ret = MathUtil::Clamp<u32>(static_cast<u32>(depth * 65536.0f), 0, 0xFFFF);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       ret = MathUtil::Clamp<u32>(static_cast<u32>(depth * 16777216.0f), 0, 0xFFFFFF);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points)
 | |
| {
 | |
|   if (type == POKE_COLOR)
 | |
|   {
 | |
|     for (size_t i = 0; i < num_points; i++)
 | |
|     {
 | |
|       // Convert to expected format (BGRA->RGBA)
 | |
|       // TODO: Check alpha, depending on mode?
 | |
|       const EfbPokeData& point = points[i];
 | |
|       u32 color = ((point.data & 0xFF00FF00) | ((point.data >> 16) & 0xFF) |
 | |
|                    ((point.data << 16) & 0xFF0000));
 | |
|       FramebufferManager::GetInstance()->PokeEFBColor(point.x, point.y, color);
 | |
|     }
 | |
|   }
 | |
|   else  // if (type == POKE_Z)
 | |
|   {
 | |
|     for (size_t i = 0; i < num_points; i++)
 | |
|     {
 | |
|       // Convert to floating-point depth.
 | |
|       const EfbPokeData& point = points[i];
 | |
|       float depth = (1.0f - float(point.data & 0xFFFFFF) / 16777216.0f);
 | |
|       FramebufferManager::GetInstance()->PokeEFBDepth(point.x, point.y, depth);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| u16 Renderer::BBoxRead(int index)
 | |
| {
 | |
|   s32 value = m_bounding_box->Get(static_cast<size_t>(index));
 | |
| 
 | |
|   // Here we get the min/max value of the truncated position of the upscaled framebuffer.
 | |
|   // So we have to correct them to the unscaled EFB sizes.
 | |
|   if (index < 2)
 | |
|   {
 | |
|     // left/right
 | |
|     value = value * EFB_WIDTH / s_target_width;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // up/down
 | |
|     value = value * EFB_HEIGHT / s_target_height;
 | |
|   }
 | |
| 
 | |
|   // fix max values to describe the outer border
 | |
|   if (index & 1)
 | |
|     value++;
 | |
| 
 | |
|   return static_cast<u16>(value);
 | |
| }
 | |
| 
 | |
| void Renderer::BBoxWrite(int index, u16 value)
 | |
| {
 | |
|   s32 scaled_value = static_cast<s32>(value);
 | |
| 
 | |
|   // fix max values to describe the outer border
 | |
|   if (index & 1)
 | |
|     scaled_value--;
 | |
| 
 | |
|   // scale to internal resolution
 | |
|   if (index < 2)
 | |
|   {
 | |
|     // left/right
 | |
|     scaled_value = scaled_value * s_target_width / EFB_WIDTH;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // up/down
 | |
|     scaled_value = scaled_value * s_target_height / EFB_HEIGHT;
 | |
|   }
 | |
| 
 | |
|   m_bounding_box->Set(static_cast<size_t>(index), scaled_value);
 | |
| }
 | |
| 
 | |
| TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
 | |
| {
 | |
|   TargetRectangle result;
 | |
|   result.left = EFBToScaledX(rc.left);
 | |
|   result.top = EFBToScaledY(rc.top);
 | |
|   result.right = EFBToScaledX(rc.right);
 | |
|   result.bottom = EFBToScaledY(rc.bottom);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| void Renderer::BeginFrame()
 | |
| {
 | |
|   // Activate a new command list, and restore state ready for the next draw
 | |
|   g_command_buffer_mgr->ActivateCommandBuffer();
 | |
| 
 | |
|   // Ensure that the state tracker rebinds everything, and allocates a new set
 | |
|   // of descriptors out of the next pool.
 | |
|   StateTracker::GetInstance()->InvalidateDescriptorSets();
 | |
|   StateTracker::GetInstance()->InvalidateConstants();
 | |
|   StateTracker::GetInstance()->SetPendingRebind();
 | |
| }
 | |
| 
 | |
| void Renderer::ClearScreen(const EFBRectangle& rc, bool color_enable, bool alpha_enable,
 | |
|                            bool z_enable, u32 color, u32 z)
 | |
| {
 | |
|   // Native -> EFB coordinates
 | |
|   TargetRectangle target_rc = Renderer::ConvertEFBRectangle(rc);
 | |
|   VkRect2D target_vk_rc = {
 | |
|       {target_rc.left, target_rc.top},
 | |
|       {static_cast<uint32_t>(target_rc.GetWidth()), static_cast<uint32_t>(target_rc.GetHeight())}};
 | |
| 
 | |
|   // Determine whether the EFB has an alpha channel. If it doesn't, we can clear the alpha
 | |
|   // channel to 0xFF. This hopefully allows us to use the fast path in most cases.
 | |
|   if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16 ||
 | |
|       bpmem.zcontrol.pixel_format == PEControl::RGB8_Z24 ||
 | |
|       bpmem.zcontrol.pixel_format == PEControl::Z24)
 | |
|   {
 | |
|     // Force alpha writes, and clear the alpha channel. This is different to the other backends,
 | |
|     // where the existing values of the alpha channel are preserved.
 | |
|     alpha_enable = true;
 | |
|     color &= 0x00FFFFFF;
 | |
|   }
 | |
| 
 | |
|   // Convert RGBA8 -> floating-point values.
 | |
|   VkClearValue clear_color_value = {};
 | |
|   VkClearValue clear_depth_value = {};
 | |
|   clear_color_value.color.float32[0] = static_cast<float>((color >> 16) & 0xFF) / 255.0f;
 | |
|   clear_color_value.color.float32[1] = static_cast<float>((color >> 8) & 0xFF) / 255.0f;
 | |
|   clear_color_value.color.float32[2] = static_cast<float>((color >> 0) & 0xFF) / 255.0f;
 | |
|   clear_color_value.color.float32[3] = static_cast<float>((color >> 24) & 0xFF) / 255.0f;
 | |
|   clear_depth_value.depthStencil.depth = (1.0f - (static_cast<float>(z & 0xFFFFFF) / 16777216.0f));
 | |
| 
 | |
|   // If we're not in a render pass (start of the frame), we can use a clear render pass
 | |
|   // to discard the data, rather than loading and then clearing.
 | |
|   bool use_clear_render_pass = (color_enable && alpha_enable && z_enable);
 | |
|   if (StateTracker::GetInstance()->InRenderPass())
 | |
|   {
 | |
|     // Prefer not to end a render pass just to do a clear.
 | |
|     use_clear_render_pass = false;
 | |
|   }
 | |
| 
 | |
|   // Fastest path: Use a render pass to clear the buffers.
 | |
|   if (use_clear_render_pass)
 | |
|   {
 | |
|     VkClearValue clear_values[2] = {clear_color_value, clear_depth_value};
 | |
|     StateTracker::GetInstance()->BeginClearRenderPass(target_vk_rc, clear_values);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Fast path: Use vkCmdClearAttachments to clear the buffers within a render path
 | |
|   // We can't use this when preserving alpha but clearing color.
 | |
|   {
 | |
|     VkClearAttachment clear_attachments[2];
 | |
|     uint32_t num_clear_attachments = 0;
 | |
|     if (color_enable && alpha_enable)
 | |
|     {
 | |
|       clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
 | |
|       clear_attachments[num_clear_attachments].colorAttachment = 0;
 | |
|       clear_attachments[num_clear_attachments].clearValue = clear_color_value;
 | |
|       num_clear_attachments++;
 | |
|       color_enable = false;
 | |
|       alpha_enable = false;
 | |
|     }
 | |
|     if (z_enable)
 | |
|     {
 | |
|       clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
 | |
|       clear_attachments[num_clear_attachments].colorAttachment = 0;
 | |
|       clear_attachments[num_clear_attachments].clearValue = clear_depth_value;
 | |
|       num_clear_attachments++;
 | |
|       z_enable = false;
 | |
|     }
 | |
|     if (num_clear_attachments > 0)
 | |
|     {
 | |
|       VkClearRect vk_rect = {target_vk_rc, 0, FramebufferManager::GetInstance()->GetEFBLayers()};
 | |
|       if (!StateTracker::GetInstance()->IsWithinRenderArea(
 | |
|               target_vk_rc.offset.x, target_vk_rc.offset.y, target_vk_rc.extent.width,
 | |
|               target_vk_rc.extent.height))
 | |
|       {
 | |
|         StateTracker::GetInstance()->EndClearRenderPass();
 | |
|       }
 | |
|       StateTracker::GetInstance()->BeginRenderPass();
 | |
| 
 | |
|       vkCmdClearAttachments(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_clear_attachments,
 | |
|                             clear_attachments, 1, &vk_rect);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Anything left over for the slow path?
 | |
|   if (!color_enable && !alpha_enable && !z_enable)
 | |
|     return;
 | |
| 
 | |
|   // Clearing must occur within a render pass.
