forked from dolphin-emu/dolphin
		
	The min-heap provides no ordering when the key is the same on 2 nodes. Disambiguate identical times by tracking the order items were added into the queue.
		
			
				
	
	
		
			338 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			338 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2016 Dolphin Emulator Project
 | 
						|
// Licensed under GPLv2+
 | 
						|
// Refer to the license.txt file included.
 | 
						|
 | 
						|
#include <gtest/gtest.h>
 | 
						|
 | 
						|
#include <array>
 | 
						|
#include <bitset>
 | 
						|
 | 
						|
#include "Core/ConfigManager.h"
 | 
						|
#include "Core/Core.h"
 | 
						|
#include "Core/CoreTiming.h"
 | 
						|
#include "Core/PowerPC/PowerPC.h"
 | 
						|
 | 
						|
// Numbers are chosen randomly to make sure the correct one is given.
 | 
						|
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
 | 
						|
static constexpr int MAX_SLICE_LENGTH = 20000;  // Copied from CoreTiming internals
 | 
						|
 | 
						|
static std::bitset<CB_IDS.size()> s_callbacks_ran_flags;
 | 
						|
static u64 s_expected_callback = 0;
 | 
						|
static s64 s_lateness = 0;
 | 
						|
 | 
						|
template <unsigned int IDX>
 | 
						|
void CallbackTemplate(u64 userdata, s64 lateness)
 | 
						|
{
 | 
						|
  static_assert(IDX < CB_IDS.size(), "IDX out of range");
 | 
						|
  s_callbacks_ran_flags.set(IDX);
 | 
						|
  EXPECT_EQ(CB_IDS[IDX], userdata);
 | 
						|
  EXPECT_EQ(CB_IDS[IDX], s_expected_callback);
 | 
						|
  EXPECT_EQ(s_lateness, lateness);
 | 
						|
}
 | 
						|
 | 
						|
class ScopeInit final
 | 
						|
{
 | 
						|
public:
 | 
						|
  ScopeInit()
 | 
						|
  {
 | 
						|
    Core::DeclareAsCPUThread();
 | 
						|
    SConfig::Init();
 | 
						|
    PowerPC::Init(PowerPC::CORE_INTERPRETER);
 | 
						|
    CoreTiming::Init();
 | 
						|
  }
 | 
						|
  ~ScopeInit()
 | 
						|
  {
 | 
						|
    CoreTiming::Shutdown();
 | 
						|
    PowerPC::Shutdown();
 | 
						|
    SConfig::Shutdown();
 | 
						|
    Core::UndeclareAsCPUThread();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
void AdvanceAndCheck(u32 idx, int downcount, int expected_lateness = 0, int cpu_downcount = 0)
 | 
						|
{
 | 
						|
  s_callbacks_ran_flags = 0;
 | 
						|
  s_expected_callback = CB_IDS[idx];
 | 
						|
  s_lateness = expected_lateness;
 | 
						|
 | 
						|
  PowerPC::ppcState.downcount = cpu_downcount;  // Pretend we executed X cycles of instructions.
 | 
						|
  CoreTiming::Advance();
 | 
						|
 | 
						|
  EXPECT_EQ(decltype(s_callbacks_ran_flags)().set(idx), s_callbacks_ran_flags);
 | 
						|
  EXPECT_EQ(downcount, PowerPC::ppcState.downcount);
 | 
						|
}
 | 
						|
 | 
						|
TEST(CoreTiming, BasicOrder)
 | 
						|
{
 | 
						|
  ScopeInit guard;
 | 
						|
 | 
						|
  CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
 | 
						|
  CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
 | 
						|
  CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
 | 
						|
  CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
 | 
						|
  CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
 | 
						|
 | 
						|
  // Enter slice 0
 | 
						|
  CoreTiming::Advance();
 | 
						|
 | 
						|
  // D -> B -> C -> A -> E
 | 
						|
  CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
 | 
						|
  EXPECT_EQ(1000, PowerPC::ppcState.downcount);
 | 
						|
  CoreTiming::ScheduleEvent(500, cb_b, CB_IDS[1]);
 | 
						|
  EXPECT_EQ(500, PowerPC::ppcState.downcount);
 | 
						|
  CoreTiming::ScheduleEvent(800, cb_c, CB_IDS[2]);
 | 
						|
