forked from dolphin-emu/dolphin
		
	
		
			
				
	
	
		
			2635 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2635 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2010 Dolphin Emulator Project
 | 
						|
// Licensed under GPLv2+
 | 
						|
// Refer to the license.txt file included.
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
#include <cstring>
 | 
						|
#include <memory>
 | 
						|
#include <string>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
#if defined(_M_X86) || defined(_M_X86_64)
 | 
						|
#include <pmmintrin.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include "Common/Align.h"
 | 
						|
#include "Common/Assert.h"
 | 
						|
#include "Common/CommonTypes.h"
 | 
						|
#include "Common/FileUtil.h"
 | 
						|
#include "Common/Hash.h"
 | 
						|
#include "Common/Logging/Log.h"
 | 
						|
#include "Common/MathUtil.h"
 | 
						|
#include "Common/MemoryUtil.h"
 | 
						|
#include "Common/StringUtil.h"
 | 
						|
 | 
						|
#include "Core/ConfigManager.h"
 | 
						|
#include "Core/FifoPlayer/FifoPlayer.h"
 | 
						|
#include "Core/FifoPlayer/FifoRecorder.h"
 | 
						|
#include "Core/HW/Memmap.h"
 | 
						|
 | 
						|
#include "VideoCommon/AbstractFramebuffer.h"
 | 
						|
#include "VideoCommon/AbstractStagingTexture.h"
 | 
						|
#include "VideoCommon/BPMemory.h"
 | 
						|
#include "VideoCommon/FramebufferManager.h"
 | 
						|
#include "VideoCommon/HiresTextures.h"
 | 
						|
#include "VideoCommon/PixelShaderManager.h"
 | 
						|
#include "VideoCommon/RenderBase.h"
 | 
						|
#include "VideoCommon/SamplerCommon.h"
 | 
						|
#include "VideoCommon/ShaderCache.h"
 | 
						|
#include "VideoCommon/Statistics.h"
 | 
						|
#include "VideoCommon/TextureCacheBase.h"
 | 
						|
#include "VideoCommon/TextureConversionShader.h"
 | 
						|
#include "VideoCommon/TextureConverterShaderGen.h"
 | 
						|
#include "VideoCommon/TextureDecoder.h"
 | 
						|
#include "VideoCommon/VertexManagerBase.h"
 | 
						|
#include "VideoCommon/VideoCommon.h"
 | 
						|
#include "VideoCommon/VideoConfig.h"
 | 
						|
 | 
						|
static const u64 TEXHASH_INVALID = 0;
 | 
						|
// Sonic the Fighters (inside Sonic Gems Collection) loops a 64 frames animation
 | 
						|
static const int TEXTURE_KILL_THRESHOLD = 64;
 | 
						|
static const int TEXTURE_POOL_KILL_THRESHOLD = 3;
 | 
						|
 | 
						|
std::unique_ptr<TextureCacheBase> g_texture_cache;
 | 
						|
 | 
						|
std::bitset<8> TextureCacheBase::valid_bind_points;
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry::TCacheEntry(std::unique_ptr<AbstractTexture> tex,
 | 
						|
                                           std::unique_ptr<AbstractFramebuffer> fb)
 | 
						|
    : texture(std::move(tex)), framebuffer(std::move(fb))
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry::~TCacheEntry()
 | 
						|
{
 | 
						|
  for (auto& reference : references)
 | 
						|
    reference->references.erase(this);
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::CheckTempSize(size_t required_size)
 | 
						|
{
 | 
						|
  if (required_size <= temp_size)
 | 
						|
    return;
 | 
						|
 | 
						|
  temp_size = required_size;
 | 
						|
  Common::FreeAlignedMemory(temp);
 | 
						|
  temp = static_cast<u8*>(Common::AllocateAlignedMemory(temp_size, 16));
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TextureCacheBase()
 | 
						|
{
 | 
						|
  SetBackupConfig(g_ActiveConfig);
 | 
						|
 | 
						|
  temp_size = 2048 * 2048 * 4;
 | 
						|
  temp = static_cast<u8*>(Common::AllocateAlignedMemory(temp_size, 16));
 | 
						|
 | 
						|
  TexDecoder_SetTexFmtOverlayOptions(backup_config.texfmt_overlay,
 | 
						|
                                     backup_config.texfmt_overlay_center);
 | 
						|
 | 
						|
  HiresTexture::Init();
 | 
						|
 | 
						|
  Common::SetHash64Function();
 | 
						|
 | 
						|
  InvalidateAllBindPoints();
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::~TextureCacheBase()
 | 
						|
{
 | 
						|
  HiresTexture::Shutdown();
 | 
						|
  Invalidate();
 | 
						|
  Common::FreeAlignedMemory(temp);
 | 
						|
  temp = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool TextureCacheBase::Initialize()
 | 
						|
{
 | 
						|
  if (!CreateUtilityTextures())
 | 
						|
  {
 | 
						|
    PanicAlert("Failed to create utility textures.");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::Invalidate()
 | 
						|
{
 | 
						|
  FlushEFBCopies();
 | 
						|
  InvalidateAllBindPoints();
 | 
						|
  for (size_t i = 0; i < bound_textures.size(); ++i)
 | 
						|
  {
 | 
						|
    bound_textures[i] = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto& tex : textures_by_address)
 | 
						|
  {
 | 
						|
    delete tex.second;
 | 
						|
  }
 | 
						|
  textures_by_address.clear();
 | 
						|
  textures_by_hash.clear();
 | 
						|
 | 
						|
  texture_pool.clear();
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::OnConfigChanged(VideoConfig& config)
 | 
						|
{
 | 
						|
  if (config.bHiresTextures != backup_config.hires_textures ||
 | 
						|
      config.bCacheHiresTextures != backup_config.cache_hires_textures)
 | 
						|
  {
 | 
						|
    HiresTexture::Update();
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Invalidating texcache is really stupid in some of these cases
 | 
						|
  if (config.iSafeTextureCache_ColorSamples != backup_config.color_samples ||
 | 
						|
      config.bTexFmtOverlayEnable != backup_config.texfmt_overlay ||
 | 
						|
      config.bTexFmtOverlayCenter != backup_config.texfmt_overlay_center ||
 | 
						|
      config.bHiresTextures != backup_config.hires_textures ||
 | 
						|
      config.bEnableGPUTextureDecoding != backup_config.gpu_texture_decoding ||
 | 
						|
      config.bDisableCopyToVRAM != backup_config.disable_vram_copies ||
 | 
						|
      config.bArbitraryMipmapDetection != backup_config.arbitrary_mipmap_detection)
 | 
						|
  {
 | 
						|
    Invalidate();
 | 
						|
 | 
						|
    TexDecoder_SetTexFmtOverlayOptions(g_ActiveConfig.bTexFmtOverlayEnable,
 | 
						|
                                       g_ActiveConfig.bTexFmtOverlayCenter);
 | 
						|
  }
 | 
						|
 | 
						|
  SetBackupConfig(config);
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::Cleanup(int _frameCount)
 | 
						|
{
 | 
						|
  TexAddrCache::iterator iter = textures_by_address.begin();
 | 
						|
  TexAddrCache::iterator tcend = textures_by_address.end();
 | 
						|
  while (iter != tcend)
 | 
						|
  {
 | 
						|
    if (iter->second->tmem_only)
 | 
						|
    {
 | 
						|
      iter = InvalidateTexture(iter);
 | 
						|
    }
 | 
						|
    else if (iter->second->frameCount == FRAMECOUNT_INVALID)
 | 
						|
    {
 | 
						|
      iter->second->frameCount = _frameCount;
 | 
						|
      ++iter;
 | 
						|
    }
 | 
						|
    else if (_frameCount > TEXTURE_KILL_THRESHOLD + iter->second->frameCount)
 | 
						|
    {
 | 
						|
      if (iter->second->IsCopy())
 | 
						|
      {
 | 
						|
        // Only remove EFB copies when they wouldn't be used anymore(changed hash), because EFB
 | 
						|
        // copies living on the
 | 
						|
        // host GPU are unrecoverable. Perform this check only every TEXTURE_KILL_THRESHOLD for
 | 
						|
        // performance reasons
 | 
						|
        if ((_frameCount - iter->second->frameCount) % TEXTURE_KILL_THRESHOLD == 1 &&
 | 
						|
            iter->second->hash != iter->second->CalculateHash())
 | 
						|
        {
 | 
						|
          iter = InvalidateTexture(iter);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          ++iter;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        iter = InvalidateTexture(iter);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      ++iter;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  TexPool::iterator iter2 = texture_pool.begin();
 | 
						|
  TexPool::iterator tcend2 = texture_pool.end();
 | 
						|
  while (iter2 != tcend2)
 | 
						|
  {
 | 
						|
    if (iter2->second.frameCount == FRAMECOUNT_INVALID)
 | 
						|
    {
 | 
						|
      iter2->second.frameCount = _frameCount;
 | 
						|
    }
 | 
						|
    if (_frameCount > TEXTURE_POOL_KILL_THRESHOLD + iter2->second.frameCount)
 | 
						|
    {
 | 
						|
      iter2 = texture_pool.erase(iter2);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      ++iter2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool TextureCacheBase::TCacheEntry::OverlapsMemoryRange(u32 range_address, u32 range_size) const
 | 
						|
{
 | 
						|
  if (addr + size_in_bytes <= range_address)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (addr >= range_address + range_size)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::SetBackupConfig(const VideoConfig& config)
 | 
						|
{
 | 
						|
  backup_config.color_samples = config.iSafeTextureCache_ColorSamples;
 | 
						|
  backup_config.texfmt_overlay = config.bTexFmtOverlayEnable;
 | 
						|
  backup_config.texfmt_overlay_center = config.bTexFmtOverlayCenter;
 | 
						|
  backup_config.hires_textures = config.bHiresTextures;
 | 
						|
  backup_config.cache_hires_textures = config.bCacheHiresTextures;
 | 
						|
  backup_config.stereo_3d = config.stereo_mode != StereoMode::Off;
 | 
						|
  backup_config.efb_mono_depth = config.bStereoEFBMonoDepth;
 | 
						|
  backup_config.gpu_texture_decoding = config.bEnableGPUTextureDecoding;
 | 
						|
  backup_config.disable_vram_copies = config.bDisableCopyToVRAM;
 | 
						|
  backup_config.arbitrary_mipmap_detection = config.bArbitraryMipmapDetection;
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry*
 | 
						|
TextureCacheBase::ApplyPaletteToEntry(TCacheEntry* entry, u8* palette, TLUTFormat tlutfmt)
 | 
						|
{
 | 
						|
  TextureConfig new_config = entry->texture->GetConfig();
 | 
						|
  new_config.levels = 1;
 | 
						|
  new_config.flags |= AbstractTextureFlag_RenderTarget;
 | 
						|
 | 
						|
  TCacheEntry* decoded_entry = AllocateCacheEntry(new_config);
 | 
						|
  if (!decoded_entry)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  decoded_entry->SetGeneralParameters(entry->addr, entry->size_in_bytes, entry->format,
 | 
						|
                                      entry->should_force_safe_hashing);
 | 
						|
  decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1);
 | 
						|
  decoded_entry->SetHashes(entry->base_hash, entry->hash);
 | 
						|
  decoded_entry->frameCount = FRAMECOUNT_INVALID;
 | 
						|
  decoded_entry->should_force_safe_hashing = false;
 | 
						|
  decoded_entry->SetNotCopy();
 | 
						|
  decoded_entry->may_have_overlapping_textures = entry->may_have_overlapping_textures;
 | 
						|
 | 
						|
  ConvertTexture(decoded_entry, entry, palette, tlutfmt);
 | 
						|
  textures_by_address.emplace(entry->addr, decoded_entry);
 | 
						|
 | 
						|
  return decoded_entry;
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::ScaleTextureCacheEntryTo(TextureCacheBase::TCacheEntry* entry, u32 new_width,
 | 
						|
                                                u32 new_height)
 | 
						|
{
 | 
						|
  if (entry->GetWidth() == new_width && entry->GetHeight() == new_height)
 | 
						|
  {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const u32 max = g_ActiveConfig.backend_info.MaxTextureSize;
 | 
						|
  if (max < new_width || max < new_height)
 | 
						|
  {
 | 
						|
    ERROR_LOG(VIDEO, "Texture too big, width = %d, height = %d", new_width, new_height);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const TextureConfig newconfig(new_width, new_height, 1, entry->GetNumLayers(), 1,
 | 
						|
                                AbstractTextureFormat::RGBA8, AbstractTextureFlag_RenderTarget);
 | 
						|
  std::optional<TexPoolEntry> new_texture = AllocateTexture(newconfig);
 | 
						|
  if (!new_texture)
 | 
						|
  {
 | 
						|
    ERROR_LOG(VIDEO, "Scaling failed due to texture allocation failure");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // No need to convert the coordinates here since they'll be the same.