 | |
|   if (!StateTracker::GetInstance()->IsWithinRenderArea(target_vk_rc.offset.x, target_vk_rc.offset.y,
 | |
|                                                        target_vk_rc.extent.width,
 | |
|                                                        target_vk_rc.extent.height))
 | |
|   {
 | |
|     StateTracker::GetInstance()->EndClearRenderPass();
 | |
|   }
 | |
|   StateTracker::GetInstance()->BeginRenderPass();
 | |
|   StateTracker::GetInstance()->SetPendingRebind();
 | |
| 
 | |
|   // Mask away the appropriate colors and use a shader
 | |
|   BlendState blend_state = Util::GetNoBlendingBlendState();
 | |
|   u32 write_mask = 0;
 | |
|   if (color_enable)
 | |
|     write_mask |= VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT;
 | |
|   if (alpha_enable)
 | |
|     write_mask |= VK_COLOR_COMPONENT_A_BIT;
 | |
|   blend_state.write_mask = write_mask;
 | |
| 
 | |
|   DepthStencilState depth_state = Util::GetNoDepthTestingDepthStencilState();
 | |
|   depth_state.test_enable = z_enable ? VK_TRUE : VK_FALSE;
 | |
|   depth_state.write_enable = z_enable ? VK_TRUE : VK_FALSE;
 | |
|   depth_state.compare_op = VK_COMPARE_OP_ALWAYS;
 | |
| 
 | |
|   RasterizationState rs_state = Util::GetNoCullRasterizationState();
 | |
|   rs_state.per_sample_shading = g_ActiveConfig.bSSAA ? VK_TRUE : VK_FALSE;
 | |
|   rs_state.samples = FramebufferManager::GetInstance()->GetEFBSamples();
 | |
| 
 | |
|   // No need to start a new render pass, but we do need to restore viewport state
 | |
|   UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
 | |
|                          g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
 | |
|                          FramebufferManager::GetInstance()->GetEFBLoadRenderPass(),
 | |
|                          g_object_cache->GetPassthroughVertexShader(),
 | |
|                          g_object_cache->GetPassthroughGeometryShader(), m_clear_fragment_shader);
 | |
| 
 | |
|   draw.SetRasterizationState(rs_state);
 | |
|   draw.SetDepthStencilState(depth_state);
 | |
|   draw.SetBlendState(blend_state);
 | |
| 
 | |
|   draw.DrawColoredQuad(target_rc.left, target_rc.top, target_rc.GetWidth(), target_rc.GetHeight(),
 | |
|                        clear_color_value.color.float32[0], clear_color_value.color.float32[1],
 | |
|                        clear_color_value.color.float32[2], clear_color_value.color.float32[3],
 | |
|                        clear_depth_value.depthStencil.depth);
 | |
| }
 | |
| 
 | |
| void Renderer::ReinterpretPixelData(unsigned int convtype)
 | |
| {
 | |
|   StateTracker::GetInstance()->EndRenderPass();
 | |
|   StateTracker::GetInstance()->SetPendingRebind();
 | |
|   FramebufferManager::GetInstance()->ReinterpretPixelData(convtype);
 | |
| 
 | |
|   // EFB framebuffer has now changed, so update accordingly.
 | |
|   BindEFBToStateTracker();
 | |
| }
 | |
| 
 | |
| void Renderer::SwapImpl(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height,
 | |
|                         const EFBRectangle& rc, u64 ticks, float gamma)
 | |
| {
 | |
|   // Pending/batched EFB pokes should be included in the final image.
 | |
|   FramebufferManager::GetInstance()->FlushEFBPokes();
 | |
| 
 | |
|   // Check that we actually have an image to render in XFB-on modes.
 | |
|   if ((!XFBWrited && !g_ActiveConfig.RealXFBEnabled()) || !fb_width || !fb_height)
 | |
|   {
 | |
|     Core::Callback_VideoCopiedToXFB(false);
 | |
|     return;
 | |
|   }
 | |
|   u32 xfb_count = 0;
 | |
|   const XFBSourceBase* const* xfb_sources =
 | |
|       FramebufferManager::GetXFBSource(xfb_addr, fb_stride, fb_height, &xfb_count);
 | |
|   if (g_ActiveConfig.VirtualXFBEnabled() && (!xfb_sources || xfb_count == 0))
 | |
|   {
 | |
|     Core::Callback_VideoCopiedToXFB(false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // End the current render pass.
 | |
|   StateTracker::GetInstance()->EndRenderPass();
 | |
|   StateTracker::GetInstance()->OnEndFrame();
 | |
| 
 | |
|   // Render the frame dump image if enabled.
 | |
|   if (IsFrameDumping())
 | |
|   {
 | |
|     // If we haven't dumped a single frame yet, set up frame dumping.
 | |
|     if (!m_frame_dumping_active)
 | |
|       StartFrameDumping();
 | |
| 
 | |
|     DrawFrameDump(rc, xfb_addr, xfb_sources, xfb_count, fb_width, fb_stride, fb_height, ticks);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // If frame dumping was previously enabled, flush all frames and remove the fence callback.
 | |
|     if (m_frame_dumping_active)
 | |
|       EndFrameDumping();
 | |
|   }
 | |
| 
 | |
|   // Ensure the worker thread is not still submitting a previous command buffer.
 | |
|   // In other words, the last frame has been submitted (otherwise the next call would
 | |
|   // be a race, as the image may not have been consumed yet).
 | |
|   g_command_buffer_mgr->PrepareToSubmitCommandBuffer();
 | |
| 
 | |
|   // Draw to the screen if we have a swap chain.
 | |
|   if (m_swap_chain)
 | |
|   {
 | |
|     DrawScreen(rc, xfb_addr, xfb_sources, xfb_count, fb_width, fb_stride, fb_height);
 | |
| 
 | |
|     // Submit the current command buffer, signaling rendering finished semaphore when it's done
 | |
|     // Because this final command buffer is rendering to the swap chain, we need to wait for
 | |
|     // the available semaphore to be signaled before executing the buffer. This final submission
 | |
|     // can happen off-thread in the background while we're preparing the next frame.
 | |
|     g_command_buffer_mgr->SubmitCommandBuffer(
 | |
|         true, m_image_available_semaphore, m_rendering_finished_semaphore,
 | |
|         m_swap_chain->GetSwapChain(), m_swap_chain->GetCurrentImageIndex());
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // No swap chain, just execute command buffer.
 | |
|     g_command_buffer_mgr->SubmitCommandBuffer(true);
 | |
|   }
 | |
| 
 | |
|   // NOTE: It is important that no rendering calls are made to the EFB between submitting the
 | |
|   // (now-previous) frame and after the below config checks are completed. If the target size
 | |
|   // changes, as the resize methods to not defer the destruction of the framebuffer, the current
 | |
|   // command buffer will contain references to a now non-existent framebuffer.
 | |
| 
 | |
|   // Prep for the next frame (get command buffer ready) before doing anything else.
 | |
|   BeginFrame();
 | |
| 
 | |
|   // Determine what (if anything) has changed in the config.
 | |
|   CheckForConfigChanges();
 | |
| 
 | |
|   // Handle host window resizes.
 | |
|   CheckForSurfaceChange();
 | |
| 
 | |
|   // Handle output size changes from the guest.
 | |
|   // There is a downside to doing this here is that if the game changes its XFB source area,
 | |
|   // the changes will be delayed by one frame. For the moment it has to be done here because
 | |
|   // this can cause a target size change, which would result in a black frame if done earlier.
 | |
|   CheckForTargetResize(fb_width, fb_stride, fb_height);
 | |
| 
 | |
|   // Clean up stale textures.
 | |
|   TextureCache::GetInstance()->Cleanup(frameCount);
 | |
| }
 | |
| 
 | |
| void Renderer::DrawFrame(VkRenderPass render_pass, const TargetRectangle& target_rect,
 | |
|                          const EFBRectangle& source_rect, u32 xfb_addr,
 | |
|                          const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width,
 | |
|                          u32 fb_stride, u32 fb_height)
 | |
| {
 | |
|   if (!g_ActiveConfig.bUseXFB)
 | |
|     DrawEFB(render_pass, target_rect, source_rect);
 | |
|   else if (!g_ActiveConfig.bUseRealXFB)
 | |
|     DrawVirtualXFB(render_pass, target_rect, xfb_addr, xfb_sources, xfb_count, fb_width, fb_stride,
 | |
|                    fb_height);
 | |
|   else
 | |
|     DrawRealXFB(render_pass, target_rect, xfb_sources, xfb_count, fb_width, fb_stride, fb_height);
 | |
| }
 | |
| 
 | |
| void Renderer::DrawEFB(VkRenderPass render_pass, const TargetRectangle& target_rect,
 | |
|                        const EFBRectangle& source_rect)
 | |
| {
 | |
|   // Scale the source rectangle to the selected internal resolution.
 | |
|   TargetRectangle scaled_source_rect = Renderer::ConvertEFBRectangle(source_rect);
 | |
|   scaled_source_rect.left = std::max(scaled_source_rect.left, 0);
 | |
|   scaled_source_rect.right = std::max(scaled_source_rect.right, 0);
 | |
|   scaled_source_rect.top = std::max(scaled_source_rect.top, 0);
 | |
|   scaled_source_rect.bottom = std::max(scaled_source_rect.bottom, 0);
 | |
| 
 | |
|   // Transition the EFB render target to a shader resource.
 | |
|   VkRect2D src_region = {{0, 0},
 | |
|                          {static_cast<u32>(scaled_source_rect.GetWidth()),
 | |
|                           static_cast<u32>(scaled_source_rect.GetHeight())}};
 | |
|   Texture2D* efb_color_texture =
 | |
|       FramebufferManager::GetInstance()->ResolveEFBColorTexture(src_region);
 | |
|   efb_color_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
 | |
|                                         VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
 | |
| 
 | |
|   // Copy EFB -> backbuffer
 | |
|   BlitScreen(render_pass, target_rect, scaled_source_rect, efb_color_texture, true);
 | |
| 
 | |
|   // Restore the EFB color texture to color attachment ready for rendering the next frame.