  EXPECT_EQ(500, PowerPC::ppcState.downcount);
 | 
						|
  CoreTiming::ScheduleEvent(100, cb_d, CB_IDS[3]);
 | 
						|
  EXPECT_EQ(100, PowerPC::ppcState.downcount);
 | 
						|
  CoreTiming::ScheduleEvent(1200, cb_e, CB_IDS[4]);
 | 
						|
  EXPECT_EQ(100, PowerPC::ppcState.downcount);
 | 
						|
 | 
						|
  AdvanceAndCheck(3, 400);
 | 
						|
  AdvanceAndCheck(1, 300);
 | 
						|
  AdvanceAndCheck(2, 200);
 | 
						|
  AdvanceAndCheck(0, 200);
 | 
						|
  AdvanceAndCheck(4, MAX_SLICE_LENGTH);
 | 
						|
}
 | 
						|
 | 
						|
namespace SharedSlotTest
 | 
						|
{
 | 
						|
static unsigned int s_counter = 0;
 | 
						|
 | 
						|
template <unsigned int ID>
 | 
						|
void FifoCallback(u64 userdata, s64 lateness)
 | 
						|
{
 | 
						|
  static_assert(ID < CB_IDS.size(), "ID out of range");
 | 
						|
  s_callbacks_ran_flags.set(ID);
 | 
						|
  EXPECT_EQ(CB_IDS[ID], userdata);
 | 
						|
  EXPECT_EQ(ID, s_counter);
 | 
						|
  EXPECT_EQ(s_lateness, lateness);
 | 
						|
  ++s_counter;
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
TEST(CoreTiming, SharedSlot)
 | 
						|
{
 | 
						|
  using namespace SharedSlotTest;
 | 
						|
 | 
						|
  ScopeInit guard;
 | 
						|
 | 
						|
  CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", FifoCallback<0>);
 | 
						|
  CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", FifoCallback<1>);
 | 
						|
  CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", FifoCallback<2>);
 | 
						|
  CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", FifoCallback<3>);
 | 
						|
  CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", FifoCallback<4>);
 | 
						|
 | 
						|
  CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
 | 
						|
  CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
 | 
						|
  CoreTiming::ScheduleEvent(1000, cb_c, CB_IDS[2]);
 | 
						|
  CoreTiming::ScheduleEvent(1000, cb_d, CB_IDS[3]);
 | 
						|
  CoreTiming::ScheduleEvent(1000, cb_e, CB_IDS[4]);
 | 
						|
 | 
						|
  // Enter slice 0
 | 
						|
  CoreTiming::Advance();
 | 
						|
  EXPECT_EQ(1000, PowerPC::ppcState.downcount);
 | 
						|
 | 
						|
  s_callbacks_ran_flags = 0;
 | 
						|
  s_counter = 0;
 | 
						|
  s_lateness = 0;
 | 
						|
  PowerPC::ppcState.downcount = 0;
 | 
						|
  CoreTiming::Advance();
 | 
						|
  EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount);
 | 
						|
  EXPECT_EQ(0x1FULL, s_callbacks_ran_flags.to_ullong());
 | 
						|
}
 | 
						|
 | 
						|
TEST(CoreTiming, PredictableLateness)
 | 
						|
{
 | 
						|
  ScopeInit guard;
 | 
						|
 | 
						|
  CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
 | 
						|
  CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
 | 
						|
 | 
						|
  // Enter slice 0
 | 
						|
  CoreTiming::Advance();
 | 
						|
 | 
						|
  CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
 | 
						|
  CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
 | 
						|
 | 
						|
  AdvanceAndCheck(0, 90, 10, -10);  // (100 - 10)
 | 
						|
  AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50);
 | 
						|
}
 | 
						|
 | 
						|
namespace ChainSchedulingTest
 | 
						|
{
 | 
						|
static int s_reschedules = 0;
 | 
						|
 | 
						|
static void RescheduleCallback(u64 userdata, s64 lateness)
 | 
						|
{
 | 
						|
  --s_reschedules;
 | 
						|
  EXPECT_TRUE(s_reschedules >= 0);
 | 
						|
  EXPECT_EQ(s_lateness, lateness);
 | 
						|
 | 
						|
  if (s_reschedules > 0)
 | 
						|
    CoreTiming::ScheduleEvent(1000, reinterpret_cast<CoreTiming::EventType*>(userdata), userdata);
