forked from dolphin-emu/dolphin
		
	git-svn-id: https://dolphin-emu.googlecode.com/svn/trunk@4 8ced0084-cf51-0410-be5f-012b33b47a6e
		
			
				
	
	
		
			1407 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1407 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (C) 2003-2008 Dolphin Project.
 | |
| 
 | |
| // This program is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU General Public License as published by
 | |
| // the Free Software Foundation, version 2.0.
 | |
| 
 | |
| // This program is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| // GNU General Public License 2.0 for more details.
 | |
| 
 | |
| // A copy of the GPL 2.0 should have been included with the program.
 | |
| // If not, see http://www.gnu.org/licenses/
 | |
| 
 | |
| // Official SVN repository and contact information can be found at
 | |
| // http://code.google.com/p/dolphin-emu/
 | |
| #include "Common.h"
 | |
| #include "x64Emitter.h"
 | |
| #include "CPUDetect.h"
 | |
| 
 | |
| namespace Gen
 | |
| {
 | |
| 	u8 *code;
 | |
| 	bool mode32 = false;
 | |
| 
 | |
| 	void SetCodePtr(u8 *ptr)
 | |
| 	{
 | |
| 		code = ptr;
 | |
| 	}
 | |
| 	const u8 *GetCodePtr()
 | |
| 	{
 | |
| 		return code;
 | |
| 	}
 | |
| 	u8 *GetWritableCodePtr()
 | |
| 	{
 | |
| 		return code;
 | |
| 	}
 | |
| 
 | |
| 	void ReserveCodeSpace(int bytes)
 | |
| 	{
 | |
| 		for (int i = 0; i < bytes; i++)
 | |
| 			*code++ = 0xCC;
 | |
| 	}
 | |
| 
 | |
| 	const u8 *AlignCode4()
 | |
| 	{
 | |
| 		int c = int((u64)code & 3);
 | |
| 		if (c)
 | |
| 			ReserveCodeSpace(4-c);
 | |
| 		return code;
 | |
| 	}
 | |
| 
 | |
| 	const u8 *AlignCode16()
 | |
| 	{
 | |
| 		int c = int((u64)code & 15);
 | |
| 		if (c)
 | |
| 			ReserveCodeSpace(16-c);
 | |
| 		return code;
 | |
| 	}
 | |
| 
 | |
| 	const u8 *AlignCodePage()
 | |
| 	{
 | |
| 		int c = int((u64)code & 4095);
 | |
| 		if (c)
 | |
| 			ReserveCodeSpace(4096-c);
 | |
| 		return code;
 | |
| 	}
 | |
| 
 | |
| 	inline void Write8(u8 value)
 | |
| 	{
 | |
| 		*code++ = value;
 | |
| 	}
 | |
| 
 | |
| 	inline void Write16(u16 value)
 | |
| 	{
 | |
| 		*(u16*)code = value;
 | |
| 		code+=2;
 | |
| 	}
 | |
| 
 | |
| 	inline void Write32(u32 value)
 | |
| 	{
 | |
| 		*(u32*)code = value;
 | |
| 		code+=4;
 | |
| 	}
 | |
| 
 | |
| 	inline void Write64(u64 value)
 | |
| 	{
 | |
| 		_dbg_assert_msg_(DYNA_REC,!mode32,"!mode32");
 | |
| 		*(u64*)code = value;
 | |
| 		code+=8;
 | |
| 	}
 | |
| 
 | |
| 	void WriteModRM( int mod, int rm, int reg )
 | |
| 	{
 | |
| 		Write8((u8)((mod << 6) | ((rm & 7) << 3) | (reg & 7)));
 | |
| 	}
 | |
| 
 | |
| 	void WriteSIB(int scale, int index, int base)
 | |
| 	{
 | |
| 		Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
 | |
| 	}
 | |
| 	
 | |
| 
 | |
| 	void OpArg::WriteRex(bool op64, int customOp) const
 | |
| 	{
 | |
| #ifdef _M_X64
 | |
| 		u8 op = 0x40;
 | |
| 		if (customOp == -1) customOp = operandReg;
 | |
| 		if (op64)                 op |= 8;
 | |
| 		if (customOp >> 3)      op |= 4;
 | |
| 		if (indexReg >> 3)        op |= 2;
 | |
| 		if (offsetOrBaseReg >> 3) op |= 1; //TODO investigate if this is dangerous
 | |
| 		_dbg_assert_msg_(DYNA_REC,!mode32 || op == 0x40,"!mode32");
 | |
| 		if (op != 0x40)
 | |
| 			Write8(op);
 | |
| #else
 | |
| 		_dbg_assert_(DYNA_REC,(operandReg >> 3) == 0);
 | |
| 		_dbg_assert_(DYNA_REC,(indexReg >> 3) == 0);
 | |
| 		_dbg_assert_(DYNA_REC,(offsetOrBaseReg >> 3) == 0);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	void OpArg::WriteRest(int extraBytes, X64Reg operandReg) const
 | |
| 	{
 | |
| 		if (operandReg == 0xff)
 | |
| 			operandReg = (X64Reg)this->operandReg;
 | |
| 		int mod = 0;
 | |
| 		int ireg = indexReg;
 | |
| 		bool SIB = false;
 | |
| 		int offsetOrBaseReg = this->offsetOrBaseReg;
 | |
| 
 | |
| 		if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address
 | |
| 		{
 | |
| 			_dbg_assert_msg_(DYNA_REC,!mode32,"!mode32");
 | |
| 			// Oh, RIP addressing. 
 | |
| 			offsetOrBaseReg = 5;
 | |
| 			WriteModRM(0, operandReg&7, 5);
 | |
| 			//TODO : add some checks
 | |
| #ifdef _M_X64
 | |
| 			u64 ripAddr = (u64)code + 4 + extraBytes;
 | |
| 			s32 offs = (s32)((s64)offset - (s64)ripAddr);
 | |
| 			Write32((u32)offs);
 | |
| #else
 | |
| 			Write32((u32)offset);
 | |
| #endif
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (scale == 0)
 | |
| 		{
 | |
| 			// Oh, no memory, Just a reg.
 | |
| 			mod = 3; //11
 | |
| 		}
 | |
| 		else if (scale >= 1)
 | |
| 		{
 | |
| 			//Ah good, no scaling.
 | |
| 			if (scale == SCALE_ATREG && !((offsetOrBaseReg&7) == 4 || (offsetOrBaseReg&7) == 5))
 | |
| 			{
 | |
| 				//Okay, we're good. No SIB necessary.
 | |
| 				int ioff = (int)offset;
 | |
| 				if (ioff == 0)
 | |
| 				{
 | |
| 					mod = 0;
 | |
| 				}
 | |
| 				else if (ioff<-128 || ioff>127)
 | |
| 				{
 | |
| 					mod = 2; //32-bit displacement
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					mod = 1; //8-bit displacement
 | |
| 				}
 | |
| 			}
 | |
| 			else //if (scale != SCALE_ATREG)
 | |
| 			{
 | |
| 				if ((offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :(
 | |
| 				{
 | |
| 					//So we have to fake it with SIB encoding :(
 | |
| 					SIB = true;
 | |
| 				}
 | |
| 
 | |
| 				if (scale >= SCALE_1 && scale < SCALE_ATREG)
 | |
| 				{
 | |
| 					SIB = true;
 | |
| 				}
 | |
| 
 | |
| 				if (scale == SCALE_ATREG && offsetOrBaseReg == 4) 
 | |
| 				{
 | |
| 					SIB = true;
 | |
| 					ireg = 4;
 | |
| 				}
 | |
| 
 | |
| 				//Okay, we're fine. Just disp encoding.