 | |
|   if (efb_color_texture == FramebufferManager::GetInstance()->GetEFBColorTexture())
 | |
|   {
 | |
|     FramebufferManager::GetInstance()->GetEFBColorTexture()->TransitionToLayout(
 | |
|         g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::DrawVirtualXFB(VkRenderPass render_pass, const TargetRectangle& target_rect,
 | |
|                               u32 xfb_addr, const XFBSourceBase* const* xfb_sources, u32 xfb_count,
 | |
|                               u32 fb_width, u32 fb_stride, u32 fb_height)
 | |
| {
 | |
|   for (u32 i = 0; i < xfb_count; ++i)
 | |
|   {
 | |
|     const XFBSource* xfb_source = static_cast<const XFBSource*>(xfb_sources[i]);
 | |
|     xfb_source->GetTexture()->GetTexture()->TransitionToLayout(
 | |
|         g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
 | |
| 
 | |
|     TargetRectangle source_rect = xfb_source->sourceRc;
 | |
|     TargetRectangle draw_rect;
 | |
| 
 | |
|     int xfb_width = static_cast<int>(xfb_source->srcWidth);
 | |
|     int xfb_height = static_cast<int>(xfb_source->srcHeight);
 | |
|     int h_offset = (static_cast<s32>(xfb_source->srcAddr) - static_cast<s32>(xfb_addr)) /
 | |
|                    (static_cast<s32>(fb_stride) * 2);
 | |
|     draw_rect.top =
 | |
|         target_rect.top + h_offset * target_rect.GetHeight() / static_cast<s32>(fb_height);
 | |
|     draw_rect.bottom =
 | |
|         target_rect.top +
 | |
|         (h_offset + xfb_height) * target_rect.GetHeight() / static_cast<s32>(fb_height);
 | |
|     draw_rect.left = target_rect.left +
 | |
|                      (target_rect.GetWidth() -
 | |
|                       xfb_width * target_rect.GetWidth() / static_cast<s32>(fb_stride)) /
 | |
|                          2;
 | |
|     draw_rect.right = target_rect.left +
 | |
|                       (target_rect.GetWidth() +
 | |
|                        xfb_width * target_rect.GetWidth() / static_cast<s32>(fb_stride)) /
 | |
|                           2;
 | |
| 
 | |
|     source_rect.right -= Renderer::EFBToScaledX(fb_stride - fb_width);
 | |
|     BlitScreen(render_pass, draw_rect, source_rect, xfb_source->GetTexture()->GetTexture(), true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::DrawRealXFB(VkRenderPass render_pass, const TargetRectangle& target_rect,
 | |
|                            const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width,
 | |
|                            u32 fb_stride, u32 fb_height)
 | |
| {
 | |
|   for (u32 i = 0; i < xfb_count; ++i)
 | |
|   {
 | |
|     const XFBSource* xfb_source = static_cast<const XFBSource*>(xfb_sources[i]);
 | |
|     xfb_source->GetTexture()->GetTexture()->TransitionToLayout(
 | |
|         g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
 | |
| 
 | |
|     TargetRectangle source_rect = xfb_source->sourceRc;
 | |
|     TargetRectangle draw_rect = target_rect;
 | |
|     source_rect.right -= fb_stride - fb_width;
 | |
|     BlitScreen(render_pass, draw_rect, source_rect, xfb_source->GetTexture()->GetTexture(), true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::DrawScreen(const EFBRectangle& source_rect, u32 xfb_addr,
 | |
|                           const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width,
 | |
|                           u32 fb_stride, u32 fb_height)
 | |
| {
 | |
|   // Grab the next image from the swap chain in preparation for drawing the window.
 | |
|   VkResult res = m_swap_chain->AcquireNextImage(m_image_available_semaphore);
 | |
|   if (res == VK_SUBOPTIMAL_KHR || res == VK_ERROR_OUT_OF_DATE_KHR)
 | |
|   {
 | |
|     // There's an issue here. We can't resize the swap chain while the GPU is still busy with it,
 | |
|     // but calling WaitForGPUIdle would create a deadlock as PrepareToSubmitCommandBuffer has been
 | |
|     // called by SwapImpl. WaitForGPUIdle waits on the semaphore, which PrepareToSubmitCommandBuffer
 | |
|     // has already done, so it blocks indefinitely. To work around this, we submit the current
 | |
|     // command buffer, resize the swap chain (which calls WaitForGPUIdle), and then finally call
 | |
|     // PrepareToSubmitCommandBuffer to return to the state that the caller expects.
 | |
|     g_command_buffer_mgr->SubmitCommandBuffer(false);
 | |
|     ResizeSwapChain();
 | |
|     g_command_buffer_mgr->PrepareToSubmitCommandBuffer();
 | |
|     res = m_swap_chain->AcquireNextImage(m_image_available_semaphore);
 | |
|   }
 | |
|   if (res != VK_SUCCESS)
 | |
|     PanicAlert("Failed to grab image from swap chain");
 | |
| 
 | |
|   // Transition from undefined (or present src, but it can be substituted) to
 | |
|   // color attachment ready for writing. These transitions must occur outside
 | |
|   // a render pass, unless the render pass declares a self-dependency.
 | |
|   Texture2D* backbuffer = m_swap_chain->GetCurrentTexture();
 | |
|   backbuffer->OverrideImageLayout(VK_IMAGE_LAYOUT_UNDEFINED);
 | |
|   backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
 | |
|                                  VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
 | |
| 
 | |
|   // Begin render pass for rendering to the swap chain.
 | |
|   VkClearValue clear_value = {{{0.0f, 0.0f, 0.0f, 1.0f}}};
 | |
|   VkRenderPassBeginInfo info = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
 | |
|                                 nullptr,
 | |
|                                 m_swap_chain->GetRenderPass(),
 | |
|                                 m_swap_chain->GetCurrentFramebuffer(),
 | |
|                                 {{0, 0}, {backbuffer->GetWidth(), backbuffer->GetHeight()}},
 | |
|                                 1,
 | |
|                                 &clear_value};
 | |
|   vkCmdBeginRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer(), &info,
 | |
|                        VK_SUBPASS_CONTENTS_INLINE);
 | |
| 
 | |
|   // Draw guest buffers (EFB or XFB)
 | |
|   DrawFrame(m_swap_chain->GetRenderPass(), GetTargetRectangle(), source_rect, xfb_addr, xfb_sources,
 | |
|             xfb_count, fb_width, fb_stride, fb_height);
 | |
| 
 | |
|   // Draw OSD
 | |
|   Util::SetViewportAndScissor(g_command_buffer_mgr->GetCurrentCommandBuffer(), 0, 0,
 | |
|                               backbuffer->GetWidth(), backbuffer->GetHeight());
 | |
|   DrawDebugText();
 | |
|   OSD::DoCallbacks(OSD::CallbackType::OnFrame);
 | |
|   OSD::DrawMessages();
 | |
| 
 | |
|   // End drawing to backbuffer
 | |
|   vkCmdEndRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer());
 | |
| 
 | |
|   // Transition the backbuffer to PRESENT_SRC to ensure all commands drawing
 | |
|   // to it have finished before present.
 | |
|   backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
 | |
|                                  VK_IMAGE_LAYOUT_PRESENT_SRC_KHR);
 | |
| }
 | |
| 
 | |
| bool Renderer::DrawFrameDump(const EFBRectangle& source_rect, u32 xfb_addr,
 | |
|                              const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width,
 | |
|                              u32 fb_stride, u32 fb_height, u64 ticks)
 | |
| {
 | |
|   TargetRectangle target_rect = CalculateFrameDumpDrawRectangle();
 | |
|   u32 width = std::max(1u, static_cast<u32>(target_rect.GetWidth()));
 | |
|   u32 height = std::max(1u, static_cast<u32>(target_rect.GetHeight()));
 | |
|   if (!ResizeFrameDumpBuffer(width, height))
 | |
|     return false;
 | |
| 
 | |
|   VkClearValue clear_value = {{{0.0f, 0.0f, 0.0f, 1.0f}}};
 | |
|   VkClearRect clear_rect = {{{0, 0}, {width, height}}, 0, 1};
 | |
|   VkClearAttachment clear_attachment = {VK_IMAGE_ASPECT_COLOR_BIT, 0, clear_value};
 | |
|   VkRenderPassBeginInfo info = {
 | |
|       VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
 | |
|       nullptr,
 | |
|       FramebufferManager::GetInstance()->GetColorCopyForReadbackRenderPass(),
 | |
|       m_frame_dump_framebuffer,
 | |
|       {{0, 0}, {width, height}},
 | |
|       1,
 | |
|       &clear_value};
 | |
|   vkCmdBeginRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer(), &info,
 | |
|                        VK_SUBPASS_CONTENTS_INLINE);
 | |
|   vkCmdClearAttachments(g_command_buffer_mgr->GetCurrentCommandBuffer(), 1, &clear_attachment, 1,
 | |
|                         &clear_rect);
 | |
|   DrawFrame(FramebufferManager::GetInstance()->GetColorCopyForReadbackRenderPass(), target_rect,
 | |
|             source_rect, xfb_addr, xfb_sources, xfb_count, fb_width, fb_stride, fb_height);
 | |
|   vkCmdEndRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer());
 | |
| 
 | |
|   // Prepare the readback texture for copying.
 | |
|   StagingTexture2D* readback_texture = PrepareFrameDumpImage(width, height, ticks);
 | |
|   if (!readback_texture)
 | |
|     return false;
 | |
| 
 | |
|   // Queue a copy to the current frame dump buffer. It will be written to the frame dump later.
 | |
|   readback_texture->CopyFromImage(g_command_buffer_mgr->GetCurrentCommandBuffer(),
 | |
|                                   m_frame_dump_render_texture->GetImage(),
 | |
|                                   VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, width, height, 0, 0);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Renderer::StartFrameDumping()
 | |
| {
 | |
|   _assert_(!m_frame_dumping_active);
 | |
| 
 | |
|   // Register fence callback so that we know when frames are ready to be written to the dump.
 | |
|   // This is done by clearing the fence pointer, so WriteFrameDumpFrame doesn't have to wait.