 | 
						|
  g_renderer->ScaleTexture(new_texture->framebuffer.get(),
 | 
						|
                           new_texture->texture->GetConfig().GetRect(), entry->texture.get(),
 | 
						|
                           entry->texture->GetConfig().GetRect());
 | 
						|
  entry->texture.swap(new_texture->texture);
 | 
						|
  entry->framebuffer.swap(new_texture->framebuffer);
 | 
						|
 | 
						|
  // At this point new_texture has the old texture in it,
 | 
						|
  // we can potentially reuse this, so let's move it back to the pool
 | 
						|
  auto config = new_texture->texture->GetConfig();
 | 
						|
  texture_pool.emplace(
 | 
						|
      config, TexPoolEntry(std::move(new_texture->texture), std::move(new_texture->framebuffer)));
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry*
 | 
						|
TextureCacheBase::DoPartialTextureUpdates(TCacheEntry* entry_to_update, u8* palette,
 | 
						|
                                          TLUTFormat tlutfmt)
 | 
						|
{
 | 
						|
  // If the flag may_have_overlapping_textures is cleared, there are no overlapping EFB copies,
 | 
						|
  // which aren't applied already. It is set for new textures, and for the affected range
 | 
						|
  // on each EFB copy.
 | 
						|
  if (!entry_to_update->may_have_overlapping_textures)
 | 
						|
    return entry_to_update;
 | 
						|
  entry_to_update->may_have_overlapping_textures = false;
 | 
						|
 | 
						|
  const bool isPaletteTexture = IsColorIndexed(entry_to_update->format.texfmt);
 | 
						|
 | 
						|
  // EFB copies are excluded from these updates, until there's an example where a game would
 | 
						|
  // benefit from updating. This would require more work to be done.
 | 
						|
  if (entry_to_update->IsCopy())
 | 
						|
    return entry_to_update;
 | 
						|
 | 
						|
  u32 block_width = TexDecoder_GetBlockWidthInTexels(entry_to_update->format.texfmt);
 | 
						|
  u32 block_height = TexDecoder_GetBlockHeightInTexels(entry_to_update->format.texfmt);
 | 
						|
  u32 block_size = block_width * block_height *
 | 
						|
                   TexDecoder_GetTexelSizeInNibbles(entry_to_update->format.texfmt) / 2;
 | 
						|
 | 
						|
  u32 numBlocksX = (entry_to_update->native_width + block_width - 1) / block_width;
 | 
						|
 | 
						|
  auto iter = FindOverlappingTextures(entry_to_update->addr, entry_to_update->size_in_bytes);
 | 
						|
  while (iter.first != iter.second)
 | 
						|
  {
 | 
						|
    TCacheEntry* entry = iter.first->second;
 | 
						|
    if (entry != entry_to_update && entry->IsCopy() && !entry->tmem_only &&
 | 
						|
        entry->references.count(entry_to_update) == 0 &&
 | 
						|
        entry->OverlapsMemoryRange(entry_to_update->addr, entry_to_update->size_in_bytes) &&
 | 
						|
        entry->memory_stride == numBlocksX * block_size)
 | 
						|
    {
 | 
						|
      if (entry->hash == entry->CalculateHash())
 | 
						|
      {
 | 
						|
        if (isPaletteTexture)
 | 
						|
        {
 | 
						|
          TCacheEntry* decoded_entry = ApplyPaletteToEntry(entry, palette, tlutfmt);
 | 
						|
          if (decoded_entry)
 | 
						|
          {
 | 
						|
            // Link the efb copy with the partially updated texture, so we won't apply this partial
 | 
						|
            // update again
 | 
						|
            entry->CreateReference(entry_to_update);
 | 
						|
            // Mark the texture update as used, as if it was loaded directly
 | 
						|
            entry->frameCount = FRAMECOUNT_INVALID;
 | 
						|
            entry = decoded_entry;
 | 
						|
          }
 | 
						|
          else
 | 
						|
          {
 | 
						|
            ++iter.first;
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        u32 src_x, src_y, dst_x, dst_y;
 | 
						|
 | 
						|
        // Note for understanding the math:
 | 
						|
        // Normal textures can't be strided, so the 2 missing cases with src_x > 0 don't exist
 | 
						|
        if (entry->addr >= entry_to_update->addr)
 | 
						|
        {
 | 
						|
          u32 block_offset = (entry->addr - entry_to_update->addr) / block_size;
 | 
						|
          u32 block_x = block_offset % numBlocksX;
 | 
						|
          u32 block_y = block_offset / numBlocksX;
 | 
						|
          src_x = 0;
 | 
						|
          src_y = 0;
 | 
						|
          dst_x = block_x * block_width;
 | 
						|
          dst_y = block_y * block_height;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          u32 block_offset = (entry_to_update->addr - entry->addr) / block_size;
 | 
						|
          u32 block_x = (~block_offset + 1) % numBlocksX;
 | 
						|
          u32 block_y = (block_offset + block_x) / numBlocksX;
 | 
						|
          src_x = 0;
 | 
						|
          src_y = block_y * block_height;
 | 
						|
          dst_x = block_x * block_width;
 | 
						|
          dst_y = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        // If the source rectangle is outside of what we actually have in VRAM, skip the copy.
 | 
						|
        // The backend doesn't do any clamping, so if we don't, we'd pass out-of-range coordinates
 | 
						|
        // to the graphics driver, which can cause GPU resets.
 | 
						|
        if (static_cast<u32>(src_x) >= entry->native_width ||
 | 
						|
            static_cast<u32>(src_y) >= entry->native_height ||
 | 
						|
            static_cast<u32>(dst_x) >= entry_to_update->native_width ||
 | 
						|
            static_cast<u32>(dst_y) >= entry_to_update->native_height)
 | 
						|
        {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        u32 copy_width =
 | 
						|
            std::min(entry->native_width - src_x, entry_to_update->native_width - dst_x);
 | 
						|
        u32 copy_height =
 | 
						|
            std::min(entry->native_height - src_y, entry_to_update->native_height - dst_y);
 | 
						|
 | 
						|
        // If one of the textures is scaled, scale both with the current efb scaling factor
 | 
						|
        if (entry_to_update->native_width != entry_to_update->GetWidth() ||
 | 
						|
            entry_to_update->native_height != entry_to_update->GetHeight() ||
 | 
						|
            entry->native_width != entry->GetWidth() || entry->native_height != entry->GetHeight())
 | 
						|
        {
 | 
						|
          ScaleTextureCacheEntryTo(entry_to_update,
 | 
						|
                                   g_renderer->EFBToScaledX(entry_to_update->native_width),
 | 
						|
                                   g_renderer->EFBToScaledY(entry_to_update->native_height));
 | 
						|
          ScaleTextureCacheEntryTo(entry, g_renderer->EFBToScaledX(entry->native_width),
 | 
						|
                                   g_renderer->EFBToScaledY(entry->native_height));
 | 
						|
 | 
						|
          src_x = g_renderer->EFBToScaledX(src_x);
 | 
						|
          src_y = g_renderer->EFBToScaledY(src_y);
 | 
						|
          dst_x = g_renderer->EFBToScaledX(dst_x);
 | 
						|
          dst_y = g_renderer->EFBToScaledY(dst_y);
 | 
						|
          copy_width = g_renderer->EFBToScaledX(copy_width);
 | 
						|
          copy_height = g_renderer->EFBToScaledY(copy_height);
 | 
						|
        }
 | 
						|
 | 
						|
        MathUtil::Rectangle<int> srcrect, dstrect;
 | 
						|
        srcrect.left = src_x;
 | 
						|
        srcrect.top = src_y;
 | 
						|
        srcrect.right = (src_x + copy_width);
 | 
						|
        srcrect.bottom = (src_y + copy_height);
 | 
						|
        dstrect.left = dst_x;
 | 
						|
        dstrect.top = dst_y;
 | 
						|
        dstrect.right = (dst_x + copy_width);
 | 
						|
        dstrect.bottom = (dst_y + copy_height);
 | 
						|
 | 
						|
        // If one copy is stereo, and the other isn't... not much we can do here :/
 | 
						|
        const u32 layers_to_copy = std::min(entry->GetNumLayers(), entry_to_update->GetNumLayers());
 | 
						|
        for (u32 layer = 0; layer < layers_to_copy; layer++)
 | 
						|
        {
 | 
						|
          entry_to_update->texture->CopyRectangleFromTexture(entry->texture.get(), srcrect, layer,
 | 
						|
                                                             0, dstrect, layer, 0);
 | 
						|
        }
 | 
						|
 | 
						|
        if (isPaletteTexture)
 | 
						|
        {
 | 
						|
          // Remove the temporary converted texture, it won't be used anywhere else
 | 
						|
          // TODO: It would be nice to convert and copy in one step, but this code path isn't common
 | 
						|
          iter.first = InvalidateTexture(iter.first);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          // Link the two textures together, so we won't apply this partial update again
 | 
						|
          entry->CreateReference(entry_to_update);
 | 
						|
          // Mark the texture update as used, as if it was loaded directly
 | 
						|
          entry->frameCount = FRAMECOUNT_INVALID;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        // If the hash does not match, this EFB copy will not be used for anything, so remove it
 | 
						|
        iter.first = InvalidateTexture(iter.first);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ++iter.first;
 | 
						|
  }
 | 
						|
  return entry_to_update;
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::DumpTexture(TCacheEntry* entry, std::string basename, unsigned int level,
 | 
						|
                                   bool is_arbitrary)
 | 
						|
{
 | 
						|
  std::string szDir = File::GetUserPath(D_DUMPTEXTURES_IDX) + SConfig::GetInstance().GetGameID();
 | 
						|
 | 
						|
  // make sure that the directory exists
 | 
						|
  if (!File::IsDirectory(szDir))
 | 
						|
    File::CreateDir(szDir);
 | 
						|
 | 
						|
  if (is_arbitrary)
 | 
						|
  {
 | 
						|
    basename += "_arb";
 | 
						|
  }
 | 
						|
 | 
						|
  if (level > 0)
 | 
						|
  {
 | 
						|
    basename += StringFromFormat("_mip%i", level);
 | 
						|
  }
 | 
						|
 | 
						|
  std::string filename = szDir + "/" + basename + ".png";
 | 
						|
 | 
						|
  if (!File::Exists(filename))
 | 
						|
    entry->texture->Save(filename, level);
 | 
						|
}
 | 
						|
 | 
						|
static u32 CalculateLevelSize(u32 level_0_size, u32 level)
 | 
						|
{
 | 
						|
  return std::max(level_0_size >> level, 1u);
 | 
						|
}
 | 
						|
 | 
						|
static void SetSamplerState(u32 index, float custom_tex_scale, bool custom_tex,
 | 
						|
                            bool has_arbitrary_mips)
 | 
						|
{
 | 
						|
  const FourTexUnits& tex = bpmem.tex[index / 4];
 | 
						|
  const TexMode0& tm0 = tex.texMode0[index % 4];
 | 
						|
 | 
						|
  SamplerState state = {};
 | 
						|
  state.Generate(bpmem, index);
 | 
						|
 | 
						|
  // Force texture filtering config option.