 | |
| 				//We need displacement. Which size?
 | |
| 				int ioff = (int)(s64)offset;
 | |
| 				if (ioff < -128 || ioff > 127)
 | |
| 				{
 | |
| 					mod = 2; //32-bit displacement
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					mod = 1; //8-bit displacement
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Okay. Time to do the actual writing
 | |
| 		// ModRM byte:
 | |
| 		int oreg = offsetOrBaseReg;
 | |
| 		if (SIB)
 | |
| 			oreg = 4;
 | |
| 		
 | |
| 		// TODO(ector): WTF is this if about? I don't remember writing it :-)
 | |
| 		//if (RIP)
 | |
| 		//    oreg = 5;
 | |
| 
 | |
| 		WriteModRM(mod, operandReg&7, oreg&7);
 | |
| 
 | |
| 		if (SIB)
 | |
| 		{
 | |
| 			//SIB byte
 | |
| 			int ss;
 | |
| 			switch (scale)
 | |
| 			{
 | |
| 			case 0: offsetOrBaseReg = 4; ss = 0; break; //RSP 
 | |
| 			case 1: ss = 0; break;
 | |
| 			case 2: ss = 1; break;
 | |
| 			case 4: ss = 2; break;
 | |
| 			case 8: ss = 3; break;
 | |
| 			case SCALE_ATREG: ss = 0; break;
 | |
| 			default: _assert_msg_(DYNA_REC, 0, "Invalid scale for SIB byte"); ss = 0; break;
 | |
| 			}
 | |
| 			Write8((u8)((ss << 6) | ((ireg&7)<<3) | (offsetOrBaseReg&7)));
 | |
| 		}
 | |
| 
 | |
| 		if (mod == 1) //8-bit disp
 | |
| 		{
 | |
| 			Write8((u8)(s8)(s32)offset);
 | |
| 		}
 | |
| 		else if (mod == 2) //32-bit disp
 | |
| 		{
 | |
| 			Write32((u32)offset);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	// W = operand extended width (1 if 64-bit)
 | |
| 	// R = register# upper bit
 | |
| 	// X = scale amnt upper bit
 | |
| 	// B = base register# upper bit
 | |
| 	void Rex(int w, int r, int x, int b)
 | |
| 	{
 | |
| 		w = w ? 1 : 0;		
 | |
| 		r = r ? 1 : 0;
 | |
| 		x = x ? 1 : 0;
 | |
| 		b = b ? 1 : 0;
 | |
| 		u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b));
 | |
| 		if (rx != 0x40)
 | |
| 			Write8(rx);
 | |
| 	}
 | |
| 
 | |
| 	void JMP(const u8 *addr, bool force5Bytes)
 | |
| 	{
 | |
| 		u64 fn = (u64)addr;
 | |
| 		if (!force5Bytes)
 | |
| 		{
 | |
| 			s32 distance = (s32)(fn - ((u64)code + 2)); //TODO - sanity check
 | |
| 			//8 bits will do
 | |
| 			Write8(0xEB);
 | |
| 			Write8((u8)(s8)distance);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			s32 distance = (s32)(fn - ((u64)code + 5)); //TODO - sanity check
 | |
| 			Write8(0xE9);
 | |
| 			Write32((u32)(s32)distance);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void JMPptr(const OpArg &arg2)
 | |
| 	{
 | |
| 		OpArg arg = arg2;
 | |
| 		if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "JMPptr - Imm argument");
 | |
| 		arg.operandReg = 4;
 | |
| 		arg.WriteRex(false);
 | |
| 		Write8(0xFF);
 | |
| 		arg.WriteRest();
 | |
| 	}
 | |
| 
 | |
| 	//Can be used to trap other processors, before overwriting their code
 | |
| 	// not used in dolphin
 | |
| 	void JMPself()
 | |
| 	{
 | |
| 		Write8(0xEB);
 | |
| 		Write8(0xFE);
 | |
| 	}
 | |
| 
 | |
| 	void CALLptr(OpArg arg)
 | |
| 	{
 | |
| 		if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "CALLptr - Imm argument");
 | |
| 		arg.operandReg = 2;
 | |
| 		arg.WriteRex(false);
 | |
| 		Write8(0xFF);
 | |
| 		arg.WriteRest();
 | |
| 	}
 | |
| 
 | |
| 	inline s64 myabs(s64 a) {
 | |
| 		if (a < 0) return -a;
 | |
| 		return a;
 | |
| 	}
 | |
| 
 | |
| 	void CALL(void *fnptr)
 | |
| 	{
 | |
| 		s64 fn = (s64)fnptr;
 | |
| 		s64 c = (s64)code;
 | |
| 		if (myabs(fn - c) >= 0x80000000ULL) {
 | |
| 			PanicAlert("CALL out of range, %p, %p", fn, c);
 | |
| 		}
 | |
| 		s32 distance = (s32)(fn - ((u64)code + 5));
 | |
| 		Write8(0xE8); 
 | |
| 		Write32(distance); 
 | |
| 	}
 | |
| 
 | |
| 	void x86SetJ8(u8 *j8) 
 | |
| 	{
 | |
| 		//TODO fix
 | |
| 		u64 jump = (code - (u8*)j8) - 1;
 | |
| 
 | |
| 		if (jump > 0x7f) _assert_msg_(DYNA_REC, 0, "j8 greater than 0x7f!!");
 | |
| 		*j8 = (u8)jump;
 | |
| 	}
 | |
| 
 | |
| 	FixupBranch J(bool force5bytes)
 | |
| 	{
 | |
| 		FixupBranch branch;
 | |
| 		branch.type = force5bytes ? 1 : 0;
 | |
| 		branch.ptr = code + (force5bytes ? 5 : 2);
 | |
| 		if (!force5bytes)
 | |
| 		{
 | |
| 			//8 bits will do
 | |
| 			Write8(0xEB);
 | |
| 			Write8(0);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			Write8(0xE9);
 | |
| 			Write32(0);
 | |
| 		}
 | |
| 		return branch;
 | |
| 	}
 | |
| 
 | |
|     static bool enableBranchHints = false;
 | |
| 
 | |
|     // These are to be used with Jcc only.
