forked from dolphin-emu/dolphin
		
	
		
			
				
	
	
		
			241 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			241 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2008 Dolphin Emulator Project
 | 
						|
// Licensed under GPLv2+
 | 
						|
// Refer to the license.txt file included.
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <cstdlib>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include "Common/CommonTypes.h"
 | 
						|
 | 
						|
namespace MathUtil
 | 
						|
{
 | 
						|
template<class T>
 | 
						|
inline void Clamp(T* val, const T& min, const T& max)
 | 
						|
{
 | 
						|
	if (*val < min)
 | 
						|
		*val = min;
 | 
						|
	else if (*val > max)
 | 
						|
		*val = max;
 | 
						|
}
 | 
						|
 | 
						|
template<class T>
 | 
						|
inline T Clamp(const T val, const T& min, const T& max)
 | 
						|
{
 | 
						|
	T ret = val;
 | 
						|
	Clamp(&ret, min, max);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
// The most significant bit of the fraction is an is-quiet bit on all architectures we care about.
 | 
						|
 | 
						|
static const u64 DOUBLE_SIGN = 0x8000000000000000ULL,
 | 
						|
                 DOUBLE_EXP  = 0x7FF0000000000000ULL,
 | 
						|
                 DOUBLE_FRAC = 0x000FFFFFFFFFFFFFULL,
 | 
						|
                 DOUBLE_ZERO = 0x0000000000000000ULL,
 | 
						|
                 DOUBLE_QBIT = 0x0008000000000000ULL;
 | 
						|
 | 
						|
static const u32 FLOAT_SIGN = 0x80000000,
 | 
						|
                 FLOAT_EXP  = 0x7F800000,
 | 
						|
                 FLOAT_FRAC = 0x007FFFFF,
 | 
						|
                 FLOAT_ZERO = 0x00000000;
 | 
						|
 | 
						|
union IntDouble {
 | 
						|
	double d;
 | 
						|
	u64 i;
 | 
						|
 | 
						|
	explicit IntDouble(u64 _i) : i(_i) {}
 | 
						|
	explicit IntDouble(double _d) : d(_d) {}
 | 
						|
};
 | 
						|
union IntFloat {
 | 
						|
	float f;
 | 
						|
	u32 i;
 | 
						|
 | 
						|
	explicit IntFloat(u32 _i) : i(_i) {}
 | 
						|
	explicit IntFloat(float _f) : f(_f) {}
 | 
						|
};
 | 
						|
 | 
						|
inline bool IsINF(double d)
 | 
						|
{
 | 
						|
	IntDouble x(d);
 | 
						|
	return (x.i & ~DOUBLE_SIGN) == DOUBLE_EXP;
 | 
						|
}
 | 
						|
 | 
						|
inline bool IsNAN(double d)
 | 
						|
{
 | 
						|
	IntDouble x(d);
 | 
						|
	return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
 | 
						|
	       ((x.i & DOUBLE_FRAC) != DOUBLE_ZERO);
 | 
						|
}
 | 
						|
 | 
						|
inline bool IsQNAN(double d)
 | 
						|
{
 | 
						|
	IntDouble x(d);
 | 
						|
	return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
 | 
						|
	       ((x.i & DOUBLE_QBIT) == DOUBLE_QBIT);
 | 
						|
}
 | 
						|
 | 
						|
inline bool IsSNAN(double d)
 | 
						|
{
 | 
						|
	IntDouble x(d);
 | 
						|
	return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
 | 
						|
	       ((x.i & DOUBLE_FRAC) != DOUBLE_ZERO) &&
 | 
						|
	       ((x.i & DOUBLE_QBIT) == DOUBLE_ZERO);
 | 
						|
}
 | 
						|
 | 
						|
inline float FlushToZero(float f)
 | 
						|
{
 | 
						|
	IntFloat x(f);
 | 
						|
	if ((x.i & FLOAT_EXP) == 0)
 | 
						|
	{
 | 
						|
		x.i &= FLOAT_SIGN;  // turn into signed zero
 | 
						|
	}
 | 
						|
	return x.f;
 | 
						|
}
 | 
						|
 | 
						|
inline double FlushToZero(double d)
 | 
						|
{
 | 
						|
	IntDouble x(d);
 | 
						|
	if ((x.i & DOUBLE_EXP) == 0)
 | 
						|
	{
 | 
						|
		x.i &= DOUBLE_SIGN;  // turn into signed zero
 | 
						|
	}
 | 
						|
	return x.d;
 | 
						|
}
 | 
						|
 | 
						|
enum PPCFpClass
 | 
						|
{
 | 
						|
	PPC_FPCLASS_QNAN = 0x11,
 | 
						|
	PPC_FPCLASS_NINF = 0x9,
 | 
						|
	PPC_FPCLASS_NN   = 0x8,
 | 
						|
	PPC_FPCLASS_ND   = 0x18,
 | 
						|
	PPC_FPCLASS_NZ   = 0x12,
 | 
						|
	PPC_FPCLASS_PZ   = 0x2,
 | 
						|
	PPC_FPCLASS_PD   = 0x14,
 | 
						|
	PPC_FPCLASS_PN   = 0x4,
 | 
						|
	PPC_FPCLASS_PINF = 0x5,
 | 
						|
};
 | 
						|
 | 
						|
// Uses PowerPC conventions for the return value, so it can be easily
 | 
						|
// used directly in CPU emulation.
 | 
						|
u32 ClassifyDouble(double dvalue);
 | 