 | 
						|
  if (g_ActiveConfig.bForceFiltering)
 | 
						|
  {
 | 
						|
    state.min_filter = SamplerState::Filter::Linear;
 | 
						|
    state.mag_filter = SamplerState::Filter::Linear;
 | 
						|
    state.mipmap_filter = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ?
 | 
						|
                              SamplerState::Filter::Linear :
 | 
						|
                              SamplerState::Filter::Point;
 | 
						|
  }
 | 
						|
 | 
						|
  // Custom textures may have a greater number of mips
 | 
						|
  if (custom_tex)
 | 
						|
    state.max_lod = 255;
 | 
						|
 | 
						|
  // Anisotropic filtering option.
 | 
						|
  if (g_ActiveConfig.iMaxAnisotropy != 0 && !SamplerCommon::IsBpTexMode0PointFiltering(tm0))
 | 
						|
  {
 | 
						|
    // https://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt
 | 
						|
    // For predictable results on all hardware/drivers, only use one of:
 | 
						|
    //	GL_LINEAR + GL_LINEAR (No Mipmaps [Bilinear])
 | 
						|
    //	GL_LINEAR + GL_LINEAR_MIPMAP_LINEAR (w/ Mipmaps [Trilinear])
 | 
						|
    // Letting the game set other combinations will have varying arbitrary results;
 | 
						|
    // possibly being interpreted as equal to bilinear/trilinear, implicitly
 | 
						|
    // disabling anisotropy, or changing the anisotropic algorithm employed.
 | 
						|
    state.min_filter = SamplerState::Filter::Linear;
 | 
						|
    state.mag_filter = SamplerState::Filter::Linear;
 | 
						|
    if (SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0))
 | 
						|
      state.mipmap_filter = SamplerState::Filter::Linear;
 | 
						|
    state.anisotropic_filtering = 1;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    state.anisotropic_filtering = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (has_arbitrary_mips && SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0))
 | 
						|
  {
 | 
						|
    // Apply a secondary bias calculated from the IR scale to pull inwards mipmaps
 | 
						|
    // that have arbitrary contents, eg. are used for fog effects where the
 | 
						|
    // distance they kick in at is important to preserve at any resolution.
 | 
						|
    // Correct this with the upscaling factor of custom textures.
 | 
						|
    s64 lod_offset = std::log2(g_renderer->GetEFBScale() / custom_tex_scale) * 256.f;
 | 
						|
    state.lod_bias = MathUtil::Clamp<s64>(state.lod_bias + lod_offset, -32768, 32767);
 | 
						|
 | 
						|
    // Anisotropic also pushes mips farther away so it cannot be used either
 | 
						|
    state.anisotropic_filtering = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  g_renderer->SetSamplerState(index, state);
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::BindTextures()
 | 
						|
{
 | 
						|
  for (u32 i = 0; i < bound_textures.size(); i++)
 | 
						|
  {
 | 
						|
    const TCacheEntry* tentry = bound_textures[i];
 | 
						|
    if (IsValidBindPoint(i) && tentry)
 | 
						|
    {
 | 
						|
      g_renderer->SetTexture(i, tentry->texture.get());
 | 
						|
      PixelShaderManager::SetTexDims(i, tentry->native_width, tentry->native_height);
 | 
						|
 | 
						|
      const float custom_tex_scale = tentry->GetWidth() / float(tentry->native_width);
 | 
						|
      SetSamplerState(i, custom_tex_scale, tentry->is_custom_tex, tentry->has_arbitrary_mips);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
class ArbitraryMipmapDetector
 | 
						|
{
 | 
						|
private:
 | 
						|
  using PixelRGBAf = std::array<float, 4>;
 | 
						|
  using PixelRGBAu8 = std::array<u8, 4>;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit ArbitraryMipmapDetector() = default;
 | 
						|
 | 
						|
  void AddLevel(u32 width, u32 height, u32 row_length, const u8* buffer)
 | 
						|
  {
 | 
						|
    levels.push_back({{width, height, row_length}, buffer});
 | 
						|
  }
 | 
						|
 | 
						|
  bool HasArbitraryMipmaps(u8* downsample_buffer) const
 | 
						|
  {
 | 
						|
    if (levels.size() < 2)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!g_ActiveConfig.bArbitraryMipmapDetection)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // This is the average per-pixel, per-channel difference in percent between what we
 | 
						|
    // expect a normal blurred mipmap to look like and what we actually received
 | 
						|
    // 4.5% was chosen because it's just below the lowest clearly-arbitrary texture
 | 
						|
    // I found in my tests, the background clouds in Mario Galaxy's Observatory lobby.
 | 
						|
    const auto threshold = g_ActiveConfig.fArbitraryMipmapDetectionThreshold;
 | 
						|
 | 
						|
    auto* src = downsample_buffer;
 | 
						|
    auto* dst = downsample_buffer + levels[1].shape.row_length * levels[1].shape.height * 4;
 | 
						|
 | 
						|
    float total_diff = 0.f;
 | 
						|
 | 
						|
    for (std::size_t i = 0; i < levels.size() - 1; ++i)
 | 
						|
    {
 | 
						|
      const auto& level = levels[i];
 | 
						|
      const auto& mip = levels[i + 1];
 | 
						|
 | 
						|
      u64 level_pixel_count = level.shape.width;
 | 
						|
      level_pixel_count *= level.shape.height;
 | 
						|
 | 
						|
      // AverageDiff stores the difference sum in a u64, so make sure we can't overflow
 | 
						|
      ASSERT(level_pixel_count < (std::numeric_limits<u64>::max() / (255 * 255 * 4)));
 | 
						|
 | 
						|
      // Manually downsample the past downsample with a simple box blur
 | 
						|
      // This is not necessarily close to whatever the original artists used, however
 | 
						|
      // It should still be closer than a thing that's not a downscale at all
 | 
						|
      Level::Downsample(i ? src : level.pixels, level.shape, dst, mip.shape);
 | 
						|
 | 
						|
      // Find the average difference between pixels in this level but downsampled
 | 
						|
      // and the next level
 | 
						|
      auto diff = mip.AverageDiff(dst);
 | 
						|
      total_diff += diff;
 | 
						|
 | 
						|
      std::swap(src, dst);
 | 
						|
    }
 | 
						|
 | 
						|
    auto all_levels = total_diff / (levels.size() - 1);
 | 
						|
    return all_levels > threshold;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  struct Shape
 | 
						|
  {
 | 
						|
    u32 width;
 | 
						|
    u32 height;
 | 
						|
    u32 row_length;
 | 
						|
  };
 | 
						|
 | 
						|
  struct Level
 | 
						|
  {
 | 
						|
    Shape shape;
 | 
						|
    const u8* pixels;
 | 
						|
 | 
						|
    static PixelRGBAu8 SampleLinear(const u8* src, const Shape& src_shape, u32 x, u32 y)
 | 
						|
    {
 | 
						|
      const auto* p = src + (x + y * src_shape.row_length) * 4;
 | 
						|
      return {{p[0], p[1], p[2], p[3]}};
 | 
						|
    }
 | 
						|
 | 
						|
    // Puts a downsampled image in dst. dst must be at least width*height*4
 | 
						|
    static void Downsample(const u8* src, const Shape& src_shape, u8* dst, const Shape& dst_shape)
 | 
						|
    {
 | 
						|
      for (u32 i = 0; i < dst_shape.height; ++i)
 | 
						|
      {
 | 
						|
        for (u32 j = 0; j < dst_shape.width; ++j)
 | 
						|
        {
 | 
						|
          auto x = j * 2;
 | 
						|
          auto y = i * 2;
 | 
						|
          const std::array<PixelRGBAu8, 4> samples{{
 | 
						|
              SampleLinear(src, src_shape, x, y),
 | 
						|
              SampleLinear(src, src_shape, x + 1, y),
 | 
						|
              SampleLinear(src, src_shape, x, y + 1),
 | 
						|
              SampleLinear(src, src_shape, x + 1, y + 1),
 | 
						|
          }};
 | 
						|
 | 
						|
          auto* dst_pixel = dst + (j + i * dst_shape.row_length) * 4;
 | 
						|
          for (int channel = 0; channel < 4; channel++)
 | 
						|
          {
 | 
						|
            uint32_t channel_value = samples[0][channel] + samples[1][channel] +
 | 
						|
                                     samples[2][channel] + samples[3][channel];
 | 
						|
            dst_pixel[channel] = (channel_value + 2) / 4;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    float AverageDiff(const u8* other) const
 | 
						|
    {
 | 
						|
      // As textures are stored in (at most) 8 bit precision, each channel can
 | 
						|
      // have a max diff of (2^8)^2, multiply by 4 channels = 2^18 per pixel.