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
TEST(CoreTiming, ChainScheduling)
 | 
						|
{
 | 
						|
  using namespace ChainSchedulingTest;
 | 
						|
 | 
						|
  ScopeInit guard;
 | 
						|
 | 
						|
  CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
 | 
						|
  CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
 | 
						|
  CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
 | 
						|
  CoreTiming::EventType* cb_rs =
 | 
						|
      CoreTiming::RegisterEvent("callbackReschedule", RescheduleCallback);
 | 
						|
 | 
						|
  // Enter slice 0
 | 
						|
  CoreTiming::Advance();
 | 
						|
 | 
						|
  CoreTiming::ScheduleEvent(800, cb_a, CB_IDS[0]);
 | 
						|
  CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
 | 
						|
  CoreTiming::ScheduleEvent(2200, cb_c, CB_IDS[2]);
 | 
						|
  CoreTiming::ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
 | 
						|
  EXPECT_EQ(800, PowerPC::ppcState.downcount);
 | 
						|
 | 
						|
  s_reschedules = 3;
 | 
						|
  AdvanceAndCheck(0, 200);   // cb_a
 | 
						|
  AdvanceAndCheck(1, 1000);  // cb_b, cb_rs
 | 
						|
  EXPECT_EQ(2, s_reschedules);
 | 
						|
 | 
						|
  PowerPC::ppcState.downcount = 0;
 | 
						|
  CoreTiming::Advance();  // cb_rs
 | 
						|
  EXPECT_EQ(1, s_reschedules);
 | 
						|
  EXPECT_EQ(200, PowerPC::ppcState.downcount);
 | 
						|
 | 
						|
  AdvanceAndCheck(2, 800);  // cb_c
 | 
						|
 | 
						|
  PowerPC::ppcState.downcount = 0;
 | 
						|
  CoreTiming::Advance();  // cb_rs
 | 
						|
  EXPECT_EQ(0, s_reschedules);
 | 
						|
  EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount);
 | 
						|
}
 | 
						|
 | 
						|
namespace ScheduleIntoPastTest
 | 
						|
{
 | 
						|
static CoreTiming::EventType* s_cb_next = nullptr;
 | 
						|
 | 
						|
static void ChainCallback(u64 userdata, s64 lateness)
 | 
						|
{
 | 
						|
  EXPECT_EQ(CB_IDS[0] + 1, userdata);
 | 
						|
  EXPECT_EQ(0, lateness);
 | 
						|
 | 
						|
  CoreTiming::ScheduleEvent(-1000, s_cb_next, userdata - 1);
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
// This can happen when scheduling from outside the CPU Thread.
 | 
						|
// Also, if the callback is very late, it may reschedule itself for the next period which
 | 
						|
// is also in the past.
 | 
						|
TEST(CoreTiming, ScheduleIntoPast)
 | 
						|
{
 | 
						|
  using namespace ScheduleIntoPastTest;
 | 
						|
 | 
						|
  ScopeInit guard;
 | 
						|
 | 
						|
  s_cb_next = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
 | 
						|
  CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
 | 
						|
  CoreTiming::EventType* cb_chain = CoreTiming::RegisterEvent("callbackChain", ChainCallback);
 | 
						|
 | 
						|
  // Enter slice 0
 | 
						|
  CoreTiming::Advance();
 | 
						|
 | 
						|
  CoreTiming::ScheduleEvent(1000, cb_chain, CB_IDS[0] + 1);
 | 
						|
  EXPECT_EQ(1000, PowerPC::ppcState.downcount);
 | 
						|
 | 
						|
  AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000);  // Run cb_chain into late cb_a
 | 
						|
 | 
						|
  // Schedule late from wrong thread
 | 
						|
  // The problem with scheduling CPU events from outside the CPU Thread is that g_global_timer
 | 
						|
  // is not reliable outside the CPU Thread. It's possible for the other thread to sample the
 | 
						|
  // global timer right before the timer is updated by Advance() then submit a new event using
 | 
						|
  // the stale value, i.e. effectively half-way through the previous slice.
 | 
						|
  // NOTE: We're only testing that the scheduler doesn't break, not whether this makes sense.