 | |
|   auto queued_callback = [](VkCommandBuffer, VkFence) {};
 | |
|   auto signaled_callback = std::bind(&Renderer::OnFrameDumpImageReady, this, std::placeholders::_1);
 | |
| 
 | |
|   // We use the array pointer as a key here, that way if Renderer needed fence callbacks in
 | |
|   // the future it could be used without conflicting.
 | |
|   // We're not interested in when fences are submitted, so the first callback is a no-op.
 | |
|   g_command_buffer_mgr->AddFencePointCallback(
 | |
|       m_frame_dump_images.data(), std::move(queued_callback), std::move(signaled_callback));
 | |
|   m_frame_dumping_active = true;
 | |
| }
 | |
| 
 | |
| void Renderer::EndFrameDumping()
 | |
| {
 | |
|   _assert_(m_frame_dumping_active);
 | |
| 
 | |
|   // Write any pending frames to the frame dump.
 | |
|   FlushFrameDump();
 | |
| 
 | |
|   // Remove the fence callback that we registered earlier, one less function that needs to be
 | |
|   // called when preparing a command buffer.
 | |
|   g_command_buffer_mgr->RemoveFencePointCallback(m_frame_dump_images.data());
 | |
|   m_frame_dumping_active = false;
 | |
| }
 | |
| 
 | |
| void Renderer::OnFrameDumpImageReady(VkFence fence)
 | |
| {
 | |
|   for (FrameDumpImage& frame : m_frame_dump_images)
 | |
|   {
 | |
|     // fence being a null handle means that we don't have to wait to re-use this image.
 | |
|     if (frame.fence == fence)
 | |
|       frame.fence = VK_NULL_HANDLE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::WriteFrameDumpImage(size_t index)
 | |
| {
 | |
|   FrameDumpImage& frame = m_frame_dump_images[index];
 | |
|   _assert_(frame.pending);
 | |
| 
 | |
|   // Check fence has been signaled.
 | |
|   // The callback here should set fence to null.
 | |
|   if (frame.fence != VK_NULL_HANDLE)
 | |
|   {
 | |
|     g_command_buffer_mgr->WaitForFence(frame.fence);
 | |
|     _assert_(frame.fence == VK_NULL_HANDLE);
 | |
|   }
 | |
| 
 | |
|   // Copy the now-populated image data to the output file.
 | |
|   DumpFrameData(reinterpret_cast<const u8*>(frame.readback_texture->GetMapPointer()),
 | |
|                 static_cast<int>(frame.readback_texture->GetWidth()),
 | |
|                 static_cast<int>(frame.readback_texture->GetHeight()),
 | |
|                 static_cast<int>(frame.readback_texture->GetRowStride()), frame.dump_state);
 | |
| 
 | |
|   frame.pending = false;
 | |
| }
 | |
| 
 | |
| StagingTexture2D* Renderer::PrepareFrameDumpImage(u32 width, u32 height, u64 ticks)
 | |
| {
 | |
|   // Ensure the last frame that was sent to the frame dump has completed encoding before we send
 | |
|   // the next image to it.
 | |
|   FinishFrameData();
 | |
| 
 | |
|   // If the last image hasn't been written to the frame dump yet, write it now.
 | |
|   // This is necessary so that the worker thread is no more than one frame behind, and the pointer
 | |
|   // (which is actually the buffer) is safe for us to re-use next time.
 | |
|   if (m_frame_dump_images[m_current_frame_dump_image].pending)
 | |
|     WriteFrameDumpImage(m_current_frame_dump_image);
 | |
| 
 | |
|   // Move to the next image buffer
 | |
|   m_current_frame_dump_image = (m_current_frame_dump_image + 1) % FRAME_DUMP_BUFFERED_FRAMES;
 | |
|   FrameDumpImage& image = m_frame_dump_images[m_current_frame_dump_image];
 | |
| 
 | |
|   // Ensure the dimensions of the readback texture are sufficient.
 | |
|   if (!image.readback_texture || width != image.readback_texture->GetWidth() ||
 | |
|       height != image.readback_texture->GetHeight())
 | |
|   {
 | |
|     // Allocate a new readback texture.
 | |
|     // The reset() call is here so that the memory is released before allocating the new texture.
 | |
|     image.readback_texture.reset();
 | |
|     image.readback_texture = StagingTexture2D::Create(STAGING_BUFFER_TYPE_READBACK, width, height,
 | |
|                                                       EFB_COLOR_TEXTURE_FORMAT);
 | |
| 
 | |
|     if (!image.readback_texture || !image.readback_texture->Map())
 | |
|     {
 | |
|       // Not actually fatal, just means we can't dump this frame.
 | |
|       PanicAlert("Failed to allocate frame dump readback texture.");
 | |
|       image.readback_texture.reset();
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The copy happens immediately after this function returns, so flag this frame as pending.
 | |
|   image.fence = g_command_buffer_mgr->GetCurrentCommandBufferFence();
 | |
|   image.dump_state = AVIDump::FetchState(ticks);
 | |
|   image.pending = true;
 | |
|   return image.readback_texture.get();
 | |
| }
 | |
| 
 | |
| void Renderer::FlushFrameDump()
 | |
| {
 | |
|   // We must write frames in order, so this is why we use a counter rather than a range.
 | |
|   for (size_t i = 0; i < FRAME_DUMP_BUFFERED_FRAMES; i++)
 | |
|   {
 | |
|     if (m_frame_dump_images[m_current_frame_dump_image].pending)
 | |
|       WriteFrameDumpImage(m_current_frame_dump_image);
 | |
| 
 | |
|     m_current_frame_dump_image = (m_current_frame_dump_image + 1) % FRAME_DUMP_BUFFERED_FRAMES;
 | |
|   }
 | |
| 
 | |
|   // Since everything has been written now, may as well start at index zero.
 | |
|   // count-1 here because the index is incremented before usage.
 | |
|   m_current_frame_dump_image = FRAME_DUMP_BUFFERED_FRAMES - 1;
 | |
| }
 | |
| 
 | |
| void Renderer::BlitScreen(VkRenderPass render_pass, const TargetRectangle& dst_rect,
 | |
|                           const TargetRectangle& src_rect, const Texture2D* src_tex,
 | |
|                           bool linear_filter)
 | |
| {
 | |
|   // We could potentially use vkCmdBlitImage here.
 | |
|   VkSampler sampler =
 | |
|       linear_filter ? g_object_cache->GetLinearSampler() : g_object_cache->GetPointSampler();
 | |
| 
 | |
|   // Set up common data
 | |
|   UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
 | |
|                          g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD), render_pass,
 | |
|                          g_object_cache->GetPassthroughVertexShader(), VK_NULL_HANDLE,
 | |
|                          m_blit_fragment_shader);
 | |
| 
 | |
|   draw.SetPSSampler(0, src_tex->GetView(), sampler);
 | |
| 
 | |
|   if (g_ActiveConfig.iStereoMode == STEREO_SBS || g_ActiveConfig.iStereoMode == STEREO_TAB)
 | |
|   {
 | |
|     TargetRectangle left_rect;
 | |
|     TargetRectangle right_rect;
 | |
|     ConvertStereoRectangle(dst_rect, left_rect, right_rect);
 | |
| 
 | |
|     draw.DrawQuad(left_rect.left, left_rect.top, left_rect.GetWidth(), left_rect.GetHeight(),
 | |
|                   src_rect.left, src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(),
 | |
|                   src_tex->GetWidth(), src_tex->GetHeight());
 | |
| 
 | |
|     draw.DrawQuad(right_rect.left, right_rect.top, right_rect.GetWidth(), right_rect.GetHeight(),
 | |
|                   src_rect.left, src_rect.top, 1, src_rect.GetWidth(), src_rect.GetHeight(),
 | |
|                   src_tex->GetWidth(), src_tex->GetHeight());
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     draw.DrawQuad(dst_rect.left, dst_rect.top, dst_rect.GetWidth(), dst_rect.GetHeight(),
 | |
|                   src_rect.left, src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(),
 | |
|                   src_tex->GetWidth(), src_tex->GetHeight());
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Renderer::ResizeFrameDumpBuffer(u32 new_width, u32 new_height)
 | |
| {
 | |
|   if (m_frame_dump_render_texture && m_frame_dump_render_texture->GetWidth() == new_width &&
 | |
|       m_frame_dump_render_texture->GetHeight() == new_height)
 | |
|   {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (m_frame_dump_framebuffer != VK_NULL_HANDLE)
 | |
|   {
 | |
|     vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_frame_dump_framebuffer, nullptr);
 | |
|     m_frame_dump_framebuffer = VK_NULL_HANDLE;
 | |
|   }
 | |
| 
 | |
|   m_frame_dump_render_texture =
 | |
|       Texture2D::Create(new_width, new_height, 1, 1, EFB_COLOR_TEXTURE_FORMAT,
 | |
|                         VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
 | |
|                         VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
 | |
| 
 | |
|   if (!m_frame_dump_render_texture)
 | |
|   {
 | |
|     WARN_LOG(VIDEO, "Failed to resize frame dump render texture");
 | |
|     m_frame_dump_render_texture.reset();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   VkImageView attachment = m_frame_dump_render_texture->GetView();
 | |
|   VkFramebufferCreateInfo info = {};
 | |
|   info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
 | |
|   info.renderPass = FramebufferManager::GetInstance()->GetColorCopyForReadbackRenderPass();
 | |
|   info.attachmentCount = 1;
 | |
|   info.pAttachments = &attachment;
 | |
|   info.width = new_width;
 | |
|   info.height = new_height;
 | |
|   info.layers = 1;
 | |
| 
 | |
|   VkResult res =
 | |
|       vkCreateFramebuffer(g_vulkan_context->GetDevice(), &info, nullptr, &m_frame_dump_framebuffer);
 | |
|   if (res != VK_SUCCESS)
 | |
|   {
 | |
|     WARN_LOG(VIDEO, "Failed to create frame dump framebuffer");
 | |
|     m_frame_dump_render_texture.reset();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Render pass expects texture is in transfer src to start with.