 | 
						|
      // That means to overflow, we must have a texture with more than 2^46
 | 
						|
      // pixels - which is way beyond anything the original hardware could do,
 | 
						|
      // and likely a sane assumption going forward for some significant time.
 | 
						|
      u64 current_diff_sum = 0;
 | 
						|
      const auto* ptr1 = pixels;
 | 
						|
      const auto* ptr2 = other;
 | 
						|
      for (u32 i = 0; i < shape.height; ++i)
 | 
						|
      {
 | 
						|
        const auto* row1 = ptr1;
 | 
						|
        const auto* row2 = ptr2;
 | 
						|
        for (u32 j = 0; j < shape.width; ++j, row1 += 4, row2 += 4)
 | 
						|
        {
 | 
						|
          int pixel_diff = 0;
 | 
						|
          for (int channel = 0; channel < 4; channel++)
 | 
						|
          {
 | 
						|
            const int diff = static_cast<int>(row1[channel]) - static_cast<int>(row2[channel]);
 | 
						|
            const int diff_squared = diff * diff;
 | 
						|
            pixel_diff += diff_squared;
 | 
						|
          }
 | 
						|
          current_diff_sum += pixel_diff;
 | 
						|
        }
 | 
						|
        ptr1 += shape.row_length;
 | 
						|
        ptr2 += shape.row_length;
 | 
						|
      }
 | 
						|
      // calculate the MSE over all pixels, divide by 2.56 to make it a percent
 | 
						|
      // (IE scale to 0..100 instead of 0..256)
 | 
						|
 | 
						|
      return std::sqrt(static_cast<float>(current_diff_sum) / (shape.width * shape.height * 4)) /
 | 
						|
             2.56f;
 | 
						|
    }
 | 
						|
  };
 | 
						|
  std::vector<Level> levels;
 | 
						|
};
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry* TextureCacheBase::Load(const u32 stage)
 | 
						|
{
 | 
						|
  // if this stage was not invalidated by changes to texture registers, keep the current texture
 | 
						|
  if (IsValidBindPoint(stage) && bound_textures[stage])
 | 
						|
  {
 | 
						|
    return bound_textures[stage];
 | 
						|
  }
 | 
						|
 | 
						|
  const FourTexUnits& tex = bpmem.tex[stage >> 2];
 | 
						|
  const u32 id = stage & 3;
 | 
						|
  const u32 address = (tex.texImage3[id].image_base /* & 0x1FFFFF*/) << 5;
 | 
						|
  u32 width = tex.texImage0[id].width + 1;
 | 
						|
  u32 height = tex.texImage0[id].height + 1;
 | 
						|
  const TextureFormat texformat = static_cast<TextureFormat>(tex.texImage0[id].format);
 | 
						|
  const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9;
 | 
						|
  const TLUTFormat tlutfmt = static_cast<TLUTFormat>(tex.texTlut[id].tlut_format);
 | 
						|
  const bool use_mipmaps = SamplerCommon::AreBpTexMode0MipmapsEnabled(tex.texMode0[id]);
 | 
						|
  u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1;
 | 
						|
  const bool from_tmem = tex.texImage1[id].image_type != 0;
 | 
						|
  const u32 tmem_address_even = from_tmem ? tex.texImage1[id].tmem_even * TMEM_LINE_SIZE : 0;
 | 
						|
  const u32 tmem_address_odd = from_tmem ? tex.texImage2[id].tmem_odd * TMEM_LINE_SIZE : 0;
 | 
						|
 | 
						|
  auto entry = GetTexture(address, width, height, texformat,
 | 
						|
                          g_ActiveConfig.iSafeTextureCache_ColorSamples, tlutaddr, tlutfmt,
 | 
						|
                          use_mipmaps, tex_levels, from_tmem, tmem_address_even, tmem_address_odd);
 | 
						|
 | 
						|
  if (!entry)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  entry->frameCount = FRAMECOUNT_INVALID;
 | 
						|
  bound_textures[stage] = entry;
 | 
						|
 | 
						|
  // We need to keep track of invalided textures until they have actually been replaced or
 | 
						|
  // re-loaded
 | 
						|
  valid_bind_points.set(stage);
 | 
						|
 | 
						|
  return entry;
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry*
 | 
						|
TextureCacheBase::GetTexture(u32 address, u32 width, u32 height, const TextureFormat texformat,
 | 
						|
                             const int textureCacheSafetyColorSampleSize, u32 tlutaddr,
 | 
						|
                             TLUTFormat tlutfmt, bool use_mipmaps, u32 tex_levels, bool from_tmem,
 | 
						|
                             u32 tmem_address_even, u32 tmem_address_odd)
 | 
						|
{
 | 
						|
  // TexelSizeInNibbles(format) * width * height / 16;
 | 
						|
  const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat);
 | 
						|
  const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat);
 | 
						|
 | 
						|
  unsigned int expandedWidth = Common::AlignUp(width, bsw);
 | 
						|
  unsigned int expandedHeight = Common::AlignUp(height, bsh);
 | 
						|
  const unsigned int nativeW = width;
 | 
						|
  const unsigned int nativeH = height;
 | 
						|
 | 
						|
  // Hash assigned to texcache entry (also used to generate filenames used for texture dumping and
 | 
						|
  // custom texture lookup)
 | 
						|
  u64 base_hash = TEXHASH_INVALID;
 | 
						|
  u64 full_hash = TEXHASH_INVALID;
 | 
						|
 | 
						|
  TextureAndTLUTFormat full_format(texformat, tlutfmt);
 | 
						|
 | 
						|
  const bool isPaletteTexture = IsColorIndexed(texformat);
 | 
						|
 | 
						|
  // Reject invalid tlut format.
 | 
						|
  if (isPaletteTexture && !IsValidTLUTFormat(tlutfmt))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const u32 texture_size =
 | 
						|
      TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat);
 | 
						|
  u32 bytes_per_block = (bsw * bsh * TexDecoder_GetTexelSizeInNibbles(texformat)) / 2;
 | 
						|
  u32 additional_mips_size = 0;  // not including level 0, which is texture_size
 | 
						|
 | 
						|
  // GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in
 | 
						|
  // the mipmap chain
 | 
						|
  // e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we
 | 
						|
  // limit the mipmap count to 6 there
 | 
						|
  tex_levels = std::min<u32>(IntLog2(std::max(width, height)) + 1, tex_levels);
 | 
						|
 | 
						|
  for (u32 level = 1; level != tex_levels; ++level)
 | 
						|
  {
 | 
						|
    // We still need to calculate the original size of the mips
 | 
						|
    const u32 expanded_mip_width = Common::AlignUp(CalculateLevelSize(width, level), bsw);
 | 
						|
    const u32 expanded_mip_height = Common::AlignUp(CalculateLevelSize(height, level), bsh);
 | 
						|
 | 
						|
    additional_mips_size +=
 | 
						|
        TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: the texture cache lookup is based on address, but a texture from tmem has no reason
 | 
						|
  //       to have a unique and valid address. This could result in a regular texture and a tmem
 | 
						|
  //       texture aliasing onto the same texture cache entry.
 | 
						|
  const u8* src_data;
 | 
						|
  if (from_tmem)
 | 
						|
    src_data = &texMem[tmem_address_even];
 | 
						|
  else
 | 
						|
    src_data = Memory::GetPointer(address);
 | 
						|
 | 
						|
  if (!src_data)
 | 
						|
  {
 | 
						|
    ERROR_LOG(VIDEO, "Trying to use an invalid texture address 0x%8x", address);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are recording a FifoLog, keep track of what memory we read. FifoRecorder does
 | 
						|
  // its own memory modification tracking independent of the texture hashing below.
 | 
						|
  if (g_bRecordFifoData && !from_tmem)
 | 
						|
    FifoRecorder::GetInstance().UseMemory(address, texture_size + additional_mips_size,
 | 
						|
                                          MemoryUpdate::TEXTURE_MAP);
 | 
						|
 | 
						|
  // TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data
 | 
						|
  // from the low tmem bank than it should)
 | 
						|
  base_hash = Common::GetHash64(src_data, texture_size, textureCacheSafetyColorSampleSize);
 | 
						|
  u32 palette_size = 0;
 | 
						|
  if (isPaletteTexture)
 | 
						|
  {
 | 
						|
    palette_size = TexDecoder_GetPaletteSize(texformat);
 | 
						|
    full_hash = base_hash ^ Common::GetHash64(&texMem[tlutaddr], palette_size,
 | 
						|
                                              textureCacheSafetyColorSampleSize);
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    full_hash = base_hash;
 | 
						|
  }
 | 
						|
 | 
						|
  // Search the texture cache for textures by address
 | 
						|
  //
 | 
						|
  // Find all texture cache entries for the current texture address, and decide whether to use one
 | 
						|
  // of
 | 
						|
  // them, or to create a new one
 | 
						|
  //
 | 
						|
  // In most cases, the fastest way is to use only one texture cache entry for the same address.
 | 
						|
  // Usually,
 | 
						|
  // when a texture changes, the old version of the texture is unlikely to be used again. If there
 | 
						|
  // were
 | 
						|
  // new cache entries created for normal texture updates, there would be a slowdown due to a huge
 | 
						|
  // amount
 | 
						|
  // of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is
 | 
						|
  // faster than creating a new one from scratch.
 | 
						|
  //
 | 
						|
  // Some games use the same address for different textures though. If the same cache entry was used
 | 
						|
  // in
 | 
						|
  // this case, it would be constantly overwritten, and effectively there wouldn't be any caching
 | 
						|
  // for
 | 
						|
  // those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has
 | 
						|
  // multiple
 | 
						|
  // sets of fonts on each other stored in a single texture and uses the palette to make different
 | 
						|
  // characters visible or invisible. In Castlevania 3 some textures are used for 2 different things
 | 
						|
  // or
 | 
						|
  // at least in 2 different ways(size 1024x1024 vs 1024x256).