 | |
| 	// Found in intel manual 2A 
 | |
| 	// These do not really make a difference for any current X86 CPU, 
 | |
| 	// but are provided here for future use
 | |
| 	void HINT_NOT_TAKEN() { if (enableBranchHints) Write8(0x2E); }
 | |
| 	void HINT_TAKEN()     { if (enableBranchHints) Write8(0x3E); }
 | |
| 
 | |
| 	FixupBranch J_CC(CCFlags conditionCode, bool force5bytes)
 | |
| 	{
 | |
| 		FixupBranch branch;
 | |
| 		branch.type = force5bytes ? 1 : 0;
 | |
| 		branch.ptr = code + (force5bytes ? 5 : 2);
 | |
| 		if (!force5bytes)
 | |
| 		{
 | |
| 			//8 bits will do
 | |
| 			Write8(0x70 + conditionCode);
 | |
| 			Write8(0);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			Write8(0x0F);
 | |
| 			Write8(0x80 + conditionCode);
 | |
| 			Write32(0);
 | |
| 		}
 | |
| 		return branch;
 | |
| 	}
 | |
| 
 | |
| 	void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes)
 | |
| 	{
 | |
| 		u64 fn = (u64)addr;
 | |
| 		if (!force5Bytes)
 | |
| 		{
 | |
| 			s32 distance = (s32)(fn - ((u64)code + 2)); //TODO - sanity check
 | |
| 			//8 bits will do
 | |
| 			Write8(0x70 + conditionCode);
 | |
| 			Write8((u8)(s8)distance);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			s32 distance = (s32)(fn - ((u64)code + 6)); //TODO - sanity check
 | |
| 			Write8(0x0F);
 | |
| 			Write8(0x80 + conditionCode);
 | |
| 			Write32((u32)(s32)distance);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void SetJumpTarget(const FixupBranch &branch)
 | |
| 	{
 | |
| 		if (branch.type == 0)
 | |
| 		{
 | |
| 			branch.ptr[-1] = (u8)(s8)(code - branch.ptr);
 | |
| 		}
 | |
| 		else if (branch.type == 1)
 | |
| 		{
 | |
| 			((s32*)branch.ptr)[-1] = (s32)(code - branch.ptr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| /*
 | |
| 	void INC(int bits, OpArg arg)
 | |
| 	{
 | |
| 		if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "INC - Imm argument");
 | |
| 		arg.operandReg = 0;
 | |
| 		if (bits == 16) {Write8(0x66);}
 | |
| 		arg.WriteRex(bits == 64);
 | |
| 		Write8(bits == 8 ? 0xFE : 0xFF);
 | |
| 		arg.WriteRest();
 | |
| 	}
 | |
| 	void DEC(int bits, OpArg arg)
 | |
| 	{
 | |
| 		if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "DEC - Imm argument");
 | |
| 		arg.operandReg = 1;
 | |
| 		if (bits == 16) {Write8(0x66);}
 | |
| 		arg.WriteRex(bits == 64);
 | |
| 		Write8(bits == 8 ? 0xFE : 0xFF);
 | |
| 		arg.WriteRest();
 | |
| 	}
 | |
| */
 | |
| 
 | |
| 	//Single byte opcodes
 | |
| 	//There is no PUSHAD/POPAD in 64-bit mode.
 | |
| 	void INT3() {Write8(0xCC);}
 | |
| 	void RET()  {Write8(0xC3);}
 | |
| 	void RET_FAST()  {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret
 | |
| 	
 | |
| 	void NOP(int count)
 | |
| 	{
 | |
| 		// TODO: look up the fastest nop sleds for various sizes
 | |
| 		int i;
 | |
| 		switch (count) {
 | |
| 		case 1:
 | |
| 			Write8(0x90);
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			Write8(0x66);
 | |
| 			Write8(0x90);
 | |
| 			break;
 | |
| 		default:
 | |
| 			for (i = 0; i < count; i++) {
 | |
| 				Write8(0x90);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	} 
 | |
| 	
 | |
| 	void PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some cpu
 | |
| 	void CLC()  {Write8(0xF8);} //clear carry
 | |
| 	void CMC()  {Write8(0xF5);} //flip carry
 | |
| 	void STC()  {Write8(0xF9);} //set carry
 | |
| 
 | |
| 	//TODO: xchg ah, al ???
 | |
| 	void XCHG_AHAL()
 | |
| 	{
 | |
| 		Write8(0x86);
 | |
| 		Write8(0xe0);
 | |
| 		// alt. 86 c4
 | |
| 	}
 | |
| 
 | |
| 	//These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
 | |
| 	void LAHF() {Write8(0x9F);}
 | |
| 	void SAHF() {Write8(0x9E);}
 | |
| 
 | |
| 	void PUSHF() {Write8(0x9C);}
 | |
| 	void POPF()  {Write8(0x9D);}
 | |
| 
 | |
| 	void LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);}
 | |
| 	void MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);}
 | |
| 	void SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);}
 | |
| 
 | |
| 	void WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
 | |
| 	{
 | |
| 		if (bits == 16) {Write8(0x66);}
 | |
| 		Rex(bits == 64, 0, 0, (int)reg >> 3);
 | |
| 		Write8(byte + ((int)reg & 7));
 | |
| 	}
 | |
| 
 | |
| 	void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
 | |
| 	{
 | |
| 		if (bits == 16) {Write8(0x66);}
 | |
| 		Rex(bits==64, 0, 0, (int)reg >> 3);
 | |
| 		Write8(byte1);
 | |
| 		Write8(byte2 + ((int)reg & 7));
 | |
| 	}
 | |
| 
 | |
| 	void CWD(int bits)
 | |
| 	{
 | |
| 		if (bits == 16) {Write8(0x66);}
 | |
| 		Rex(bits == 64, 0, 0, 0);
 | |
| 		Write8(0x99);
 | |
| 	}
 | |
| 
 | |
| 	void CBW(int bits)
 | |
| 	{
 | |
| 		if (bits == 8) {Write8(0x66);}
 | |
| 		Rex(bits == 32, 0, 0, 0);
 | |
| 		Write8(0x98);
 | |
| 	}
 | |
| 
 | |
| 	//Simple opcodes
 | |
| 
 | |
| 
 | |
| 	//push/pop do not need wide to be 64-bit
 | |
| 	void PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);}
 | |
| 	void POP(X64Reg reg)  {WriteSimple1Byte(32, 0x58, reg);}
 | |
| 	
 | |
| 	void PUSH(int bits, const OpArg ®) 
 | |
| 	{ 
 | |
| 		if (reg.IsSimpleReg())
 | |
| 			PUSH(reg.GetSimpleReg());
 | |
| 		else if (reg.IsImm())
 | |
| 		{
 | |
| 			switch (reg.GetImmBits())
 | |
| 			{
 | |
| 			case 8:
 | |
| 				Write8(0x6A);
 | |
| 				Write8((u8)(s8)reg.offset);
 | |
| 				break;
 | |
| 			case 16:
 | |
| 				Write8(0x66);
 | |
| 				Write8(0x68);
 | |
| 				Write16((u16)(s16)(s32)reg.offset);
 | |
| 				break;
 | |
| 			case 32:
 | |
| 				Write8(0x68);
 | |
| 				Write32((u32)reg.offset);
 | |
| 				break;
 | |
| 			default:
 | |
| 				_assert_msg_(DYNA_REC, 0, "PUSH - Bad imm bits");
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			//INT3();
 | |
| 			if (bits == 16)
 | |
| 				Write8(0x66);
 | |
| 			reg.WriteRex(bits == 64);
 | |
| 			Write8(0xFF);
 | |
| 			reg.WriteRest(0,(X64Reg)6);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void POP(int bits, const OpArg ®)
 | |
| 	{ 
 | |
| 		if (reg.IsSimpleReg())
 | |
| 			POP(reg.GetSimpleReg());
 | |
| 		else
 | |
| 			INT3();
 | |
| 	}
 | |
| 
 | |
| 	void BSWAP(int bits, X64Reg reg)
 | |
| 	{
 | |
| 		if (bits >= 32)
 | |
| 		{
 | |
| 			WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
 | |
| 		}
 | |
| 		else if (bits == 16)
 | |
| 		{
 | |
| 			//fake 16-bit bswap, TODO replace with xchg ah, al where appropriate
 | |
| 			WriteSimple2Byte(false, 0x0F, 0xC8, reg);
 | |
| 			SHR(32, R(reg), Imm8(16));
 | |
| 		}
 | |
| 		else if (bits == 8)
 | |
| 		{
 | |
| 
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			_assert_msg_(DYNA_REC, 0, "BSWAP - Wrong number of bits");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Undefined opcode - reserved
 | |
| 	// If we ever need a way to always cause a non-breakpoint hard exception...