						|
// More efficient float version.
 | 
						|
u32 ClassifyFloat(float fvalue);
 | 
						|
 | 
						|
extern const int frsqrte_expected_base[];
 | 
						|
extern const int frsqrte_expected_dec[];
 | 
						|
extern const int fres_expected_base[];
 | 
						|
extern const int fres_expected_dec[];
 | 
						|
 | 
						|
// PowerPC approximation algorithms
 | 
						|
double ApproximateReciprocalSquareRoot(double val);
 | 
						|
double ApproximateReciprocal(double val);
 | 
						|
 | 
						|
template<class T>
 | 
						|
struct Rectangle
 | 
						|
{
 | 
						|
	T left;
 | 
						|
	T top;
 | 
						|
	T right;
 | 
						|
	T bottom;
 | 
						|
 | 
						|
	Rectangle()
 | 
						|
	{ }
 | 
						|
 | 
						|
	Rectangle(T theLeft, T theTop, T theRight, T theBottom)
 | 
						|
		: left(theLeft), top(theTop), right(theRight), bottom(theBottom)
 | 
						|
	{ }
 | 
						|
 | 
						|
	bool operator==(const Rectangle& r) { return left==r.left && top==r.top && right==r.right && bottom==r.bottom; }
 | 
						|
 | 
						|
	T GetWidth() const { return abs(right - left); }
 | 
						|
	T GetHeight() const { return abs(bottom - top); }
 | 
						|
 | 
						|
	// If the rectangle is in a coordinate system with a lower-left origin, use
 | 
						|
	// this Clamp.
 | 
						|
	void ClampLL(T x1, T y1, T x2, T y2)
 | 
						|
	{
 | 
						|
		Clamp(&left, x1, x2);
 | 
						|
		Clamp(&right, x1, x2);
 | 
						|
		Clamp(&top, y2, y1);
 | 
						|
		Clamp(&bottom, y2, y1);
 | 
						|
	}
 | 
						|
 | 
						|
	// If the rectangle is in a coordinate system with an upper-left origin,
 | 
						|
	// use this Clamp.
 | 
						|
	void ClampUL(T x1, T y1, T x2, T y2)
 | 
						|
	{
 | 
						|
		Clamp(&left, x1, x2);
 | 
						|
		Clamp(&right, x1, x2);
 | 
						|
		Clamp(&top, y1, y2);
 | 
						|
		Clamp(&bottom, y1, y2);
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace MathUtil
 | 
						|
 | 
						|
float MathFloatVectorSum(const std::vector<float>&);
 | 
						|
 | 
						|
#define ROUND_UP(x, a)   (((x) + (a) - 1) & ~((a) - 1))
 | 
						|
#define ROUND_DOWN(x, a) ((x) & ~((a) - 1))
 | 
						|
 | 
						|
inline bool IsPow2(u32 imm) {return (imm & (imm - 1)) == 0;}
 | 
						|
 | 
						|
// Rounds down. 0 -> undefined
 | 
						|
inline int IntLog2(u64 val)
 | 
						|
{
 | 
						|
#if defined(__GNUC__)
 | 
						|
	return 63 - __builtin_clzll(val);
 | 
						|
 | 
						|
#elif defined(_MSC_VER)
 | 
						|
	unsigned long result = -1;
 | 
						|
	_BitScanReverse64(&result, val);
 | 
						|
	return result;
 | 
						|
 | 
						|
#else
 | 
						|
	int result = -1;
 | 
						|
	while (val != 0)
 | 
						|
	{
 | 
						|
		val >>= 1;
 | 
						|
		++result;
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
// Tiny matrix/vector library.
 | 
						|
// Used for things like Free-Look in the gfx backend.
 | 
						|
 | 
						|
class Matrix33
 | 
						|
{
 | 
						|
public:
 | 
						|
	static void LoadIdentity(Matrix33 &mtx);
 | 
						|
 | 
						|
	// set mtx to be a rotation matrix around the x axis
 | 
						|
	static void RotateX(Matrix33 &mtx, float rad);
 | 
						|
	// set mtx to be a rotation matrix around the y axis
 | 
						|
	static void RotateY(Matrix33 &mtx, float rad);
 | 
						|
 | 
						|
	// set result = a x b
 | 
						|
	static void Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result);
 | 
						|
	static void Multiply(const Matrix33 &a, const float vec[3], float result[3]);
 | 
						|
 | 
						|
	float data[9];
 | 
						|
};
 | 
						|
 | 
						|
class Matrix44
 | 
						|
{
 | 
						|
public:
 | 
						|
	static void LoadIdentity(Matrix44 &mtx);
 | 
						|
	static void LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33);
 | 
						|
	static void Set(Matrix44 &mtx, const float mtxArray[16]);
 | 
						|
 | 
						|
	static void Translate(Matrix44 &mtx, const float vec[3]);
 | 
						|
	static void Shear(Matrix44 &mtx, const float a, const float b = 0);
 | 
						|
 | 
						|
	static void Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result);
 | 
						|
 | 
						|
	float data[16];
 | 
						|
};
 |