 | 
						|
  //
 | 
						|
  // To determine whether to use multiple cache entries or a single entry, use the following
 | 
						|
  // heuristic:
 | 
						|
  // If the same texture address is used several times during the same frame, assume the address is
 | 
						|
  // used
 | 
						|
  // for different purposes and allow creating an additional cache entry. If there's at least one
 | 
						|
  // entry
 | 
						|
  // that hasn't been used for the same frame, then overwrite it, in order to keep the cache as
 | 
						|
  // small as
 | 
						|
  // possible. If the current texture is found in the cache, use that entry.
 | 
						|
  //
 | 
						|
  // For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else
 | 
						|
  // it was
 | 
						|
  // done in vain.
 | 
						|
  auto iter_range = textures_by_address.equal_range(address);
 | 
						|
  TexAddrCache::iterator iter = iter_range.first;
 | 
						|
  TexAddrCache::iterator oldest_entry = iter;
 | 
						|
  int temp_frameCount = 0x7fffffff;
 | 
						|
  TexAddrCache::iterator unconverted_copy = textures_by_address.end();
 | 
						|
 | 
						|
  while (iter != iter_range.second)
 | 
						|
  {
 | 
						|
    TCacheEntry* entry = iter->second;
 | 
						|
 | 
						|
    // Skip entries that are only left in our texture cache for the tmem cache emulation
 | 
						|
    if (entry->tmem_only)
 | 
						|
    {
 | 
						|
      ++iter;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: Some games (Rogue Squadron 3, Twin Snakes) seem to load a previously made XFB
 | 
						|
    // copy as a regular texture. You can see this particularly well in RS3 whenever the
 | 
						|
    // game freezes the image and fades it out to black on screen transitions, which fades
 | 
						|
    // out a purple screen in XFB2Tex. Check for this here and convert them if necessary.
 | 
						|
 | 
						|
    // Do not load strided EFB copies, they are not meant to be used directly.
 | 
						|
    // Also do not directly load EFB copies, which were partly overwritten.
 | 
						|
    if (entry->IsEfbCopy() && entry->native_width == nativeW && entry->native_height == nativeH &&
 | 
						|
        entry->memory_stride == entry->BytesPerRow() && !entry->may_have_overlapping_textures)
 | 
						|
    {
 | 
						|
      // EFB copies have slightly different rules as EFB copy formats have different
 | 
						|
      // meanings from texture formats.
 | 
						|
      if ((base_hash == entry->hash &&
 | 
						|
           (!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)) ||
 | 
						|
          IsPlayingBackFifologWithBrokenEFBCopies)
 | 
						|
      {
 | 
						|
        // TODO: We should check format/width/height/levels for EFB copies. Checking
 | 
						|
        // format is complicated because EFB copy formats don't exactly match
 | 
						|
        // texture formats. I'm not sure what effect checking width/height/levels
 | 
						|
        // would have.
 | 
						|
        if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion)
 | 
						|
          return entry;
 | 
						|
 | 
						|
        // Note that we found an unconverted EFB copy, then continue.  We'll
 | 
						|
        // perform the conversion later.  Currently, we only convert EFB copies to
 | 
						|
        // palette textures; we could do other conversions if it proved to be
 | 
						|
        // beneficial.
 | 
						|
        unconverted_copy = iter;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        // Aggressively prune EFB copies: if it isn't useful here, it will probably
 | 
						|
        // never be useful again.  It's theoretically possible for a game to do
 | 
						|
        // something weird where the copy could become useful in the future, but in
 | 
						|
        // practice it doesn't happen.
 | 
						|
        iter = InvalidateTexture(iter);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      // For normal textures, all texture parameters need to match
 | 
						|
      if (!entry->IsEfbCopy() && entry->hash == full_hash && entry->format == full_format &&
 | 
						|
          entry->native_levels >= tex_levels && entry->native_width == nativeW &&
 | 
						|
          entry->native_height == nativeH)
 | 
						|
      {
 | 
						|
        entry = DoPartialTextureUpdates(iter->second, &texMem[tlutaddr], tlutfmt);
 | 
						|
 | 
						|
        return entry;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Find the texture which hasn't been used for the longest time. Count paletted
 | 
						|
    // textures as the same texture here, when the texture itself is the same. This
 | 
						|
    // improves the performance a lot in some games that use paletted textures.
 | 
						|
    // Example: Sonic the Fighters (inside Sonic Gems Collection)
 | 
						|
    // Skip EFB copies here, so they can be used for partial texture updates
 | 
						|
    // Also skip XFB copies, we might need to still scan them out
 | 
						|
    // or load them as regular textures later.
 | 
						|
    if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount &&
 | 
						|
        !entry->IsCopy() && !(isPaletteTexture && entry->base_hash == base_hash))
 | 
						|
    {
 | 
						|
      temp_frameCount = entry->frameCount;
 | 
						|
      oldest_entry = iter;
 | 
						|
    }
 | 
						|
    ++iter;
 | 
						|
  }
 | 
						|
 | 
						|
  if (unconverted_copy != textures_by_address.end())
 | 
						|
  {
 | 
						|
    TCacheEntry* decoded_entry =
 | 
						|
        ApplyPaletteToEntry(unconverted_copy->second, &texMem[tlutaddr], tlutfmt);
 | 
						|
 | 
						|
    if (decoded_entry)
 | 
						|
    {
 | 
						|
      return decoded_entry;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Search the texture cache for normal textures by hash
 | 
						|
  //
 | 
						|
  // If the texture was fully hashed, the address does not need to match. Identical duplicate
 | 
						|
  // textures cause unnecessary slowdowns
 | 
						|
  // Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70
 | 
						|
  // different ones
 | 
						|
  if (textureCacheSafetyColorSampleSize == 0 ||
 | 
						|
      std::max(texture_size, palette_size) <= (u32)textureCacheSafetyColorSampleSize * 8)
 | 
						|
  {
 | 
						|
    auto hash_range = textures_by_hash.equal_range(full_hash);
 | 
						|
    TexHashCache::iterator hash_iter = hash_range.first;
 | 
						|
    while (hash_iter != hash_range.second)
 | 
						|
    {
 | 
						|
      TCacheEntry* entry = hash_iter->second;
 | 
						|
      // All parameters, except the address, need to match here
 | 
						|
      if (entry->format == full_format && entry->native_levels >= tex_levels &&
 | 
						|
          entry->native_width == nativeW && entry->native_height == nativeH)
 | 
						|
      {
 | 
						|
        entry = DoPartialTextureUpdates(hash_iter->second, &texMem[tlutaddr], tlutfmt);
 | 
						|
 | 
						|
        return entry;
 | 
						|
      }
 | 
						|
      ++hash_iter;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If at least one entry was not used for the same frame, overwrite the oldest one
 | 
						|
  if (temp_frameCount != 0x7fffffff)
 | 
						|
  {
 | 
						|
    // pool this texture and make a new one later
 | 
						|
    InvalidateTexture(oldest_entry);
 | 
						|
  }
 | 
						|
 | 
						|
  std::shared_ptr<HiresTexture> hires_tex;
 | 
						|
  if (g_ActiveConfig.bHiresTextures)
 | 
						|
  {
 | 
						|
    hires_tex = HiresTexture::Search(src_data, texture_size, &texMem[tlutaddr], palette_size, width,
 | 
						|
                                     height, texformat, use_mipmaps);
 | 
						|
 | 
						|
    if (hires_tex)
 | 
						|
    {
 | 
						|
      const auto& level = hires_tex->m_levels[0];
 | 
						|
      if (level.width != width || level.height != height)
 | 
						|
      {
 | 
						|
        width = level.width;
 | 
						|
        height = level.height;
 | 
						|
      }
 | 
						|
      expandedWidth = level.width;
 | 
						|
      expandedHeight = level.height;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // how many levels the allocated texture shall have
 | 
						|
  const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels;
 | 
						|
 | 
						|
  // We can decode on the GPU if it is a supported format and the flag is enabled.
 | 
						|
  // Currently we don't decode RGBA8 textures from Tmem, as that would require copying from both
 | 
						|
  // banks, and if we're doing an copy we may as well just do the whole thing on the CPU, since
 | 
						|
  // there's no conversion between formats. In the future this could be extended with a separate
 | 
						|
  // shader, however.