 | |
|   m_frame_dump_render_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
 | |
|                                                   VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Renderer::DestroyFrameDumpResources()
 | |
| {
 | |
|   if (m_frame_dump_framebuffer != VK_NULL_HANDLE)
 | |
|   {
 | |
|     vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_frame_dump_framebuffer, nullptr);
 | |
|     m_frame_dump_framebuffer = VK_NULL_HANDLE;
 | |
|   }
 | |
| 
 | |
|   m_frame_dump_render_texture.reset();
 | |
| 
 | |
|   for (FrameDumpImage& image : m_frame_dump_images)
 | |
|   {
 | |
|     image.readback_texture.reset();
 | |
|     image.fence = VK_NULL_HANDLE;
 | |
|     image.dump_state = {};
 | |
|     image.pending = false;
 | |
|   }
 | |
|   m_current_frame_dump_image = FRAME_DUMP_BUFFERED_FRAMES - 1;
 | |
| }
 | |
| 
 | |
| void Renderer::CheckForTargetResize(u32 fb_width, u32 fb_stride, u32 fb_height)
 | |
| {
 | |
|   if (FramebufferManagerBase::LastXfbWidth() == fb_stride &&
 | |
|       FramebufferManagerBase::LastXfbHeight() == fb_height)
 | |
|   {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   u32 new_width = (fb_stride < 1 || fb_stride > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fb_stride;
 | |
|   u32 new_height = (fb_height < 1 || fb_height > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fb_height;
 | |
|   FramebufferManagerBase::SetLastXfbWidth(new_width);
 | |
|   FramebufferManagerBase::SetLastXfbHeight(new_height);
 | |
| 
 | |
|   // Changing the XFB source area will likely change the final drawing rectangle.
 | |
|   UpdateDrawRectangle();
 | |
|   if (CalculateTargetSize())
 | |
|   {
 | |
|     PixelShaderManager::SetEfbScaleChanged();
 | |
|     ResizeEFBTextures();
 | |
|   }
 | |
| 
 | |
|   // This call is needed for auto-resizing to work.
 | |
|   SetWindowSize(static_cast<int>(fb_stride), static_cast<int>(fb_height));
 | |
| }
 | |
| 
 | |
| void Renderer::CheckForSurfaceChange()
 | |
| {
 | |
|   if (!s_surface_needs_change.IsSet())
 | |
|     return;
 | |
| 
 | |
|   u32 old_width = m_swap_chain ? m_swap_chain->GetWidth() : 0;
 | |
|   u32 old_height = m_swap_chain ? m_swap_chain->GetHeight() : 0;
 | |
| 
 | |
|   // Fast path, if the surface handle is the same, the window has just been resized.
 | |
|   if (m_swap_chain && s_new_surface_handle == m_swap_chain->GetNativeHandle())
 | |
|   {
 | |
|     INFO_LOG(VIDEO, "Detected window resize.");
 | |
|     ResizeSwapChain();
 | |
| 
 | |
|     // Notify the main thread we are done.
 | |
|     s_surface_needs_change.Clear();
 | |
|     s_new_surface_handle = nullptr;
 | |
|     s_surface_changed.Set();
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // Wait for the GPU to catch up since we're going to destroy the swap chain.
 | |
|     g_command_buffer_mgr->WaitForGPUIdle();
 | |
| 
 | |
|     // Did we previously have a swap chain?
 | |
|     if (m_swap_chain)
 | |
|     {
 | |
|       if (!s_new_surface_handle)
 | |
|       {
 | |
|         // If there is no surface now, destroy the swap chain.
 | |
|         m_swap_chain.reset();
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         // Recreate the surface. If this fails we're in trouble.
 | |
|         if (!m_swap_chain->RecreateSurface(s_new_surface_handle))
 | |
|           PanicAlert("Failed to recreate Vulkan surface. Cannot continue.");
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       // Previously had no swap chain. So create one.
 | |
|       VkSurfaceKHR surface = SwapChain::CreateVulkanSurface(g_vulkan_context->GetVulkanInstance(),
 | |
|                                                             s_new_surface_handle);
 | |
|       if (surface != VK_NULL_HANDLE)
 | |
|       {
 | |
|         m_swap_chain = SwapChain::Create(s_new_surface_handle, surface, g_ActiveConfig.IsVSync());
 | |
|         if (!m_swap_chain)
 | |
|           PanicAlert("Failed to create swap chain.");
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         PanicAlert("Failed to create surface.");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Notify calling thread.
 | |
|     s_surface_needs_change.Clear();
 | |
|     s_new_surface_handle = nullptr;
 | |
|     s_surface_changed.Set();
 | |
|   }
 | |
| 
 | |
|   if (m_swap_chain)
 | |
|   {
 | |
|     // Handle case where the dimensions are now different
 | |
|     if (old_width != m_swap_chain->GetWidth() || old_height != m_swap_chain->GetHeight())
 | |
|       OnSwapChainResized();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::CheckForConfigChanges()
 | |
| {
 | |
|   // Save the video config so we can compare against to determine which settings have changed.
 | |
|   int old_multisamples = g_ActiveConfig.iMultisamples;
 | |
|   int old_anisotropy = g_ActiveConfig.iMaxAnisotropy;
 | |
|   int old_stereo_mode = g_ActiveConfig.iStereoMode;
 | |
|   int old_aspect_ratio = g_ActiveConfig.iAspectRatio;
 | |
|   bool old_force_filtering = g_ActiveConfig.bForceFiltering;
 | |
|   bool old_ssaa = g_ActiveConfig.bSSAA;
 | |
| 
 | |
|   // Copy g_Config to g_ActiveConfig.
 | |
|   // NOTE: This can potentially race with the UI thread, however if it does, the changes will be
 | |
|   // delayed until the next time CheckForConfigChanges is called.
 | |
|   UpdateActiveConfig();
 | |
| 
 | |
|   // Determine which (if any) settings have changed.
 | |
|   bool msaa_changed = old_multisamples != g_ActiveConfig.iMultisamples;
 | |
|   bool ssaa_changed = old_ssaa != g_ActiveConfig.bSSAA;
 | |
|   bool anisotropy_changed = old_anisotropy != g_ActiveConfig.iMaxAnisotropy;
 | |
|   bool force_texture_filtering_changed = old_force_filtering != g_ActiveConfig.bForceFiltering;
 | |
|   bool stereo_changed = old_stereo_mode != g_ActiveConfig.iStereoMode;
 | |
|   bool efb_scale_changed = s_last_efb_scale != g_ActiveConfig.iEFBScale;
 | |
|   bool aspect_changed = old_aspect_ratio != g_ActiveConfig.iAspectRatio;
 | |
| 
 | |
|   // Update texture cache settings with any changed options.
 | |
|   TextureCache::GetInstance()->OnConfigChanged(g_ActiveConfig);
 | |
| 
 | |
|   // Handle internal resolution changes.
 | |
|   if (efb_scale_changed)
 | |
|     s_last_efb_scale = g_ActiveConfig.iEFBScale;
 | |
| 
 | |
|   // If the aspect ratio is changed, this changes the area that the game is drawn to.
 | |
|   if (aspect_changed)
 | |
|     UpdateDrawRectangle();
 | |
| 
 | |
|   if (efb_scale_changed || aspect_changed)
 | |
|   {
 | |
|     if (CalculateTargetSize())
 | |
|       ResizeEFBTextures();
 | |
|   }
 | |
| 
 | |
|   // MSAA samples changed, we need to recreate the EFB render pass.
 | |
|   // If the stereoscopy mode changed, we need to recreate the buffers as well.
 | |
|   if (msaa_changed || stereo_changed)
 | |
|   {
 | |
|     g_command_buffer_mgr->WaitForGPUIdle();
 | |
|     FramebufferManager::GetInstance()->RecreateRenderPass();
 | |
|     FramebufferManager::GetInstance()->ResizeEFBTextures();
 | |
|     BindEFBToStateTracker();
 | |
|   }
 | |
| 
 | |
|   // SSAA changed on/off, we can leave the buffers/render pass, but have to recompile shaders.
 | |
|   // Changing stereoscopy from off<->on also requires shaders to be recompiled.
 | |
|   if (msaa_changed || ssaa_changed || stereo_changed)
 | |
|   {
 | |
|     g_command_buffer_mgr->WaitForGPUIdle();
 | |
|     RecompileShaders();
 | |
|     FramebufferManager::GetInstance()->RecompileShaders();
 | |
|     g_object_cache->RecompileSharedShaders();
 | |
|     StateTracker::GetInstance()->LoadPipelineUIDCache();
 | |
|   }
 | |
| 
 | |
|   // For vsync, we need to change the present mode, which means recreating the swap chain.
 | |
|   if (m_swap_chain && g_ActiveConfig.IsVSync() != m_swap_chain->IsVSyncEnabled())
 | |
|   {
 | |
|     g_command_buffer_mgr->WaitForGPUIdle();
 | |
|     m_swap_chain->SetVSync(g_ActiveConfig.IsVSync());
 | |
|   }
 | |
| 
 | |
|   // Wipe sampler cache if force texture filtering or anisotropy changes.