 | |
| 	void UD2()
 | |
| 	{
 | |
| 		Write8(0x0F);
 | |
| 		Write8(0x0B);
 | |
| 	}
 | |
| 
 | |
| 	void PREFETCH(PrefetchLevel level, OpArg arg)
 | |
| 	{
 | |
| 		if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "PREFETCH - Imm argument");;
 | |
| 		arg.operandReg = (u8)level;
 | |
| 		arg.WriteRex(false);
 | |
| 		Write8(0x0F);
 | |
| 		Write8(0x18);
 | |
| 		arg.WriteRest();
 | |
| 	}
 | |
| 
 | |
| 	void SETcc(CCFlags flag, OpArg dest)
 | |
| 	{
 | |
| 		if (dest.IsImm()) _assert_msg_(DYNA_REC, 0, "SETcc - Imm argument");
 | |
| 		dest.operandReg = 0;
 | |
| 		dest.WriteRex(false);
 | |
| 		Write8(0x0F);
 | |
| 		Write8(0x90 + (u8)flag);
 | |
| 		dest.WriteRest();
 | |
| 	}
 | |
| 
 | |
| 	void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
 | |
| 	{
 | |
| 		if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "CMOVcc - Imm argument");
 | |
| 		src.operandReg = dest;
 | |
| 		src.WriteRex(bits == 64);
 | |
| 		Write8(0x0F);
 | |
| 		Write8(0x40 + (u8)flag);
 | |
| 		src.WriteRest();
 | |
| 	}
 | |
| 
 | |
| 	void WriteMulDivType(int bits, OpArg src, int ext)
 | |
| 	{
 | |
| 		if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "WriteMulDivType - Imm argument");
 | |
| 		src.operandReg = ext;
 | |
| 		if (bits == 16) Write8(0x66);
 | |
| 		src.WriteRex(bits == 64);
 | |
| 		if (bits == 8)
 | |
| 		{
 | |
| 			Write8(0xF6);
 | |
| 		}
 | |
| 		else 
 | |
| 		{
 | |
| 			Write8(0xF7);
 | |
| 		}
 | |
| 		src.WriteRest();
 | |
| 	}
 | |
| 
 | |
| 	void MUL(int bits, OpArg src)  {WriteMulDivType(bits, src, 4);}
 | |
| 	void DIV(int bits, OpArg src)  {WriteMulDivType(bits, src, 6);}
 | |
| 	void IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);}
 | |
| 	void IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);}
 | |
| 	void NEG(int bits, OpArg src)  {WriteMulDivType(bits, src, 3);}
 | |
| 	void NOT(int bits, OpArg src)  {WriteMulDivType(bits, src, 2);}
 | |
| 	
 | |
| 	void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2)
 | |
| 	{
 | |
| 		if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "WriteBitSearchType - Imm argument");
 | |
| 		src.operandReg = (u8)dest;
 | |
| 		if (bits == 16) Write8(0x66);
 | |
| 		src.WriteRex(bits == 64);
 | |
| 		Write8(0x0F);
 | |
| 		Write8(byte2);
 | |
| 		src.WriteRest();
 | |
| 	}
 | |
| 
 | |
| 	void MOVNTI(int bits, OpArg dest, X64Reg src)
 | |
| 	{
 | |
| 		if (bits <= 16) _assert_msg_(DYNA_REC, 0, "MOVNTI - bits<=16");
 | |
| 		WriteBitSearchType(bits, src, dest, 0xC3);
 | |
| 	}
 | |
| 
 | |
| 	void BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit
 | |
| 	void BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit
 | |
| 
 | |
| 	void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
 | |
| 	{
 | |
| 		if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVSX - Imm argument");
 | |
| 		src.operandReg = (u8)dest;
 | |
| 		if (dbits == 16) Write8(0x66);
 | |
| 		src.WriteRex(dbits == 64);
 | |
| 		if (sbits == 8)
 | |
| 		{
 | |
| 			Write8(0x0F);
 | |
| 			Write8(0xBE);
 | |
| 		}
 | |
| 		else if (sbits == 16)
 | |
| 		{
 | |
| 			Write8(0x0F);
 | |
| 			Write8(0xBF);
 | |
| 		}
 | |
| 		else if (sbits == 32 && dbits == 64)
 | |
| 		{
 | |
| 			Write8(0x63);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			Crash();
 | |
| 		}
 | |
| 		src.WriteRest();
 | |
| 	}
 | |
| 
 | |
| 	void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
 | |
| 	{
 | |
| 		if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVZX - Imm argument");
 | |
| 		src.operandReg = (u8)dest;
 | |
| 		if (dbits == 16) Write8(0x66);
 | |
| 		src.WriteRex(dbits == 64);
 | |
| 		if (sbits == 8)
 | |
| 		{
 | |
| 			Write8(0x0F);
 | |
| 			Write8(0xB6);
 | |
| 		}
 | |
| 		else if (sbits == 16)
 | |
| 		{
 | |
| 			Write8(0x0F);
 | |
| 			Write8(0xB7);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			Crash();
 | |
| 		}
 | |
| 		src.WriteRest();
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	void LEA(int bits, X64Reg dest, OpArg src)
 | |
| 	{
 | |
| 		if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "LEA - Imm argument");
 | |
| 		src.operandReg = (u8)dest;
 | |
| 		if (bits == 16) Write8(0x66); //TODO: performance warning
 | |
| 		src.WriteRex(bits == 64);
 | |
| 		Write8(0x8D);
 | |
| 		src.WriteRest();
 | |
| 	}
 | |
| 
 | |
| 	//shift can be either imm8 or cl
 | |
| 	void WriteShift(int bits, OpArg dest, OpArg &shift, int ext)
 | |
| 	{
 | |
| 		bool writeImm = false;
 | |
| 		if (dest.IsImm())
 | |
| 		{
 | |
| 			_assert_msg_(DYNA_REC, 0, "WriteShift - can't shift imms");
 | |
| 		}
 | |
| 		if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
 | |
| 		{
 | |
| 			_assert_msg_(DYNA_REC, 0, "WriteShift - illegal argument"); 
 | |
| 		}
 | |
| 		dest.operandReg = ext;
 | |
| 		if (bits == 16) Write8(0x66);
 | |
| 		dest.WriteRex(bits == 64);
 | |
| 		if (shift.GetImmBits() == 8)
 | |
| 		{
 | |
| 			//ok an imm
 | |
| 			u8 imm = (u8)shift.offset;
 | |
| 			if (imm == 1)
 | |
| 			{
 | |
| 				Write8(bits == 8 ? 0xD0 : 0xD1);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				writeImm = true;
 | |
| 				Write8(bits == 8 ? 0xC0 : 0xC1);
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			Write8(bits == 8 ? 0xD2 : 0xD3);
 | |
| 		}
 | |
| 		dest.WriteRest(writeImm ? 1 : 0);
 | |
| 		if (writeImm)
 | |
| 			Write8((u8)shift.offset);
 | |
| 	}
 | |
| 
 | |
| 	// large rotates and shift are slower on intel than amd
 | |
| 	// intel likes to rotate by 1, and the op is smaller too
 | |
| 	void ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);}
 | |
| 	void ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);}
 | |
| 	void RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);}
 | |
| 	void RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);}
 | |
| 	void SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);}
 | |
| 	void SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);}
 | |
| 	void SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);}
 | |
| 
 | |
| 	void OpArg::WriteSingleByteOp(u8 op, X64Reg operandReg, int bits)
 | |
| 	{
 | |
| 		if (bits == 16)
 | |
| 			Write8(0x66);
 | |
| 
 | |
| 		this->operandReg = (u8)operandReg;
 | |
| 		WriteRex(bits == 64);
 | |
| 		Write8(op);
 | |
| 		WriteRest();
 | |
| 	}
 | |
| 
 | |
| 	//todo : add eax special casing
 | |
| 	struct NormalOpDef
 | |
| 	{
 | |
| 		u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, ext;
 | |
| 	};
 | |
| 
 | |
| 	const NormalOpDef nops[11] = 
 | |
| 	{
 | |
| 		{0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0}, //ADD
 | |
| 		{0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 2}, //ADC
 | |
| 
 | |
| 		{0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 5}, //SUB
 | |