 | 
						|
  const bool decode_on_gpu = !hires_tex && g_ActiveConfig.UseGPUTextureDecoding() &&
 | 
						|
                             !(from_tmem && texformat == TextureFormat::RGBA8);
 | 
						|
 | 
						|
  // create the entry/texture
 | 
						|
  const TextureConfig config(width, height, texLevels, 1, 1,
 | 
						|
                             hires_tex ? hires_tex->GetFormat() : AbstractTextureFormat::RGBA8, 0);
 | 
						|
  TCacheEntry* entry = AllocateCacheEntry(config);
 | 
						|
  if (!entry)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ArbitraryMipmapDetector arbitrary_mip_detector;
 | 
						|
  const u8* tlut = &texMem[tlutaddr];
 | 
						|
  if (hires_tex)
 | 
						|
  {
 | 
						|
    const auto& level = hires_tex->m_levels[0];
 | 
						|
    entry->texture->Load(0, level.width, level.height, level.row_length, level.data.data(),
 | 
						|
                         level.data.size());
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialized to null because only software loading uses this buffer
 | 
						|
  u8* dst_buffer = nullptr;
 | 
						|
 | 
						|
  if (!hires_tex)
 | 
						|
  {
 | 
						|
    if (!decode_on_gpu ||
 | 
						|
        !DecodeTextureOnGPU(entry, 0, src_data, texture_size, texformat, width, height,
 | 
						|
                            expandedWidth, expandedHeight, bytes_per_block * (expandedWidth / bsw),
 | 
						|
                            tlut, tlutfmt))
 | 
						|
    {
 | 
						|
      size_t decoded_texture_size = expandedWidth * sizeof(u32) * expandedHeight;
 | 
						|
 | 
						|
      // Allocate memory for all levels at once
 | 
						|
      size_t total_texture_size = decoded_texture_size;
 | 
						|
 | 
						|
      // For the downsample, we need 2 buffers; 1 is 1/4 of the original texture, the other 1/16
 | 
						|
      size_t mip_downsample_buffer_size = decoded_texture_size * 5 / 16;
 | 
						|
 | 
						|
      size_t prev_level_size = decoded_texture_size;
 | 
						|
      for (u32 i = 1; i < tex_levels; ++i)
 | 
						|
      {
 | 
						|
        prev_level_size /= 4;
 | 
						|
        total_texture_size += prev_level_size;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add space for the downsampling at the end
 | 
						|
      total_texture_size += mip_downsample_buffer_size;
 | 
						|
 | 
						|
      CheckTempSize(total_texture_size);
 | 
						|
      dst_buffer = temp;
 | 
						|
      if (!(texformat == TextureFormat::RGBA8 && from_tmem))
 | 
						|
      {
 | 
						|
        TexDecoder_Decode(dst_buffer, src_data, expandedWidth, expandedHeight, texformat, tlut,
 | 
						|
                          tlutfmt);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        u8* src_data_gb = &texMem[tmem_address_odd];
 | 
						|
        TexDecoder_DecodeRGBA8FromTmem(dst_buffer, src_data, src_data_gb, expandedWidth,
 | 
						|
                                       expandedHeight);
 | 
						|
      }
 | 
						|
 | 
						|
      entry->texture->Load(0, width, height, expandedWidth, dst_buffer, decoded_texture_size);
 | 
						|
 | 
						|
      arbitrary_mip_detector.AddLevel(width, height, expandedWidth, dst_buffer);
 | 
						|
 | 
						|
      dst_buffer += decoded_texture_size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  iter = textures_by_address.emplace(address, entry);
 | 
						|
  if (textureCacheSafetyColorSampleSize == 0 ||
 | 
						|
      std::max(texture_size, palette_size) <= (u32)textureCacheSafetyColorSampleSize * 8)
 | 
						|
  {
 | 
						|
    entry->textures_by_hash_iter = textures_by_hash.emplace(full_hash, entry);
 | 
						|
  }
 | 
						|
 | 
						|
  entry->SetGeneralParameters(address, texture_size, full_format, false);
 | 
						|
  entry->SetDimensions(nativeW, nativeH, tex_levels);
 | 
						|
  entry->SetHashes(base_hash, full_hash);
 | 
						|
  entry->is_custom_tex = hires_tex != nullptr;
 | 
						|
  entry->memory_stride = entry->BytesPerRow();
 | 
						|
  entry->SetNotCopy();
 | 
						|
 | 
						|
  std::string basename = "";
 | 
						|
  if (g_ActiveConfig.bDumpTextures && !hires_tex)
 | 
						|
  {
 | 
						|
    basename = HiresTexture::GenBaseName(src_data, texture_size, &texMem[tlutaddr], palette_size,
 | 
						|
                                         width, height, texformat, use_mipmaps, true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (hires_tex)
 | 
						|
  {
 | 
						|
    for (u32 level_index = 1; level_index != texLevels; ++level_index)
 | 
						|
    {
 | 
						|
      const auto& level = hires_tex->m_levels[level_index];
 | 
						|
      entry->texture->Load(level_index, level.width, level.height, level.row_length,
 | 
						|
                           level.data.data(), level.data.size());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    // load mips - TODO: Loading mipmaps from tmem is untested!
 | 
						|
    src_data += texture_size;
 | 
						|
 | 
						|
    const u8* ptr_even = nullptr;
 | 
						|
    const u8* ptr_odd = nullptr;
 | 
						|
    if (from_tmem)
 | 
						|
    {
 | 
						|
      ptr_even = &texMem[tmem_address_even + texture_size];
 | 
						|
      ptr_odd = &texMem[tmem_address_odd];
 | 
						|
    }
 | 
						|
 | 
						|
    for (u32 level = 1; level != texLevels; ++level)
 | 
						|
    {
 | 
						|
      const u32 mip_width = CalculateLevelSize(width, level);
 | 
						|
      const u32 mip_height = CalculateLevelSize(height, level);
 | 
						|
      const u32 expanded_mip_width = Common::AlignUp(mip_width, bsw);
 | 
						|
      const u32 expanded_mip_height = Common::AlignUp(mip_height, bsh);
 | 
						|
 | 
						|
      const u8*& mip_src_data = from_tmem ? ((level % 2) ? ptr_odd : ptr_even) : src_data;
 | 
						|
      const u32 mip_size =
 | 
						|
          TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
 | 
						|
 | 
						|
      if (!decode_on_gpu ||
 | 
						|
          !DecodeTextureOnGPU(entry, level, mip_src_data, mip_size, texformat, mip_width,
 | 
						|
                              mip_height, expanded_mip_width, expanded_mip_height,
 | 
						|
                              bytes_per_block * (expanded_mip_width / bsw), tlut, tlutfmt))
 | 
						|
      {
 | 
						|
        // No need to call CheckTempSize here, as the whole buffer is preallocated at the beginning
 | 
						|
        const u32 decoded_mip_size = expanded_mip_width * sizeof(u32) * expanded_mip_height;
 | 
						|
        TexDecoder_Decode(dst_buffer, mip_src_data, expanded_mip_width, expanded_mip_height,
 | 
						|
                          texformat, tlut, tlutfmt);
 | 
						|
        entry->texture->Load(level, mip_width, mip_height, expanded_mip_width, dst_buffer,
 | 
						|
                             decoded_mip_size);
 | 
						|
 | 
						|
        arbitrary_mip_detector.AddLevel(mip_width, mip_height, expanded_mip_width, dst_buffer);
 | 
						|
 | 
						|
        dst_buffer += decoded_mip_size;
 | 
						|
      }
 | 
						|
 | 
						|
      mip_src_data += mip_size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  entry->has_arbitrary_mips = hires_tex ? hires_tex->HasArbitraryMipmaps() :
 | 
						|
                                          arbitrary_mip_detector.HasArbitraryMipmaps(dst_buffer);
 | 
						|
 | 
						|
  if (g_ActiveConfig.bDumpTextures && !hires_tex)
 | 
						|
  {
 | 
						|
    for (u32 level = 0; level < texLevels; ++level)
 | 
						|
    {
 | 
						|
      DumpTexture(entry, basename, level, entry->has_arbitrary_mips);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  INCSTAT(stats.numTexturesUploaded);
 | 
						|
  SETSTAT(stats.numTexturesAlive, textures_by_address.size());
 | 
						|
 | 
						|
  entry = DoPartialTextureUpdates(iter->second, &texMem[tlutaddr], tlutfmt);
 | 
						|
 | 
						|
  // This should only be needed if the texture was updated, or used GPU decoding.
 | 
						|
  entry->texture->FinishedRendering();
 | 
						|
  return entry;
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry*
 | 
						|
TextureCacheBase::GetXFBTexture(u32 address, u32 width, u32 height, TextureFormat tex_format,
 | 
						|
                                int texture_cache_safety_color_sample_size)
 | 
						|
{
 | 
						|
  auto tex_info = ComputeTextureInformation(address, width, height, tex_format,
 | 
						|
                                            texture_cache_safety_color_sample_size, false, 0, 0, 0,
 | 
						|
                                            TLUTFormat::IA8, 1);
 | 
						|
  if (!tex_info)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Try a direct lookup by address/hash.
 | 
						|
  const TextureLookupInformation tex_info_value = tex_info.value();
 | 
						|
  TCacheEntry* entry = GetXFBFromCache(tex_info_value);
 | 
						|
  if (entry)
 | 
						|
    return entry;
 | 
						|
 | 
						|
  // At this point, the XFB wasn't found in cache. This means the address is most likely not
 | 
						|
  // pointing at an xfb copy but instead an area of memory.  Let's attempt to stitch all entries in
 | 
						|
  // this memory space together
 | 
						|
  bool loaded_from_overlapping = true;
 | 
						|
  entry = GetTextureFromOverlappingTextures(tex_info_value);
 | 
						|
  if (!entry)
 | 
						|
  {
 | 
						|
    // At this point, the xfb address is truly "bogus" it likely is an area of memory defined by the
 | 
						|
    // CPU, so load it from memory.