 | |
|   if (anisotropy_changed || force_texture_filtering_changed)
 | |
|     ResetSamplerStates();
 | |
| }
 | |
| 
 | |
| void Renderer::OnSwapChainResized()
 | |
| {
 | |
|   s_backbuffer_width = m_swap_chain->GetWidth();
 | |
|   s_backbuffer_height = m_swap_chain->GetHeight();
 | |
|   UpdateDrawRectangle();
 | |
|   if (CalculateTargetSize())
 | |
|   {
 | |
|     PixelShaderManager::SetEfbScaleChanged();
 | |
|     ResizeEFBTextures();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::BindEFBToStateTracker()
 | |
| {
 | |
|   // Update framebuffer in state tracker
 | |
|   VkRect2D framebuffer_size = {{0, 0},
 | |
|                                {FramebufferManager::GetInstance()->GetEFBWidth(),
 | |
|                                 FramebufferManager::GetInstance()->GetEFBHeight()}};
 | |
|   StateTracker::GetInstance()->SetRenderPass(
 | |
|       FramebufferManager::GetInstance()->GetEFBLoadRenderPass(),
 | |
|       FramebufferManager::GetInstance()->GetEFBClearRenderPass());
 | |
|   StateTracker::GetInstance()->SetFramebuffer(
 | |
|       FramebufferManager::GetInstance()->GetEFBFramebuffer(), framebuffer_size);
 | |
| 
 | |
|   // Update rasterization state with MSAA info
 | |
|   RasterizationState rs_state = {};
 | |
|   rs_state.bits = StateTracker::GetInstance()->GetRasterizationState().bits;
 | |
|   rs_state.samples = FramebufferManager::GetInstance()->GetEFBSamples();
 | |
|   rs_state.per_sample_shading = g_ActiveConfig.bSSAA ? VK_TRUE : VK_FALSE;
 | |
|   StateTracker::GetInstance()->SetRasterizationState(rs_state);
 | |
| }
 | |
| 
 | |
| void Renderer::ResizeEFBTextures()
 | |
| {
 | |
|   // Ensure the GPU is finished with the current EFB textures.
 | |
|   g_command_buffer_mgr->WaitForGPUIdle();
 | |
|   FramebufferManager::GetInstance()->ResizeEFBTextures();
 | |
|   BindEFBToStateTracker();
 | |
| 
 | |
|   // Viewport and scissor rect have to be reset since they will be scaled differently.
 | |
|   SetViewport();
 | |
|   BPFunctions::SetScissor();
 | |
| }
 | |
| 
 | |
| void Renderer::ResizeSwapChain()
 | |
| {
 | |
|   // The worker thread may still be submitting a present on this swap chain.
 | |
|   g_command_buffer_mgr->WaitForGPUIdle();
 | |
| 
 | |
|   // It's now safe to resize the swap chain.
 | |
|   if (!m_swap_chain->ResizeSwapChain())
 | |
|     PanicAlert("Failed to resize swap chain.");
 | |
| 
 | |
|   OnSwapChainResized();
 | |
| }
 | |
| 
 | |
| void Renderer::ApplyState()
 | |
| {
 | |
| }
 | |
| 
 | |
| void Renderer::ResetAPIState()
 | |
| {
 | |
|   // End the EFB render pass if active
 | |
|   StateTracker::GetInstance()->EndRenderPass();
 | |
| }
 | |
| 
 | |
| void Renderer::RestoreAPIState()
 | |
| {
 | |
|   // Instruct the state tracker to re-bind everything before the next draw
 | |
|   StateTracker::GetInstance()->SetPendingRebind();
 | |
| }
 | |
| 
 | |
| void Renderer::SetGenerationMode()
 | |
| {
 | |
|   RasterizationState new_rs_state = {};
 | |
|   new_rs_state.bits = StateTracker::GetInstance()->GetRasterizationState().bits;
 | |
| 
 | |
|   switch (bpmem.genMode.cullmode)
 | |
|   {
 | |
|   case GenMode::CULL_NONE:
 | |
|     new_rs_state.cull_mode = VK_CULL_MODE_NONE;
 | |
|     break;
 | |
|   case GenMode::CULL_BACK:
 | |
|     new_rs_state.cull_mode = VK_CULL_MODE_BACK_BIT;
 | |
|     break;
 | |
|   case GenMode::CULL_FRONT:
 | |
|     new_rs_state.cull_mode = VK_CULL_MODE_FRONT_BIT;
 | |
|     break;
 | |
|   case GenMode::CULL_ALL:
 | |
|     new_rs_state.cull_mode = VK_CULL_MODE_FRONT_AND_BACK;
 | |
|     break;
 | |
|   default:
 | |
|     new_rs_state.cull_mode = VK_CULL_MODE_NONE;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   StateTracker::GetInstance()->SetRasterizationState(new_rs_state);
 | |
| }
 | |
| 
 | |
| void Renderer::SetDepthMode()
 | |
| {
 | |
|   DepthStencilState new_ds_state = {};
 | |
|   new_ds_state.test_enable = bpmem.zmode.testenable ? VK_TRUE : VK_FALSE;
 | |
|   new_ds_state.write_enable = bpmem.zmode.updateenable ? VK_TRUE : VK_FALSE;
 | |
| 
 | |
|   // Inverted depth, hence these are swapped
 | |
|   switch (bpmem.zmode.func)
 | |
|   {
 | |
|   case ZMode::NEVER:
 | |
|     new_ds_state.compare_op = VK_COMPARE_OP_NEVER;
 | |
|     break;
 | |
|   case ZMode::LESS:
 | |
|     new_ds_state.compare_op = VK_COMPARE_OP_GREATER;
 | |
|     break;
 | |
|   case ZMode::EQUAL:
 | |
|     new_ds_state.compare_op = VK_COMPARE_OP_EQUAL;
 | |
|     break;
 | |
|   case ZMode::LEQUAL:
 | |
|     new_ds_state.compare_op = VK_COMPARE_OP_GREATER_OR_EQUAL;
 | |
|     break;
 | |
|   case ZMode::GREATER:
 | |
|     new_ds_state.compare_op = VK_COMPARE_OP_LESS;
 | |
|     break;
 | |
|   case ZMode::NEQUAL:
 | |
|     new_ds_state.compare_op = VK_COMPARE_OP_NOT_EQUAL;
 | |
|     break;
 | |
|   case ZMode::GEQUAL:
 | |
|     new_ds_state.compare_op = VK_COMPARE_OP_LESS_OR_EQUAL;
 | |
|     break;
 | |
|   case ZMode::ALWAYS:
 | |
|     new_ds_state.compare_op = VK_COMPARE_OP_ALWAYS;
 | |
|     break;
 | |
|   default:
 | |
|     new_ds_state.compare_op = VK_COMPARE_OP_ALWAYS;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   StateTracker::GetInstance()->SetDepthStencilState(new_ds_state);
 | |
| }
 | |
| 
 | |
| void Renderer::SetColorMask()
 | |
| {
 | |
|   u32 color_mask = 0;
 | |
| 
 | |
|   if (bpmem.alpha_test.TestResult() != AlphaTest::FAIL)
 | |
|   {
 | |
|     if (bpmem.blendmode.alphaupdate && bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24)
 | |
|       color_mask |= VK_COLOR_COMPONENT_A_BIT;
 | |
|     if (bpmem.blendmode.colorupdate)
 | |
|       color_mask |= VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT;
 | |
|   }
 | |
| 
 | |
|   BlendState new_blend_state = {};
 | |
|   new_blend_state.bits = StateTracker::GetInstance()->GetBlendState().bits;
 | |
|   new_blend_state.write_mask = color_mask;
 | |
| 
 | |
|   StateTracker::GetInstance()->SetBlendState(new_blend_state);
 | |
| }
 | |
| 
 | |
| void Renderer::SetBlendMode(bool force_update)
 | |
| {
 | |
|   BlendState new_blend_state = {};
 | |
|   new_blend_state.bits = StateTracker::GetInstance()->GetBlendState().bits;
 | |
| 
 | |
|   // Fast path for blending disabled
 | |
|   if (!bpmem.blendmode.blendenable)
 | |
|   {
 | |
|     new_blend_state.blend_enable = VK_FALSE;
 | |
|     new_blend_state.blend_op = VK_BLEND_OP_ADD;
 | |
|     new_blend_state.src_blend = VK_BLEND_FACTOR_ONE;
 | |
|     new_blend_state.dst_blend = VK_BLEND_FACTOR_ZERO;
 | |
|     new_blend_state.alpha_blend_op = VK_BLEND_OP_ADD;
 | |
|     new_blend_state.src_alpha_blend = VK_BLEND_FACTOR_ONE;
 | |
|     new_blend_state.dst_alpha_blend = VK_BLEND_FACTOR_ZERO;
 | |
|     StateTracker::GetInstance()->SetBlendState(new_blend_state);
 | |
|     return;
 | |
|   }
 | |
|   // Fast path for subtract blending
 | |
|   else if (bpmem.blendmode.subtract)
 | |
|   {
 | |
|     new_blend_state.blend_enable = VK_TRUE;
 | |
|     new_blend_state.blend_op = VK_BLEND_OP_REVERSE_SUBTRACT;
 | |
|     new_blend_state.src_blend = VK_BLEND_FACTOR_ONE;
 | |
|     new_blend_state.dst_blend = VK_BLEND_FACTOR_ONE;
 | |
|     new_blend_state.alpha_blend_op = VK_BLEND_OP_REVERSE_SUBTRACT;
 | |
|     new_blend_state.src_alpha_blend = VK_BLEND_FACTOR_ONE;
 | |
|     new_blend_state.dst_alpha_blend = VK_BLEND_FACTOR_ONE;
 | |
|     StateTracker::GetInstance()->SetBlendState(new_blend_state);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Our render target always uses an alpha channel, so we need to override the blend functions to
 | |
|   // assume a destination alpha of 1 if the render target isn't supposed to have an alpha channel.