| 		{0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 3}, //SBB
 | |
| 
 | |
| 		{0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 4}, //AND
 | |
| 		{0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 1}, //OR
 | |
| 
 | |
| 		{0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 6}, //XOR
 | |
| 		{0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0}, //MOV
 | |
| 
 | |
| 		{0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0}, //TEST (to == from)
 | |
| 		{0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 7}, //CMP
 | |
| 
 | |
| 		{0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 7}, //XCHG
 | |
| 	};
 | |
| 
 | |
| 	//operand can either be immediate or register
 | |
| 	void OpArg::WriteNormalOp(bool toRM, NormalOp op, const OpArg &operand, int bits) const
 | |
| 	{
 | |
| 		X64Reg operandReg = (X64Reg)this->operandReg;
 | |
| 		if (IsImm())
 | |
| 		{
 | |
| 			_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order");
 | |
| 		}
 | |
| 
 | |
| 		if (bits == 16)
 | |
| 			Write8(0x66);
 | |
| 
 | |
| 		int immToWrite = 0;
 | |
| 
 | |
| 		if (operand.IsImm())
 | |
| 		{
 | |
| 			operandReg = (X64Reg)0;
 | |
| 			WriteRex(bits == 64);
 | |
| 
 | |
| 			if (!toRM)
 | |
| 			{
 | |
| 				_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)");
 | |
| 			}
 | |
| 
 | |
| 			if (operand.scale == SCALE_IMM8 && bits == 8) 
 | |
| 			{
 | |
| 				Write8(nops[op].imm8);
 | |
| 				_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH1");
 | |
| 				immToWrite = 8;
 | |
| 			}
 | |
| 			else if (operand.scale == SCALE_IMM16 && bits == 16 ||
 | |
| 				     operand.scale == SCALE_IMM32 && bits == 32 || 
 | |
| 					 operand.scale == SCALE_IMM32 && bits == 64)
 | |
| 			{
 | |
| 				Write8(nops[op].imm32);
 | |
| 				_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH2");
 | |
| 				immToWrite = 32;
 | |
| 			}
 | |
| 			else if (operand.scale == SCALE_IMM8 && bits == 16 ||
 | |
|                      operand.scale == SCALE_IMM8 && bits == 32 ||
 | |
| 					 operand.scale == SCALE_IMM8 && bits == 64)
 | |
| 			{
 | |
| 				Write8(nops[op].simm8);
 | |
| 				_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH3");
 | |
| 				immToWrite = 8;
 | |
| 			}
 | |
| 			else if (operand.scale == SCALE_IMM64 && bits == 64)
 | |
| 			{
 | |
| 				if (op == nrmMOV)
 | |
| 				{
 | |
| 					Write8(0xB8 + (offsetOrBaseReg & 7));
 | |
| 					Write64((u64)operand.offset);
 | |
| 					return;
 | |
| 				}
 | |
| 				_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm");
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
 | |
| 			}
 | |
| 			operandReg = (X64Reg)nops[op].ext; //pass extension in REG of ModRM
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			operandReg = (X64Reg)operand.offsetOrBaseReg;
 | |
| 			WriteRex(bits == 64, operandReg);
 | |
| 			// mem/reg or reg/reg op
 | |
| 			if (toRM)
 | |
| 			{
 | |
| 				Write8(bits == 8 ? nops[op].toRm8 : nops[op].toRm32);
 | |
| 				_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH4");
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				Write8(bits == 8 ? nops[op].fromRm8 : nops[op].fromRm32);
 | |
| 				_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH5");
 | |
| 			}
 | |
| 		}
 | |
| 		WriteRest(immToWrite>>3, operandReg);
 | |
| 		switch (immToWrite)
 | |
| 		{
 | |
| 		case 0:
 | |
| 			break;
 | |
| 		case 8:
 | |
| 			Write8((u8)operand.offset);
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			Write32((u32)operand.offset);
 | |
| 			break;
 | |
| 		default:
 | |
| 			_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void WriteNormalOp(int bits, NormalOp op, const OpArg &a1, const OpArg &a2)
 | |
| 	{
 | |
| 		if (a1.IsImm())
 | |
| 		{
 | |
| 			//Booh! Can't write to an imm
 | |
| 			_assert_msg_(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm");
 | |
| 			return;
 | |
| 		}
 | |
| 		if (a2.IsImm())
 | |
| 		{
 | |
| 			a1.WriteNormalOp(true, op, a2, bits);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			if (a1.IsSimpleReg())
 | |
| 			{
 | |
| 				a2.WriteNormalOp(false, op, a1, bits);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				a1.WriteNormalOp(true, op, a2, bits);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void ADD (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmADD, a1, a2);}
 | |
| 	void ADC (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmADC, a1, a2);}
 | |
| 	void SUB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmSUB, a1, a2);}
 | |
| 	void SBB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmSBB, a1, a2);}
 | |
| 	void AND (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmAND, a1, a2);}
 | |
| 	void OR  (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmOR , a1, a2);}
 | |
| 	void XOR (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmXOR, a1, a2);}
 | |
| 	void MOV (int bits, const OpArg &a1, const OpArg &a2) 
 | |
| 	{
 | |
| 		_assert_msg_(DYNA_REC, !a1.IsSimpleReg() || !a2.IsSimpleReg() || a1.GetSimpleReg() != a2.GetSimpleReg(), "Redundant MOV @ %p", code); 
 | |
| 		WriteNormalOp(bits, nrmMOV, a1, a2);
 | |
| 	}
 | |
| 	void TEST(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmTEST, a1, a2);}
 | |
| 	void CMP (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmCMP, a1, a2);}
 | |
| 	void XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmXCHG, a1, a2);}
 | |
| 
 | |
| 
 | |
| 
 | |
| 	void WriteSSEOp(int size, u8 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes = 0)
 | |
| 	{
 | |
| 		if (size == 64 && packed)
 | |
| 			Write8(0x66); //this time, override goes upwards
 | |
| 		if (!packed)
 | |
| 			Write8(size == 64 ? 0xF2 : 0xF3);
 | |
| 		arg.operandReg = regOp;
 | |
| 		arg.WriteRex(false);
 | |
| 		Write8(0x0F);
 | |
| 		Write8(sseOp);
 | |
| 		arg.WriteRest(extrabytes);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	void WriteMXCSR(OpArg arg, int ext)
 | |
| 	{
 | |
| 		if (arg.IsImm() || arg.IsSimpleReg()) 
 | |
| 			_assert_msg_(DYNA_REC, 0, "MXCSR - invalid operand");
 | |
| 
 | |
| 		arg.operandReg = ext;
 | |
| 		arg.WriteRex(false);
 | |
| 		Write8(0x0F);
 | |
| 		Write8(0xAE);
 | |
| 		arg.WriteRest();
 | |
| 	}
 | |
| 
 | |
| 	enum NormalSSEOps
 | |
| 	{
 | |
| 		sseCMP =         0xC2, 
 | |
| 		sseADD =         0x58, //ADD
 | |
| 		sseSUB =		 0x5C, //SUB
 | |
| 		sseAND =		 0x54, //AND
 | |
| 		sseANDN =		 0x55, //ANDN
 | |
| 		sseOR  =         0x56, 
 | |
| 		sseXOR  =        0x57,
 | |
| 		sseMUL =		 0x59, //MUL,
 | |
| 		sseDIV =		 0x5E, //DIV
 | |
| 		sseMIN =		 0x5D, //MIN
 | |
| 		sseMAX =		 0x5F, //MAX
 | |
| 		sseCOMIS =		 0x2F, //COMIS
 | |
| 		sseUCOMIS =		 0x2E, //UCOMIS
 | |
| 		sseSQRT =		 0x51, //SQRT
 | |
| 		sseRSQRT =		 0x52, //RSQRT (NO DOUBLE PRECISION!!!)