 | 
						|
    entry = GetTextureFromMemory(tex_info_value);
 | 
						|
    loaded_from_overlapping = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (g_ActiveConfig.bDumpXFBTarget)
 | 
						|
  {
 | 
						|
    // While this isn't really an xfb copy, we can treat it as such
 | 
						|
    // for dumping purposes
 | 
						|
    static int xfb_count = 0;
 | 
						|
    const std::string xfb_type = loaded_from_overlapping ? "combined" : "from_memory";
 | 
						|
    entry->texture->Save(StringFromFormat("%sxfb_%s_%i.png",
 | 
						|
                                          File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(),
 | 
						|
                                          xfb_type.c_str(), xfb_count++),
 | 
						|
                         0);
 | 
						|
  }
 | 
						|
 | 
						|
  return entry;
 | 
						|
}
 | 
						|
 | 
						|
std::optional<TextureLookupInformation> TextureCacheBase::ComputeTextureInformation(
 | 
						|
    u32 address, u32 width, u32 height, TextureFormat tex_format,
 | 
						|
    int texture_cache_safety_color_sample_size, bool from_tmem, u32 tmem_address_even,
 | 
						|
    u32 tmem_address_odd, u32 tlut_address, TLUTFormat tlut_format, u32 levels)
 | 
						|
{
 | 
						|
  TextureLookupInformation tex_info;
 | 
						|
 | 
						|
  tex_info.from_tmem = from_tmem;
 | 
						|
  tex_info.tmem_address_even = tmem_address_even;
 | 
						|
  tex_info.tmem_address_odd = tmem_address_odd;
 | 
						|
 | 
						|
  tex_info.address = address;
 | 
						|
 | 
						|
  if (from_tmem)
 | 
						|
    tex_info.src_data = &texMem[tex_info.tmem_address_even];
 | 
						|
  else
 | 
						|
    tex_info.src_data = Memory::GetPointer(tex_info.address);
 | 
						|
 | 
						|
  if (tex_info.src_data == nullptr)
 | 
						|
  {
 | 
						|
    ERROR_LOG(VIDEO, "Trying to use an invalid texture address 0x%8x", tex_info.address);
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
 | 
						|
  tex_info.texture_cache_safety_color_sample_size = texture_cache_safety_color_sample_size;
 | 
						|
 | 
						|
  // TexelSizeInNibbles(format) * width * height / 16;
 | 
						|
  tex_info.block_width = TexDecoder_GetBlockWidthInTexels(tex_format);
 | 
						|
  tex_info.block_height = TexDecoder_GetBlockHeightInTexels(tex_format);
 | 
						|
 | 
						|
  tex_info.bytes_per_block = (tex_info.block_width * tex_info.block_height *
 | 
						|
                              TexDecoder_GetTexelSizeInNibbles(tex_format)) /
 | 
						|
                             2;
 | 
						|
 | 
						|
  tex_info.expanded_width = Common::AlignUp(width, tex_info.block_width);
 | 
						|
  tex_info.expanded_height = Common::AlignUp(height, tex_info.block_height);
 | 
						|
 | 
						|
  tex_info.total_bytes = TexDecoder_GetTextureSizeInBytes(tex_info.expanded_width,
 | 
						|
                                                          tex_info.expanded_height, tex_format);
 | 
						|
 | 
						|
  tex_info.native_width = width;
 | 
						|
  tex_info.native_height = height;
 | 
						|
  tex_info.native_levels = levels;
 | 
						|
 | 
						|
  // GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in
 | 
						|
  // the mipmap chain
 | 
						|
  // e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we
 | 
						|
  // limit the mipmap count to 6 there
 | 
						|
  tex_info.computed_levels = std::min<u32>(
 | 
						|
      IntLog2(std::max(tex_info.native_width, tex_info.native_height)) + 1, tex_info.native_levels);
 | 
						|
 | 
						|
  tex_info.full_format = TextureAndTLUTFormat(tex_format, tlut_format);
 | 
						|
  tex_info.tlut_address = tlut_address;
 | 
						|
 | 
						|
  // TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data
 | 
						|
  // from the low tmem bank than it should)
 | 
						|
  tex_info.base_hash = Common::GetHash64(tex_info.src_data, tex_info.total_bytes,
 | 
						|
                                         tex_info.texture_cache_safety_color_sample_size);
 | 
						|
 | 
						|
  tex_info.is_palette_texture = IsColorIndexed(tex_format);
 | 
						|
 | 
						|
  if (tex_info.is_palette_texture)
 | 
						|
  {
 | 
						|
    tex_info.palette_size = TexDecoder_GetPaletteSize(tex_format);
 | 
						|
    tex_info.full_hash = tex_info.base_hash ^
 | 
						|
                         Common::GetHash64(&texMem[tex_info.tlut_address], tex_info.palette_size,
 | 
						|
                                           tex_info.texture_cache_safety_color_sample_size);
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    tex_info.full_hash = tex_info.base_hash;
 | 
						|
  }
 | 
						|
 | 
						|
  return tex_info;
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry*
 | 
						|
TextureCacheBase::GetXFBFromCache(const TextureLookupInformation& tex_info)
 | 
						|
{
 | 
						|
  auto iter_range = textures_by_address.equal_range(tex_info.address);
 | 
						|
  TexAddrCache::iterator iter = iter_range.first;
 | 
						|
 | 
						|
  while (iter != iter_range.second)
 | 
						|
  {
 | 
						|
    TCacheEntry* entry = iter->second;
 | 
						|
 | 
						|
    if ((entry->is_xfb_copy || entry->format.texfmt == TextureFormat::XFB) &&
 | 
						|
        entry->native_width == tex_info.native_width &&
 | 
						|
        entry->native_height == tex_info.native_height &&
 | 
						|
        entry->memory_stride == entry->BytesPerRow() && !entry->may_have_overlapping_textures)
 | 
						|
    {
 | 
						|
      if (tex_info.base_hash == entry->hash && !entry->reference_changed)
 | 
						|
      {
 | 
						|
        return entry;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        // At this point, we either have an xfb copy that has changed its hash
 | 
						|
        // or an xfb created by stitching or from memory that has been changed
 | 
						|
        // we are safe to invalidate this
 | 
						|
        iter = InvalidateTexture(iter);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ++iter;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry*
 | 
						|
TextureCacheBase::GetTextureFromOverlappingTextures(const TextureLookupInformation& tex_info)
 | 
						|
{
 | 
						|
  u32 numBlocksX = tex_info.native_width / tex_info.block_width;
 | 
						|
 | 
						|
  // XFBs created for the purpose of being a container for textures from memory
 | 
						|
  // or as a container for overlapping textures, never need to be combined
 | 
						|
  // with other textures
 | 
						|
  TCacheEntry* stitched_entry =
 | 
						|
      CreateNormalTexture(tex_info, g_framebuffer_manager->GetEFBLayers());
 | 
						|
  stitched_entry->may_have_overlapping_textures = false;
 | 
						|
 | 
						|
  // It is possible that some of the overlapping textures overlap each other.
 | 
						|
  // This behavior has been seen with XFB copies in Rogue Leader.
 | 
						|
  // To get the correct result, we apply the texture updates in the order the textures were
 | 
						|
  // originally loaded. This ensures that the parts of the texture that would have been overwritten
 | 
						|
  // in memory on real hardware get overwritten the same way here too.
 | 
						|
  // This should work, but it may be a better idea to keep track of partial XFB copy invalidations
 | 
						|
  // instead, which would reduce the amount of copying work here.
 | 
						|
  std::vector<TCacheEntry*> candidates;
 | 
						|
 | 
						|
  auto iter = FindOverlappingTextures(tex_info.address, tex_info.total_bytes);
 | 
						|
  while (iter.first != iter.second)
 | 
						|
  {
 | 
						|
    TCacheEntry* entry = iter.first->second;
 | 
						|
    if (entry->IsCopy() && !entry->tmem_only &&
 | 
						|
        entry->OverlapsMemoryRange(tex_info.address, tex_info.total_bytes) &&
 | 
						|
        entry->memory_stride == stitched_entry->memory_stride)
 | 
						|
    {
 | 
						|
      if (entry->hash == entry->CalculateHash())
 | 
						|
      {
 | 
						|
        candidates.emplace_back(entry);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        // If the hash does not match, this EFB copy will not be used for anything, so remove it
 | 
						|
        iter.first = InvalidateTexture(iter.first);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ++iter.first;
 | 
						|
  }
 | 
						|
 | 
						|
  std::sort(candidates.begin(), candidates.end(),
 | 
						|
            [](const TCacheEntry* a, const TCacheEntry* b) { return a->id < b->id; });
 | 
						|
 | 
						|
  bool updated_entry = false;
 | 
						|
  for (TCacheEntry* entry : candidates)
 | 
						|
  {
 | 
						|
    if (tex_info.is_palette_texture)
 | 
						|
    {
 | 
						|
      TCacheEntry* decoded_entry =
 | 
						|
          ApplyPaletteToEntry(entry, nullptr, tex_info.full_format.tlutfmt);
 | 
						|
      if (decoded_entry)
 | 
						|
      {
 | 
						|
        // Link the efb copy with the partially updated texture, so we won't apply this partial
 | 
						|
        // update again
 | 
						|
        entry->CreateReference(stitched_entry);
 | 
						|
        // Mark the texture update as used, as if it was loaded directly
 | 
						|
        entry->frameCount = FRAMECOUNT_INVALID;
 | 
						|
        entry = decoded_entry;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    s32 src_x, src_y, dst_x, dst_y;
 | 
						|
 | 
						|
    // Note for understanding the math:
 | 
						|
    // Normal textures can't be strided, so the 2 missing cases with src_x > 0 don't exist
 | 
						|
    if (entry->addr >= stitched_entry->addr)
 | 
						|
    {
 | 
						|
      s32 block_offset = (entry->addr - stitched_entry->addr) / tex_info.bytes_per_block;
 | 
						|
      s32 block_x = block_offset % numBlocksX;
 | 
						|
      s32 block_y = block_offset / numBlocksX;
 | 
						|
      src_x = 0;
 | 
						|
      src_y = 0;
 | 
						|
      dst_x = block_x * tex_info.block_width;
 | 
						|
      dst_y = block_y * tex_info.block_height;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      s32 srcNumBlocksX = entry->native_width / tex_info.block_width;
 | 
						|
      s32 block_offset = (stitched_entry->addr - entry->addr) / tex_info.bytes_per_block;
 | 
						|
      s32 block_x = block_offset % srcNumBlocksX;
 | 
						|
      s32 block_y = block_offset / srcNumBlocksX;
 | 
						|
      src_x = block_x * tex_info.block_width;
 | 
						|
      src_y = block_y * tex_info.block_height;
 | 
						|
      dst_x = 0;
 | 
						|
      dst_y = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the source rectangle is outside of what we actually have in VRAM, skip the copy.
 | 
						|
    // The backend doesn't do any clamping, so if we don't, we'd pass out-of-range coordinates
 | 
						|
    // to the graphics driver, which can cause GPU resets.
 | 
						|
    if (static_cast<u32>(src_x) >= entry->native_width ||
 | 
						|
        static_cast<u32>(src_y) >= entry->native_height ||
 | 
						|
        static_cast<u32>(dst_x) >= stitched_entry->native_width ||
 | 
						|
        static_cast<u32>(dst_y) >= stitched_entry->native_height)
 | 
						|
    {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    u32 copy_width = std::min(entry->native_width - src_x, stitched_entry->native_width - dst_x);
 | 
						|
    u32 copy_height = std::min(entry->native_height - src_y, stitched_entry->native_height - dst_y);
 | 
						|
 | 
						|
    // If one of the textures is scaled, scale both with the current efb scaling factor
 | 
						|
    if (stitched_entry->native_width != stitched_entry->GetWidth() ||
 | 
						|
        stitched_entry->native_height != stitched_entry->GetHeight() ||
 | 
						|
        entry->native_width != entry->GetWidth() || entry->native_height != entry->GetHeight())
 | 
						|
    {
 | 
						|
      ScaleTextureCacheEntryTo(stitched_entry,
 | 
						|
                               g_renderer->EFBToScaledX(stitched_entry->native_width),
 | 
						|
                               g_renderer->EFBToScaledY(stitched_entry->native_height));
 | 
						|
      ScaleTextureCacheEntryTo(entry, g_renderer->EFBToScaledX(entry->native_width),
 | 
						|
                               g_renderer->EFBToScaledY(entry->native_height));
 | 
						|
 | 
						|
      src_x = g_renderer->EFBToScaledX(src_x);
 | 
						|
      src_y = g_renderer->EFBToScaledY(src_y);
 | 
						|
      dst_x = g_renderer->EFBToScaledX(dst_x);
 | 
						|
      dst_y = g_renderer->EFBToScaledY(dst_y);
 | 
						|
      copy_width = g_renderer->EFBToScaledX(copy_width);
 | 
						|
      copy_height = g_renderer->EFBToScaledY(copy_height);
 | 
						|
    }
 | 
						|
 | 
						|
    MathUtil::Rectangle<int> srcrect, dstrect;
 | 
						|
    srcrect.left = src_x;
 | 
						|
    srcrect.top = src_y;
 | 
						|
    srcrect.right = (src_x + copy_width);
 | 
						|
    srcrect.bottom = (src_y + copy_height);
 | 
						|
 | 
						|
    dstrect.left = dst_x;
 | 
						|
    dstrect.top = dst_y;
 | 
						|
    dstrect.right = (dst_x + copy_width);
 | 
						|
    dstrect.bottom = (dst_y + copy_height);
 | 
						|
 | 
						|
    // If one copy is stereo, and the other isn't... not much we can do here :/
 | 
						|
    const u32 layers_to_copy = std::min(entry->GetNumLayers(), stitched_entry->GetNumLayers());
 | 
						|
    for (u32 layer = 0; layer < layers_to_copy; layer++)
 | 
						|
    {
 | 
						|
      stitched_entry->texture->CopyRectangleFromTexture(entry->texture.get(), srcrect, layer, 0,
 | 
						|
                                                        dstrect, layer, 0);
 | 
						|
    }
 | 
						|
    updated_entry = true;
 | 
						|
 | 
						|
    if (tex_info.is_palette_texture)
 | 
						|
    {
 | 
						|
      // Remove the temporary converted texture, it won't be used anywhere else
 | 
						|
      // TODO: It would be nice to convert and copy in one step, but this code path isn't common
 | 
						|
      InvalidateTexture(GetTexCacheIter(entry));
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      // Link the two textures together, so we won't apply this partial update again
 | 
						|
      entry->CreateReference(stitched_entry);
 | 
						|
      // Mark the texture update as used, as if it was loaded directly
 | 
						|
      entry->frameCount = FRAMECOUNT_INVALID;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!updated_entry)
 | 
						|
  {
 | 
						|
    // Kinda annoying that we have to throw away the texture we just created, but with the above
 | 
						|
    // code requiring the TCacheEntry object exists, can't do much at the moment.