 | |
|   bool target_has_alpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24;
 | |
|   bool use_dst_alpha = bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate && target_has_alpha;
 | |
|   bool use_dual_src = g_vulkan_context->SupportsDualSourceBlend();
 | |
| 
 | |
|   new_blend_state.blend_enable = VK_TRUE;
 | |
|   new_blend_state.blend_op = VK_BLEND_OP_ADD;
 | |
| 
 | |
|   switch (bpmem.blendmode.srcfactor)
 | |
|   {
 | |
|   case BlendMode::ZERO:
 | |
|     new_blend_state.src_blend = VK_BLEND_FACTOR_ZERO;
 | |
|     break;
 | |
|   case BlendMode::ONE:
 | |
|     new_blend_state.src_blend = VK_BLEND_FACTOR_ONE;
 | |
|     break;
 | |
|   case BlendMode::DSTCLR:
 | |
|     new_blend_state.src_blend = VK_BLEND_FACTOR_DST_COLOR;
 | |
|     break;
 | |
|   case BlendMode::INVDSTCLR:
 | |
|     new_blend_state.src_blend = VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
 | |
|     break;
 | |
|   case BlendMode::SRCALPHA:
 | |
|     new_blend_state.src_blend =
 | |
|         use_dual_src ? VK_BLEND_FACTOR_SRC1_ALPHA : VK_BLEND_FACTOR_SRC_ALPHA;
 | |
|     break;
 | |
|   case BlendMode::INVSRCALPHA:
 | |
|     new_blend_state.src_blend =
 | |
|         use_dual_src ? VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA : VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
 | |
|     break;
 | |
|   case BlendMode::DSTALPHA:
 | |
|     new_blend_state.src_blend = target_has_alpha ? VK_BLEND_FACTOR_DST_ALPHA : VK_BLEND_FACTOR_ONE;
 | |
|     break;
 | |
|   case BlendMode::INVDSTALPHA:
 | |
|     new_blend_state.src_blend =
 | |
|         target_has_alpha ? VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA : VK_BLEND_FACTOR_ZERO;
 | |
|     break;
 | |
|   default:
 | |
|     new_blend_state.src_blend = VK_BLEND_FACTOR_ONE;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (bpmem.blendmode.dstfactor)
 | |
|   {
 | |
|   case BlendMode::ZERO:
 | |
|     new_blend_state.dst_blend = VK_BLEND_FACTOR_ZERO;
 | |
|     break;
 | |
|   case BlendMode::ONE:
 | |
|     new_blend_state.dst_blend = VK_BLEND_FACTOR_ONE;
 | |
|     break;
 | |
|   case BlendMode::SRCCLR:
 | |
|     new_blend_state.dst_blend = VK_BLEND_FACTOR_SRC_COLOR;
 | |
|     break;
 | |
|   case BlendMode::INVSRCCLR:
 | |
|     new_blend_state.dst_blend = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
 | |
|     break;
 | |
|   case BlendMode::SRCALPHA:
 | |
|     new_blend_state.dst_blend =
 | |
|         use_dual_src ? VK_BLEND_FACTOR_SRC1_ALPHA : VK_BLEND_FACTOR_SRC_ALPHA;
 | |
|     break;
 | |
|   case BlendMode::INVSRCALPHA:
 | |
|     new_blend_state.dst_blend =
 | |
|         use_dual_src ? VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA : VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
 | |
|     break;
 | |
|   case BlendMode::DSTALPHA:
 | |
|     new_blend_state.dst_blend = target_has_alpha ? VK_BLEND_FACTOR_DST_ALPHA : VK_BLEND_FACTOR_ONE;
 | |
|     break;
 | |
|   case BlendMode::INVDSTALPHA:
 | |
|     new_blend_state.dst_blend =
 | |
|         target_has_alpha ? VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA : VK_BLEND_FACTOR_ZERO;
 | |
|     break;
 | |
|   default:
 | |
|     new_blend_state.dst_blend = VK_BLEND_FACTOR_ONE;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (use_dst_alpha)
 | |
|   {
 | |
|     // Destination alpha sets 1*SRC
 | |
|     new_blend_state.alpha_blend_op = VK_BLEND_OP_ADD;
 | |
|     new_blend_state.src_alpha_blend = VK_BLEND_FACTOR_ONE;
 | |
|     new_blend_state.dst_alpha_blend = VK_BLEND_FACTOR_ZERO;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     new_blend_state.alpha_blend_op = VK_BLEND_OP_ADD;
 | |
|     new_blend_state.src_alpha_blend = Util::GetAlphaBlendFactor(new_blend_state.src_blend);
 | |
|     new_blend_state.dst_alpha_blend = Util::GetAlphaBlendFactor(new_blend_state.dst_blend);
 | |
|   }
 | |
| 
 | |
|   StateTracker::GetInstance()->SetBlendState(new_blend_state);
 | |
| }
 | |
| 
 | |
| void Renderer::SetLogicOpMode()
 | |
| {
 | |
|   BlendState new_blend_state = {};
 | |
|   new_blend_state.bits = StateTracker::GetInstance()->GetBlendState().bits;
 | |
| 
 | |
|   // Does our device support logic ops?
 | |
|   bool logic_op_enable = bpmem.blendmode.logicopenable && !bpmem.blendmode.blendenable;
 | |
|   if (g_vulkan_context->SupportsLogicOps())
 | |
|   {
 | |
|     if (logic_op_enable)
 | |
|     {
 | |
|       static const std::array<VkLogicOp, 16> logic_ops = {
 | |
|           {VK_LOGIC_OP_CLEAR, VK_LOGIC_OP_AND, VK_LOGIC_OP_AND_REVERSE, VK_LOGIC_OP_COPY,
 | |
|            VK_LOGIC_OP_AND_INVERTED, VK_LOGIC_OP_NO_OP, VK_LOGIC_OP_XOR, VK_LOGIC_OP_OR,
 | |
|            VK_LOGIC_OP_NOR, VK_LOGIC_OP_EQUIVALENT, VK_LOGIC_OP_INVERT, VK_LOGIC_OP_OR_REVERSE,
 | |
|            VK_LOGIC_OP_COPY_INVERTED, VK_LOGIC_OP_OR_INVERTED, VK_LOGIC_OP_NAND, VK_LOGIC_OP_SET}};
 | |
| 
 | |
|       new_blend_state.logic_op_enable = VK_TRUE;
 | |
|       new_blend_state.logic_op = logic_ops[bpmem.blendmode.logicmode];
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       new_blend_state.logic_op_enable = VK_FALSE;
 | |
|       new_blend_state.logic_op = VK_LOGIC_OP_CLEAR;
 | |
|     }
 | |
| 
 | |
|     StateTracker::GetInstance()->SetBlendState(new_blend_state);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // No logic op support, approximate with blending instead.
 | |
|     // This is by no means correct, but necessary for some devices.
 | |
|     if (logic_op_enable)
 | |
|     {
 | |
|       struct LogicOpBlend
 | |
|       {
 | |
|         VkBlendFactor src_factor;
 | |
|         VkBlendOp op;
 | |
|         VkBlendFactor dst_factor;
 | |
|       };
 | |
|       static const std::array<LogicOpBlend, 16> logic_ops = {
 | |
|           {{VK_BLEND_FACTOR_ZERO, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ZERO},
 | |
|            {VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ZERO},
 | |
|            {VK_BLEND_FACTOR_ONE, VK_BLEND_OP_SUBTRACT, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR},
 | |
|            {VK_BLEND_FACTOR_ONE, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ZERO},
 | |
|            {VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_OP_REVERSE_SUBTRACT, VK_BLEND_FACTOR_ONE},
 | |
|            {VK_BLEND_FACTOR_ZERO, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE},
 | |
|            {VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_OP_MAX,
 | |
|             VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR},
 | |
|            {VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE},
 | |
|            {VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_OP_MAX,
 | |
|             VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR},
 | |
|            {VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_OP_MAX, VK_BLEND_FACTOR_SRC_COLOR},
 | |
|            {VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_OP_ADD,
 | |
|             VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR},
 | |
|            {VK_BLEND_FACTOR_ONE, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR},
 | |
|            {VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_OP_ADD,
 | |
|             VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR},
 | |
|            {VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE},
 | |
|            {VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_OP_ADD,
 | |
|             VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR},
 | |
|            {VK_BLEND_FACTOR_ONE, VK_BLEND_OP_ADD, VK_BLEND_FACTOR_ONE}}};
 | |
| 
 | |
|       new_blend_state.blend_enable = VK_TRUE;
 | |
|       new_blend_state.blend_op = logic_ops[bpmem.blendmode.logicmode].op;
 | |
|       new_blend_state.src_blend = logic_ops[bpmem.blendmode.logicmode].src_factor;
 | |
|       new_blend_state.dst_blend = logic_ops[bpmem.blendmode.logicmode].dst_factor;
 | |
|       new_blend_state.alpha_blend_op = new_blend_state.blend_op;
 | |
|       new_blend_state.src_alpha_blend = Util::GetAlphaBlendFactor(new_blend_state.src_blend);
 | |
|       new_blend_state.dst_alpha_blend = Util::GetAlphaBlendFactor(new_blend_state.dst_blend);
 | |
| 
 | |
|       StateTracker::GetInstance()->SetBlendState(new_blend_state);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       // This is unfortunate. Since we clobber the blend state when enabling logic ops,
 | |
|       // we have to call SetBlendMode again to restore the current blend state.
 | |
|       SetBlendMode(true);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Renderer::SetSamplerState(int stage, int texindex, bool custom_tex)
 | |
| {
 | |
|   const FourTexUnits& tex = bpmem.tex[texindex];
 | |
|   const TexMode0& tm0 = tex.texMode0[stage];
 | |
|   const TexMode1& tm1 = tex.texMode1[stage];
 | |
|   SamplerState new_state = {};
 | |
| 
 | |
|   if (g_ActiveConfig.bForceFiltering)
 | |
|   {
 | |
|     new_state.min_filter = VK_FILTER_LINEAR;
 | |
|     new_state.mag_filter = VK_FILTER_LINEAR;
 | |
|     new_state.mipmap_mode = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ?