 | |
| 		sseMOVAPfromRM = 0x28, //MOVAP from RM
 | |
| 		sseMOVAPtoRM =	 0x29, //MOVAP to RM
 | |
| 		sseMOVUPfromRM = 0x10, //MOVUP from RM
 | |
| 		sseMOVUPtoRM =	 0x11, //MOVUP to RM
 | |
| 		sseMASKMOVDQU =  0xF7,
 | |
| 		sseLDDQU      =  0xF0,
 | |
| 		sseSHUF       =  0xC6,
 | |
| 		sseMOVNTDQ     = 0xE7,
 | |
| 		sseMOVNTP      = 0x2B,
 | |
| 	};
 | |
| 
 | |
| 	void STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);}
 | |
| 	void LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);}
 | |
| 
 | |
| 	void MOVNTDQ(OpArg arg, X64Reg regOp)   {WriteSSEOp(64, sseMOVNTDQ, true, regOp, arg);}
 | |
| 	void MOVNTPS(OpArg arg, X64Reg regOp)   {WriteSSEOp(32, sseMOVNTP, true, regOp, arg);}
 | |
| 	void MOVNTPD(OpArg arg, X64Reg regOp)   {WriteSSEOp(64, sseMOVNTP, true, regOp, arg);}
 | |
| 
 | |
| 	void ADDSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseADD, false, regOp, arg);}
 | |
| 	void ADDSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseADD, false, regOp, arg);}
 | |
| 	void SUBSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseSUB, false, regOp, arg);}
 | |
| 	void SUBSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseSUB, false, regOp, arg);}
 | |
| 	void CMPSS(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(32, sseCMP, false, regOp, arg,1); Write8(compare);}
 | |
| 	void CMPSD(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(64, sseCMP, false, regOp, arg,1); Write8(compare);}
 | |
| 	void MULSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMUL, false, regOp, arg);}
 | |
| 	void MULSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMUL, false, regOp, arg);}
 | |
| 	void DIVSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseDIV, false, regOp, arg);}
 | |
| 	void DIVSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseDIV, false, regOp, arg);}
 | |
| 	void MINSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMIN, false, regOp, arg);}
 | |
| 	void MINSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMIN, false, regOp, arg);}
 | |
| 	void MAXSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMAX, false, regOp, arg);}
 | |
| 	void MAXSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMAX, false, regOp, arg);}
 | |
| 	void SQRTSS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseSQRT, false, regOp, arg);}
 | |
| 	void SQRTSD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseSQRT, false, regOp, arg);}
 | |
| 	void RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, false, regOp, arg);}
 | |
| 	void RSQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseRSQRT, false, regOp, arg);}
 | |
| 
 | |
| 	void ADDPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseADD, true, regOp, arg);}
 | |
| 	void ADDPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseADD, true, regOp, arg);}
 | |
| 	void SUBPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseSUB, true, regOp, arg);}
 | |
| 	void SUBPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseSUB, true, regOp, arg);}
 | |
| 	void CMPPS(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(32, sseCMP, true, regOp, arg,1); Write8(compare);}
 | |
| 	void CMPPD(X64Reg regOp, OpArg arg, u8 compare)   {WriteSSEOp(64, sseCMP, true, regOp, arg,1); Write8(compare);}
 | |
| 	void ANDPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseAND, true, regOp, arg);}
 | |
| 	void ANDPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseAND, true, regOp, arg);}
 | |
| 	void ANDNPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseANDN, true, regOp, arg);}
 | |
| 	void ANDNPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseANDN, true, regOp, arg);}
 | |
| 	void ORPS(X64Reg regOp, OpArg arg)    {WriteSSEOp(32, sseOR, true, regOp, arg);}
 | |
| 	void ORPD(X64Reg regOp, OpArg arg)    {WriteSSEOp(64, sseOR, true, regOp, arg);}
 | |
| 	void XORPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseXOR, true, regOp, arg);}
 | |
| 	void XORPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseXOR, true, regOp, arg);}
 | |
| 	void MULPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMUL, true, regOp, arg);}
 | |
| 	void MULPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMUL, true, regOp, arg);}
 | |
| 	void DIVPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseDIV, true, regOp, arg);}
 | |
| 	void DIVPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseDIV, true, regOp, arg);}
 | |
| 	void MINPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMIN, true, regOp, arg);}
 | |
| 	void MINPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMIN, true, regOp, arg);}
 | |
| 	void MAXPS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMAX, true, regOp, arg);}
 | |
| 	void MAXPD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMAX, true, regOp, arg);}
 | |
| 	void SQRTPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseSQRT, true, regOp, arg);}
 | |
| 	void SQRTPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseSQRT, true, regOp, arg);}
 | |
| 	void RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, true, regOp, arg);}
 | |
| 	void RSQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseRSQRT, true, regOp, arg);}
 | |
| 	void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(32, sseSHUF, true, regOp, arg,1); Write8(shuffle);} 
 | |
| 	void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(64, sseSHUF, true, regOp, arg,1); Write8(shuffle);} 
 | |
| 
 | |
| 	void COMISS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseCOMIS, true, regOp, arg);} //weird that these should be packed
 | |
| 	void COMISD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseCOMIS, true, regOp, arg);} //ordered
 | |
| 	void UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseUCOMIS, true, regOp, arg);} //unordered
 | |
| 	void UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseUCOMIS, true, regOp, arg);}
 | |
| 
 | |
| 	void MOVAPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseMOVAPfromRM, true, regOp, arg);}
 | |
| 	void MOVAPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseMOVAPfromRM, true, regOp, arg);}
 | |
| 	void MOVAPS(OpArg arg, X64Reg regOp)  {WriteSSEOp(32, sseMOVAPtoRM, true, regOp, arg);}
 | |
| 	void MOVAPD(OpArg arg, X64Reg regOp)  {WriteSSEOp(64, sseMOVAPtoRM, true, regOp, arg);}
 | |
| 
 | |
| 	void MOVUPS(X64Reg regOp, OpArg arg)  {WriteSSEOp(32, sseMOVUPfromRM, true, regOp, arg);}
 | |
| 	void MOVUPD(X64Reg regOp, OpArg arg)  {WriteSSEOp(64, sseMOVUPfromRM, true, regOp, arg);}
 | |
| 	void MOVUPS(OpArg arg, X64Reg regOp)  {WriteSSEOp(32, sseMOVUPtoRM, true, regOp, arg);}
 | |
| 	void MOVUPD(OpArg arg, X64Reg regOp)  {WriteSSEOp(64, sseMOVUPtoRM, true, regOp, arg);}
 | |
| 
 | |
| 	void MOVSS(X64Reg regOp, OpArg arg)   {WriteSSEOp(32, sseMOVUPfromRM, false, regOp, arg);}
 | |
| 	void MOVSD(X64Reg regOp, OpArg arg)   {WriteSSEOp(64, sseMOVUPfromRM, false, regOp, arg);}
 | |
| 	void MOVSS(OpArg arg, X64Reg regOp)   {WriteSSEOp(32, sseMOVUPtoRM, false, regOp, arg);}
 | |
| 	void MOVSD(OpArg arg, X64Reg regOp)   {WriteSSEOp(64, sseMOVUPtoRM, false, regOp, arg);}
 | |
| 
 | |
| 	void CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, true, regOp, arg);}
 | |
| 	void CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, true, regOp, arg);}
 | |
| 
 | |