 | 
						|
  Core::UndeclareAsCPUThread();
 | 
						|
  CoreTiming::g_global_timer -= 1000;
 | 
						|
  CoreTiming::ScheduleEvent(0, cb_b, CB_IDS[1], CoreTiming::FromThread::NON_CPU);
 | 
						|
  CoreTiming::g_global_timer += 1000;
 | 
						|
  Core::DeclareAsCPUThread();
 | 
						|
  AdvanceAndCheck(1, MAX_SLICE_LENGTH, MAX_SLICE_LENGTH + 1000);
 | 
						|
 | 
						|
  // Schedule directly into the past from the CPU.
 | 
						|
  // This shouldn't happen in practice, but it's best if we don't mess up the slice length and
 | 
						|
  // downcount if we do.
 | 
						|
  CoreTiming::ScheduleEvent(-1000, s_cb_next, CB_IDS[0]);
 | 
						|
  EXPECT_EQ(0, PowerPC::ppcState.downcount);
 | 
						|
  AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000);
 | 
						|
}
 | 
						|
 | 
						|
TEST(CoreTiming, Overclocking)
 | 
						|
{
 | 
						|
  ScopeInit guard;
 | 
						|
 | 
						|
  CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
 | 
						|
  CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
 | 
						|
  CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
 | 
						|
  CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
 | 
						|
  CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
 | 
						|
 | 
						|
  // Overclock
 | 
						|
  SConfig::GetInstance().m_OCEnable = true;
 | 
						|
  SConfig::GetInstance().m_OCFactor = 2.0;
 | 
						|
 | 
						|
  // Enter slice 0
 | 
						|
  // Updates s_last_OC_factor.
 | 
						|
  CoreTiming::Advance();
 | 
						|
 | 
						|
  CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
 | 
						|
  CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
 | 
						|
  CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
 | 
						|
  CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
 | 
						|
  CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
 | 
						|
  EXPECT_EQ(200, PowerPC::ppcState.downcount);
 | 
						|
 | 
						|
  AdvanceAndCheck(0, 200);   // (200 - 100) * 2
 | 
						|
  AdvanceAndCheck(1, 400);   // (400 - 200) * 2
 | 
						|
  AdvanceAndCheck(2, 800);   // (800 - 400) * 2
 | 
						|
  AdvanceAndCheck(3, 1600);  // (1600 - 800) * 2
 | 
						|
  AdvanceAndCheck(4, MAX_SLICE_LENGTH * 2);
 | 
						|
 | 
						|
  // Underclock
 | 
						|
  SConfig::GetInstance().m_OCFactor = 0.5;
 | 
						|
  CoreTiming::Advance();
 | 
						|
 | 
						|
  CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
 | 
						|
  CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
 | 
						|
  CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
 | 
						|
  CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
 | 
						|
  CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
 | 
						|
  EXPECT_EQ(50, PowerPC::ppcState.downcount);
 | 
						|
 | 
						|
  AdvanceAndCheck(0, 50);   // (200 - 100) / 2
 | 
						|
  AdvanceAndCheck(1, 100);  // (400 - 200) / 2
 | 
						|
  AdvanceAndCheck(2, 200);  // (800 - 400) / 2
 | 
						|
  AdvanceAndCheck(3, 400);  // (1600 - 800) / 2
 | 
						|
  AdvanceAndCheck(4, MAX_SLICE_LENGTH / 2);
 | 
						|
 | 
						|
  // Try switching the clock mid-emulation
 | 
						|
  SConfig::GetInstance().m_OCFactor = 1.0;
 | 
						|
  CoreTiming::Advance();
 | 
						|
 | 
						|
  CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
 | 
						|
  CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
 | 
						|
  CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
 | 
						|
  CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
 | 
						|
  CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
 | 
						|
  EXPECT_EQ(100, PowerPC::ppcState.downcount);
 | 
						|
 | 
						|
  AdvanceAndCheck(0, 100);  // (200 - 100)
 | 
						|
  SConfig::GetInstance().m_OCFactor = 2.0;
 | 
						|
  AdvanceAndCheck(1, 400);  // (400 - 200) * 2
 | 
						|
  AdvanceAndCheck(2, 800);  // (800 - 400) * 2
 | 
						|
  SConfig::GetInstance().m_OCFactor = 0.1f;
 | 
						|
  AdvanceAndCheck(3, 80);  // (1600 - 800) / 10
 | 
						|
  SConfig::GetInstance().m_OCFactor = 1.0;
 | 
						|
  AdvanceAndCheck(4, MAX_SLICE_LENGTH);
 | 
						|
}
 |