 | |
|                                 VK_SAMPLER_MIPMAP_MODE_LINEAR :
 | |
|                                 VK_SAMPLER_MIPMAP_MODE_NEAREST;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // Constants for these?
 | |
|     new_state.min_filter = (tm0.min_filter & 4) != 0 ? VK_FILTER_LINEAR : VK_FILTER_NEAREST;
 | |
|     new_state.mipmap_mode = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ?
 | |
|                                 VK_SAMPLER_MIPMAP_MODE_LINEAR :
 | |
|                                 VK_SAMPLER_MIPMAP_MODE_NEAREST;
 | |
|     new_state.mag_filter = tm0.mag_filter != 0 ? VK_FILTER_LINEAR : VK_FILTER_NEAREST;
 | |
|   }
 | |
| 
 | |
|   // If mipmaps are disabled, clamp min/max lod
 | |
|   new_state.max_lod = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? tm1.max_lod : 0;
 | |
|   new_state.min_lod = std::min(new_state.max_lod.Value(), tm1.min_lod);
 | |
|   new_state.lod_bias = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? tm0.lod_bias : 0;
 | |
| 
 | |
|   // Custom textures may have a greater number of mips
 | |
|   if (custom_tex)
 | |
|     new_state.max_lod = 255;
 | |
| 
 | |
|   // Address modes
 | |
|   static const VkSamplerAddressMode address_modes[] = {
 | |
|       VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, VK_SAMPLER_ADDRESS_MODE_REPEAT,
 | |
|       VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT, VK_SAMPLER_ADDRESS_MODE_REPEAT};
 | |
|   new_state.wrap_u = address_modes[tm0.wrap_s];
 | |
|   new_state.wrap_v = address_modes[tm0.wrap_t];
 | |
| 
 | |
|   // Only use anisotropic filtering for textures that would be linearly filtered.
 | |
|   new_state.enable_anisotropic_filtering = SamplerCommon::IsBpTexMode0PointFiltering(tm0) ? 0 : 1;
 | |
| 
 | |
|   // Skip lookup if the state hasn't changed.
 | |
|   size_t bind_index = (texindex * 4) + stage;
 | |
|   if (m_sampler_states[bind_index].bits == new_state.bits)
 | |
|     return;
 | |
| 
 | |
|   // Look up new state and replace in state tracker.
 | |
|   VkSampler sampler = g_object_cache->GetSampler(new_state);
 | |
|   if (sampler == VK_NULL_HANDLE)
 | |
|   {
 | |
|     ERROR_LOG(VIDEO, "Failed to create sampler");
 | |
|     sampler = g_object_cache->GetPointSampler();
 | |
|   }
 | |
| 
 | |
|   StateTracker::GetInstance()->SetSampler(bind_index, sampler);
 | |
|   m_sampler_states[bind_index].bits = new_state.bits;
 | |
| }
 | |
| 
 | |
| void Renderer::ResetSamplerStates()
 | |
| {
 | |
|   // Ensure none of the sampler objects are in use.
 | |
|   // This assumes that none of the samplers are in use on the command list currently being recorded.
 | |
|   g_command_buffer_mgr->WaitForGPUIdle();
 | |
| 
 | |
|   // Invalidate all sampler states, next draw will re-initialize them.
 | |
|   for (size_t i = 0; i < m_sampler_states.size(); i++)
 | |
|   {
 | |
|     m_sampler_states[i].bits = std::numeric_limits<decltype(m_sampler_states[i].bits)>::max();
 | |
|     StateTracker::GetInstance()->SetSampler(i, g_object_cache->GetPointSampler());
 | |
|   }
 | |
| 
 | |
|   // Invalidate all sampler objects (some will be unused now).
 | |
|   g_object_cache->ClearSamplerCache();
 | |
| }
 | |
| 
 | |
| void Renderer::SetDitherMode()
 | |
| {
 | |
| }
 | |
| 
 | |
| void Renderer::SetInterlacingMode()
 | |
| {
 | |
| }
 | |
| 
 | |
| void Renderer::SetScissorRect(const EFBRectangle& rc)
 | |
| {
 | |
|   TargetRectangle target_rc = ConvertEFBRectangle(rc);
 | |
| 
 | |
|   VkRect2D scissor = {
 | |
|       {target_rc.left, target_rc.top},
 | |
|       {static_cast<uint32_t>(target_rc.GetWidth()), static_cast<uint32_t>(target_rc.GetHeight())}};
 | |
| 
 | |
|   StateTracker::GetInstance()->SetScissor(scissor);
 | |
| }
 | |
| 
 | |
| void Renderer::SetViewport()
 | |
| {
 | |
|   int scissor_x_offset = bpmem.scissorOffset.x * 2;
 | |
|   int scissor_y_offset = bpmem.scissorOffset.y * 2;
 | |
| 
 | |
|   float x = Renderer::EFBToScaledXf(xfmem.viewport.xOrig - xfmem.viewport.wd - scissor_x_offset);
 | |
|   float y = Renderer::EFBToScaledYf(xfmem.viewport.yOrig + xfmem.viewport.ht - scissor_y_offset);
 | |
|   float width = Renderer::EFBToScaledXf(2.0f * xfmem.viewport.wd);
 | |
|   float height = Renderer::EFBToScaledYf(-2.0f * xfmem.viewport.ht);
 | |
|   float range = MathUtil::Clamp<float>(xfmem.viewport.zRange, -16777215.0f, 16777215.0f);
 | |
|   float min_depth =
 | |
|       MathUtil::Clamp<float>(xfmem.viewport.farZ - range, 0.0f, 16777215.0f) / 16777216.0f;
 | |
|   float max_depth = MathUtil::Clamp<float>(xfmem.viewport.farZ, 0.0f, 16777215.0f) / 16777216.0f;
 | |
|   if (width < 0.0f)
 | |
|   {
 | |
|     x += width;
 | |
|     width = -width;
 | |
|   }
 | |
|   if (height < 0.0f)
 | |
|   {
 | |
|     y += height;
 | |
|     height = -height;
 | |
|   }
 | |
| 
 | |
|   // If an inverted depth range is used, which the Vulkan drivers don't
 | |
|   // support, we need to calculate the depth range in the vertex shader.
 | |
|   // TODO: Make this into a DriverDetails bug and write a test for CTS.
 | |
|   if (xfmem.viewport.zRange < 0.0f)
 | |
|   {
 | |
|     min_depth = 0.0f;
 | |
|     max_depth = GX_MAX_DEPTH;
 | |
|   }
 | |
| 
 | |
|   // We use an inverted depth range here to apply the Reverse Z trick.
 | |
|   // This trick makes sure we match the precision provided by the 1:0
 | |
|   // clipping depth range on the hardware.
 | |
|   VkViewport viewport = {x, y, width, height, 1.0f - max_depth, 1.0f - min_depth};
 | |
|   StateTracker::GetInstance()->SetViewport(viewport);
 | |
| }
 | |
| 
 | |
| void Renderer::ChangeSurface(void* new_surface_handle)
 | |
| {
 | |
|   // Called by the main thread when the window is resized.
 | |
|   s_new_surface_handle = new_surface_handle;
 | |
|   s_surface_needs_change.Set();
 | |
|   s_surface_changed.Set();
 | |
| }
 | |
| 
 | |
| void Renderer::RecompileShaders()
 | |
| {
 | |
|   DestroyShaders();
 | |
|   if (!CompileShaders())
 | |
|     PanicAlert("Failed to recompile shaders.");
 | |
| }
 | |
| 
 | |
| bool Renderer::CompileShaders()
 | |
| {
 | |
|   static const char CLEAR_FRAGMENT_SHADER_SOURCE[] = R"(
 | |
|     layout(location = 0) in float3 uv0;
 | |
|     layout(location = 1) in float4 col0;
 | |
|     layout(location = 0) out float4 ocol0;
 | |
| 
 | |
|     void main()
 | |
|     {
 | |
|       ocol0 = col0;
 | |
|     }
 | |
| 
 | |
|   )";
 | |
| 
 | |
|   static const char BLIT_FRAGMENT_SHADER_SOURCE[] = R"(
 | |
|     layout(set = 1, binding = 0) uniform sampler2DArray samp0;
 | |
| 
 | |
|     layout(location = 0) in float3 uv0;
 | |
|     layout(location = 1) in float4 col0;
 | |
|     layout(location = 0) out float4 ocol0;
 | |
| 
 | |
|     void main()
 | |
|     {
 | |
|       ocol0 = float4(texture(samp0, uv0).xyz, 1.0);
 | |
|     }
 | |
|   )";
 | |
| 
 | |
|   std::string header = g_object_cache->GetUtilityShaderHeader();
 | |
|   std::string source;
 | |
| 
 | |
|   source = header + CLEAR_FRAGMENT_SHADER_SOURCE;
 | |
|   m_clear_fragment_shader = Util::CompileAndCreateFragmentShader(source);
 | |
|   source = header + BLIT_FRAGMENT_SHADER_SOURCE;
 | |
|   m_blit_fragment_shader = Util::CompileAndCreateFragmentShader(source);
 | |
| 
 | |
|   if (m_clear_fragment_shader == VK_NULL_HANDLE || m_blit_fragment_shader == VK_NULL_HANDLE)
 | |
|   {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Renderer::DestroyShaders()
 | |
| {
 | |
|   auto DestroyShader = [this](VkShaderModule& shader) {
 | |
|     if (shader != VK_NULL_HANDLE)
 | |
|     {
 | |
|       vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr);
 | |
|       shader = VK_NULL_HANDLE;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   DestroyShader(m_clear_fragment_shader);
 | |
|   DestroyShader(m_blit_fragment_shader);
 | |
| }
 | |
| 
 | |
| }  // namespace Vulkan
 |