| 	void CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, false, regOp, arg);}
 | |
| 	void CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, false, regOp, arg);}
 | |
| 	void CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0xF2, false, regOp, arg);}
 | |
| 
 | |
| 	void CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0xE6, false, regOp, arg);}
 | |
| 	void CVTDQ2PS(X64Reg regOp, const OpArg &arg) {WriteSSEOp(32, 0x5B, true, regOp, arg);}
 | |
| 	void CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0xE6, false, regOp, arg);}
 | |
| 
 | |
| 	void MASKMOVDQU(X64Reg dest, X64Reg src)  {WriteSSEOp(64, sseMASKMOVDQU, true, dest, R(src));}
 | |
| 
 | |
| 	void MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x50, true, dest, arg);}
 | |
| 	void MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x50, true, dest, arg);}
 | |
| 
 | |
| 	void LDDQU(X64Reg dest, OpArg arg)    {WriteSSEOp(64, sseLDDQU, false, dest, arg);} // For integer data only
 | |
| 
 | |
| 	void UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x14, true, dest, arg);}
 | |
| 	void UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x15, true, dest, arg);}
 | |
| 	
 | |
| 	void MOVDDUP(X64Reg regOp, OpArg arg) 
 | |
| 	{
 | |
| 		// TODO(ector): check SSE3 flag
 | |
| 		if (cpu_info.bSSE3NewInstructions)
 | |
| 		{
 | |
| 			WriteSSEOp(64, 0x12, false, regOp, arg); //SSE3
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			// Simulate this instruction with SSE2 instructions
 | |
| 			MOVAPD(regOp, arg);
 | |
| 			UNPCKLPD(regOp, R(regOp));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void MOVD_xmm(X64Reg dest, const OpArg &arg){WriteSSEOp(64, 0x6E, true, dest, arg, 0);}
 | |
| 	void MOVQ_xmm(X64Reg dest, const OpArg &arg){WriteSSEOp(64, 0x6E, false, dest, arg, 0);}
 | |
| 	void MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(64, 0x7E, true, src, arg, 0);}
 | |
| 	void MOVQ_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(64, 0x7E, false, src, arg, 0);}
 | |
| 
 | |
| 
 | |
| 	//There are a few more left
 | |
| 
 | |
| 	// Also some integer instrucitons are missing
 | |
| 	void PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x6B, true, dest, arg);}
 | |
| 	void PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x63, true, dest, arg);}
 | |
| 	//void PACKUSDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x66, true, dest, arg);} // WRONG
 | |
| 	void PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x67, true, dest, arg);}
 | |
| 
 | |
| 	void PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x60, true, dest, arg);}
 | |
| 	void PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x61, true, dest, arg);}
 | |
| 	void PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x62, true, dest, arg);}
 | |
| 	//void PUNPCKLQDQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x60, true, dest, arg);}
 | |
| 
 | |
| 	// WARNING not REX compatible
 | |
| 	void PSRAW(X64Reg reg, int shift) {
 | |
| 		Write8(0x66);
 | |
| 		Write8(0x0f);
 | |
| 		Write8(0x71);
 | |
| 		Write8(0xE0 | reg);
 | |
| 		Write8(shift);
 | |
| 	}
 | |
| 	
 | |
| 	// WARNING not REX compatible
 | |
| 	void PSRAD(X64Reg reg, int shift) {
 | |
| 		Write8(0x66);
 | |
| 		Write8(0x0f);
 | |
| 		Write8(0x72);
 | |
| 		Write8(0xE0 | reg);
 | |
| 		Write8(shift);
 | |
| 	}
 | |
| 	void PAND(X64Reg dest, OpArg arg)     {WriteSSEOp(64, 0xDB, true, dest, arg);}
 | |
| 	void PANDN(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xDF, true, dest, arg);}
 | |
| 	void PXOR(X64Reg dest, OpArg arg)     {WriteSSEOp(64, 0xEF, true, dest, arg);}
 | |
| 	void POR(X64Reg dest, OpArg arg)      {WriteSSEOp(64, 0xEB, true, dest, arg);}
 | |
| 
 | |
| 	void PADDB(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xFC, true, dest, arg);}
 | |
| 	void PADDW(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xFD, true, dest, arg);}
 | |
| 	void PADDD(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xFE, true, dest, arg);}
 | |
| 	void PADDQ(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xD4, true, dest, arg);}
 | |
| 
 | |
| 	void PADDSB(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xEC, true, dest, arg);}
 | |
| 	void PADDSW(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xED, true, dest, arg);}
 | |
| 	void PADDUSB(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0xDC, true, dest, arg);}
 | |
| 	void PADDUSW(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0xDD, true, dest, arg);}
 | |
| 
 | |
| 	void PSUBB(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xF8, true, dest, arg);}
 | |
| 	void PSUBW(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xF9, true, dest, arg);}
 | |
| 	void PSUBD(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xFA, true, dest, arg);}
 | |
| 	void PSUBQ(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xDB, true, dest, arg);}
 | |
| 
 | |
| 	void PSUBSB(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xE8, true, dest, arg);}
 | |
| 	void PSUBSW(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xE9, true, dest, arg);}
 | |
| 	void PSUBUSB(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0xD8, true, dest, arg);}
 | |
| 	void PSUBUSW(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0xD9, true, dest, arg);}
 | |
| 
 | |
| 	void PAVGB(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xE0, true, dest, arg);}
 | |
| 	void PAVGW(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xE3, true, dest, arg);}
 | |
| 
 | |
| 	void PCMPEQB(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x74, true, dest, arg);}
 | |
| 	void PCMPEQW(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x75, true, dest, arg);}
 | |
| 	void PCMPEQD(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x76, true, dest, arg);}
 | |
| 
 | |
| 	void PCMPGTB(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x64, true, dest, arg);}
 | |
| 	void PCMPGTW(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x65, true, dest, arg);}
 | |
| 	void PCMPGTD(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0x66, true, dest, arg);}
 | |
| 
 | |
| 	void PEXTRW(X64Reg dest, OpArg arg, u8 subreg)    {WriteSSEOp(64, 0x64, true, dest, arg); Write8(subreg);}
 | |
| 	void PINSRW(X64Reg dest, OpArg arg, u8 subreg)    {WriteSSEOp(64, 0x64, true, dest, arg); Write8(subreg);}
 | |
| 
 | |
| 	void PMADDWD(X64Reg dest, OpArg arg)  {WriteSSEOp(64, 0xF5, true, dest, arg); }
 | |
| 	void PSADBW(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xF6, true, dest, arg);}
 | |
| 	
 | |
| 	void PMAXSW(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xEE, true, dest, arg); }
 | |
| 	void PMAXUB(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xDE, true, dest, arg); }
 | |
| 	void PMINSW(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xEA, true, dest, arg); }
 | |
| 	void PMINUB(X64Reg dest, OpArg arg)   {WriteSSEOp(64, 0xDA, true, dest, arg); }
 | |
| 
 | |
| 	void PMOVMSKB(X64Reg dest, OpArg arg)    {WriteSSEOp(64, 0xD7, true, dest, arg); }
 | |
| 
 | |
| 	
 | |
| 	// Prefixes
 | |
| 
 | |
| 	void LOCK() { Write8(0xF0); }
 | |
| 	void REP()  { Write8(0xF3); }
 | |
| 	void REPNE(){ Write8(0xF2); }
 | |
| 
 | |
| 	void FWAIT()
 | |
| 	{
 | |
| 		Write8(0x9B);
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 	namespace Util
 | |
| 	{
 | |
| 
 | |
| 	// Sets up a __cdecl function.
 | |
| 	void EmitPrologue(int maxCallParams)
 | |
| 	{
 | |
| #ifdef _M_IX86
 | |
| 		// Don't really need to do anything
 | |
| #elif defined(_M_X64)
 | |
| 		int stacksize = ((maxCallParams+1)&~1)*8 + 8;
 | |
| 		// Set up a stack frame so that we can call functions
 | |
| 		// TODO: use maxCallParams
 | |
| 	    SUB(64, R(RSP), Imm8(stacksize));
 | |
| #else
 | |
| #error Arch not supported
 | |
| #endif
 | |
| 	}
 | |
| 	void EmitEpilogue(int maxCallParams)
 | |
| 	{
 | |
| #ifdef _M_IX86
 | |
| 		RET();
 | |
| #elif defined(_M_X64)
 | |
| 		int stacksize = ((maxCallParams+1)&~1)*8 + 8;
 | |
| 		ADD(64, R(RSP), Imm8(stacksize));
 | |
| 		RET();
 | |
| #else
 | |
| #error Arch not supported
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| // helper routines for setting pointers
 | |
| void CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2)
 | |
| {
 | |
|     using namespace Gen;
 | |
| #ifdef _M_X64
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
|     MOV(32, R(RCX), Imm32(arg0));
 | |
|     MOV(32, R(RDX), Imm32(arg1));
 | |
|     MOV(32, R(R8),  Imm32(arg2));
 | |
|     CALL(fnptr);
 | |
| #else
 | |
|     MOV(32, R(RDI), Imm32(arg0));
 | |
|     MOV(32, R(RSI), Imm32(arg1));
 | |
|     MOV(32, R(RDX), Imm32(arg2));
 | |
|     CALL(fnptr);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
|     PUSH(32, Imm32(arg2));
 | |
|     PUSH(32, Imm32(arg1));
 | |
|     PUSH(32, Imm32(arg0));
 | |
|     CALL(fnptr);
 | |
|     // don't inc stack
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3)
 | |
| {
 | |
|     using namespace Gen;
 | |
| #ifdef _M_X64
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
|     MOV(32, R(RCX), Imm32(arg0));
 | |
|     MOV(32, R(RDX), Imm32(arg1));
 | |
|     MOV(32, R(R8), Imm32(arg2));
 | |
|     MOV(32, R(R9), Imm32(arg3));
 | |
|     CALL(fnptr);
 | |
| #else
 | |
|     MOV(32, R(RDI), Imm32(arg0));
 | |
|     MOV(32, R(RSI), Imm32(arg1));
 | |
|     MOV(32, R(RDX), Imm32(arg2));
 | |
|     MOV(32, R(RCX), Imm32(arg3));
 | |
|     CALL(fnptr);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
|     PUSH(32, Imm32(arg3));
 | |
|     PUSH(32, Imm32(arg2));
 | |
|     PUSH(32, Imm32(arg1));
 | |
|     PUSH(32, Imm32(arg0));
 | |
|     CALL(fnptr);
 | |
|     // don't inc stack
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
 | |
| {
 | |
|     using namespace Gen;
 | |
| #ifdef _M_X64
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
|     MOV(32, R(RCX), Imm32(arg0));
 | |
|     MOV(32, R(RDX), Imm32(arg1));
 | |
|     MOV(32, R(R8),  Imm32(arg2));
 | |
|     MOV(32, R(R9),  Imm32(arg3));
 | |
| 	MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
 | |
|     CALL(fnptr);
 | |
| #else
 | |
|     MOV(32, R(RDI), Imm32(arg0));
 | |
|     MOV(32, R(RSI), Imm32(arg1));
 | |
|     MOV(32, R(RDX), Imm32(arg2));
 | |
|     MOV(32, R(RCX), Imm32(arg3));
 | |
|     MOV(32, R(R8),  Imm32(arg4));
 | |
|     CALL(fnptr);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
|     PUSH(32, Imm32(arg4));
 | |
|     PUSH(32, Imm32(arg3));
 | |
|     PUSH(32, Imm32(arg2));
 | |
|     PUSH(32, Imm32(arg1));
 | |
|     PUSH(32, Imm32(arg0));
 | |
|     CALL(fnptr);
 | |
|     // don't inc stack
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5)
 | |
| {
 | |
|     using namespace Gen;
 | |
| #ifdef _M_X64
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
|     MOV(32, R(RCX), Imm32(arg0));
 | |
|     MOV(32, R(RDX), Imm32(arg1));
 | |
|     MOV(32, R(R8), Imm32(arg2));
 | |
|     MOV(32, R(R9), Imm32(arg3));
 | |
| 	MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
 | |
| 	MOV(32, MDisp(RSP, 0x28), Imm32(arg5));
 | |
|     CALL(fnptr);
 | |
| #else
 | |
|     MOV(32, R(RDI), Imm32(arg0));
 | |
|     MOV(32, R(RSI), Imm32(arg1));
 | |
|     MOV(32, R(RDX), Imm32(arg2));
 | |
|     MOV(32, R(RCX), Imm32(arg3));
 | |
|     MOV(32, R(R8), Imm32(arg4));
 | |
|     MOV(32, R(R9), Imm32(arg5));
 | |
|     CALL(fnptr);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
|     PUSH(32, Imm32(arg5));
 | |
|     PUSH(32, Imm32(arg4));
 | |
|     PUSH(32, Imm32(arg3));
 | |
|     PUSH(32, Imm32(arg2));
 | |
|     PUSH(32, Imm32(arg1));
 | |
|     PUSH(32, Imm32(arg0));
 | |
|     CALL(fnptr);
 | |
|     // don't inc stack
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef _M_X64
 | |
| 
 | |
| // See header
 | |
| void ___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2) {
 | |
|     MOV(32, R(RCX), Imm32(arg0));
 | |
|     MOV(32, R(RDX), Imm32(arg1));
 | |
|     MOV(32, R(R8), Imm32(arg2));
 | |
| 	CALLptr(M(impptr));
 | |
| }
 | |
| void ___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3) {
 | |
|     MOV(32, R(RCX), Imm32(arg0));
 | |
|     MOV(32, R(RDX), Imm32(arg1));
 | |
|     MOV(32, R(R8), Imm32(arg2));
 | |
|     MOV(32, R(R9), Imm32(arg3));
 | |
| 	CALLptr(M(impptr));
 | |
| }
 | |
| void ___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4) {
 | |
|     MOV(32, R(RCX), Imm32(arg0));
 | |
|     MOV(32, R(RDX), Imm32(arg1));
 | |
|     MOV(32, R(R8), Imm32(arg2));
 | |
|     MOV(32, R(R9), Imm32(arg3));
 | |
| 	MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
 | |
| 	CALLptr(M(impptr));
 | |
| }
 | |
| void ___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5) {
 | |
|     MOV(32, R(RCX), Imm32(arg0));
 | |
|     MOV(32, R(RDX), Imm32(arg1));
 | |
|     MOV(32, R(R8), Imm32(arg2));
 | |
|     MOV(32, R(R9), Imm32(arg3));
 | |
| 	MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
 | |
| 	MOV(32, MDisp(RSP, 0x28), Imm32(arg5));
 | |
| 	CALLptr(M(impptr));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| }
 |