 | 
						|
    InvalidateTexture(GetTexCacheIter(stitched_entry));
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  stitched_entry->texture->FinishedRendering();
 | 
						|
  return stitched_entry;
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry*
 | 
						|
TextureCacheBase::CreateNormalTexture(const TextureLookupInformation& tex_info, u32 layers)
 | 
						|
{
 | 
						|
  // create the entry/texture
 | 
						|
  const TextureConfig config(tex_info.native_width, tex_info.native_height,
 | 
						|
                             tex_info.computed_levels, layers, 1, AbstractTextureFormat::RGBA8,
 | 
						|
                             AbstractTextureFlag_RenderTarget);
 | 
						|
  TCacheEntry* entry = AllocateCacheEntry(config);
 | 
						|
  if (!entry)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  textures_by_address.emplace(tex_info.address, entry);
 | 
						|
  if (tex_info.texture_cache_safety_color_sample_size == 0 ||
 | 
						|
      std::max(tex_info.total_bytes, tex_info.palette_size) <=
 | 
						|
          (u32)tex_info.texture_cache_safety_color_sample_size * 8)
 | 
						|
  {
 | 
						|
    entry->textures_by_hash_iter = textures_by_hash.emplace(tex_info.full_hash, entry);
 | 
						|
  }
 | 
						|
 | 
						|
  entry->SetGeneralParameters(tex_info.address, tex_info.total_bytes, tex_info.full_format, false);
 | 
						|
  entry->SetDimensions(tex_info.native_width, tex_info.native_height, tex_info.computed_levels);
 | 
						|
  entry->SetHashes(tex_info.base_hash, tex_info.full_hash);
 | 
						|
  entry->is_custom_tex = false;
 | 
						|
  entry->memory_stride = entry->BytesPerRow();
 | 
						|
  entry->SetNotCopy();
 | 
						|
 | 
						|
  INCSTAT(stats.numTexturesUploaded);
 | 
						|
  SETSTAT(stats.numTexturesAlive, textures_by_address.size());
 | 
						|
 | 
						|
  return entry;
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry*
 | 
						|
TextureCacheBase::GetTextureFromMemory(const TextureLookupInformation& tex_info)
 | 
						|
{
 | 
						|
  // We can decode on the GPU if it is a supported format and the flag is enabled.
 | 
						|
  // Currently we don't decode RGBA8 textures from Tmem, as that would require copying from both
 | 
						|
  // banks, and if we're doing an copy we may as well just do the whole thing on the CPU, since
 | 
						|
  // there's no conversion between formats. In the future this could be extended with a separate
 | 
						|
  // shader, however.
 | 
						|
  const bool decode_on_gpu =
 | 
						|
      g_ActiveConfig.UseGPUTextureDecoding() &&
 | 
						|
      !(tex_info.from_tmem && tex_info.full_format.texfmt == TextureFormat::RGBA8);
 | 
						|
 | 
						|
  // Since it's coming from RAM, it can only have one layer (no stereo).
 | 
						|
  TCacheEntry* entry = CreateNormalTexture(tex_info, 1);
 | 
						|
  entry->may_have_overlapping_textures = false;
 | 
						|
  LoadTextureLevelZeroFromMemory(entry, tex_info, decode_on_gpu);
 | 
						|
  entry->texture->FinishedRendering();
 | 
						|
  return entry;
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::LoadTextureLevelZeroFromMemory(TCacheEntry* entry_to_update,
 | 
						|
                                                      const TextureLookupInformation& tex_info,
 | 
						|
                                                      bool decode_on_gpu)
 | 
						|
{
 | 
						|
  const u8* tlut = &texMem[tex_info.tlut_address];
 | 
						|
 | 
						|
  if (!decode_on_gpu ||
 | 
						|
      !DecodeTextureOnGPU(entry_to_update, 0, tex_info.src_data, tex_info.total_bytes,
 | 
						|
                          tex_info.full_format.texfmt, tex_info.native_width,
 | 
						|
                          tex_info.native_height, tex_info.expanded_width, tex_info.expanded_height,
 | 
						|
                          tex_info.bytes_per_block *
 | 
						|
                              (tex_info.expanded_width / tex_info.block_width),
 | 
						|
                          tlut, tex_info.full_format.tlutfmt))
 | 
						|
  {
 | 
						|
    size_t decoded_texture_size = tex_info.expanded_width * sizeof(u32) * tex_info.expanded_height;
 | 
						|
    CheckTempSize(decoded_texture_size);
 | 
						|
    if (!(tex_info.full_format.texfmt == TextureFormat::RGBA8 && tex_info.from_tmem))
 | 
						|
    {
 | 
						|
      TexDecoder_Decode(temp, tex_info.src_data, tex_info.expanded_width, tex_info.expanded_height,
 | 
						|
                        tex_info.full_format.texfmt, tlut, tex_info.full_format.tlutfmt);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      u8* src_data_gb = &texMem[tex_info.tmem_address_odd];
 | 
						|
      TexDecoder_DecodeRGBA8FromTmem(temp, tex_info.src_data, src_data_gb, tex_info.expanded_width,
 | 
						|
                                     tex_info.expanded_height);
 | 
						|
    }
 | 
						|
 | 
						|
    entry_to_update->texture->Load(0, tex_info.native_width, tex_info.native_height,
 | 
						|
                                   tex_info.expanded_width, temp, decoded_texture_size);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
EFBCopyFilterCoefficients
 | 
						|
TextureCacheBase::GetRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients)
 | 
						|
{
 | 
						|
  // To simplify the backend, we precalculate the three coefficients in common. Coefficients 0, 1
 | 
						|
  // are for the row above, 2, 3, 4 are for the current pixel, and 5, 6 are for the row below.
 | 
						|
  return EFBCopyFilterCoefficients{
 | 
						|
      static_cast<float>(static_cast<u32>(coefficients[0]) + static_cast<u32>(coefficients[1])) /
 | 
						|
          64.0f,
 | 
						|
      static_cast<float>(static_cast<u32>(coefficients[2]) + static_cast<u32>(coefficients[3]) +
 | 
						|
                         static_cast<u32>(coefficients[4])) /
 | 
						|
          64.0f,
 | 
						|
      static_cast<float>(static_cast<u32>(coefficients[5]) + static_cast<u32>(coefficients[6])) /
 | 
						|
          64.0f,
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
EFBCopyFilterCoefficients
 | 
						|
TextureCacheBase::GetVRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients)
 | 
						|
{
 | 
						|
  // If the user disables the copy filter, only apply it to the VRAM copy.
 | 
						|
  // This way games which are sensitive to changes to the RAM copy of the XFB will be unaffected.
 | 
						|
  EFBCopyFilterCoefficients res = GetRAMCopyFilterCoefficients(coefficients);
 | 
						|
  if (!g_ActiveConfig.bDisableCopyFilter)
 | 
						|
    return res;
 | 
						|
 | 
						|
  // Disabling the copy filter in options should not ignore the values the game sets completely,
 | 
						|
  // as some games use the filter coefficients to control the brightness of the screen. Instead,
 | 
						|
  // add all coefficients to the middle sample, so the deflicker/vertical filter has no effect.
 | 
						|
  res.middle = res.upper + res.middle + res.lower;
 | 
						|
  res.upper = 0.0f;
 | 
						|
  res.lower = 0.0f;
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
bool TextureCacheBase::NeedsCopyFilterInShader(const EFBCopyFilterCoefficients& coefficients)
 | 
						|
{
 | 
						|
  // If the top/bottom coefficients are zero, no point sampling/blending from these rows.
 | 
						|
  return coefficients.upper != 0 || coefficients.lower != 0;
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::CopyRenderTargetToTexture(
 | 
						|
    u32 dstAddr, EFBCopyFormat dstFormat, u32 width, u32 height, u32 dstStride, bool is_depth_copy,
 | 
						|
    const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf, float y_scale, float gamma,
 | 
						|
    bool clamp_top, bool clamp_bottom, const CopyFilterCoefficients::Values& filter_coefficients)
 | 
						|
{
 | 
						|
  // Emulation methods:
 | 
						|
  //
 | 
						|
  // - EFB to RAM:
 | 
						|
  //      Encodes the requested EFB data at its native resolution to the emulated RAM using shaders.
 | 
						|
  //      Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being
 | 
						|
  //      used as a texture again.
 | 
						|
  //      Advantage: CPU can read data from the EFB copy and we don't lose any important updates to
 | 
						|
  //      the texture
 | 
						|
  //      Disadvantage: Encoding+decoding steps often are redundant because only some games read or
 | 
						|
  //      modify EFB copies before using them as textures.
 | 
						|
  //
 | 
						|
  // - EFB to texture:
 | 
						|
  //      Copies the requested EFB data to a texture object in VRAM, performing any color conversion
 | 
						|
  //      using shaders.
 | 
						|
  //      Advantage: Works for many games, since in most cases EFB copies aren't read or modified at
 | 
						|
  //      all before being used as a texture again.
 | 
						|
  //                 Since we don't do any further encoding or decoding here, this method is much
 | 
						|
  //                 faster.
 | 
						|
  //                 It also allows enhancing the visual quality by doing scaled EFB copies.
 | 
						|
  //
 | 
						|
  // - Hybrid EFB copies:
 | 
						|
  //      1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to
 | 
						|
  //      RAM)
 | 
						|
  //      1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address
 | 
						|
  //      range.
 | 
						|
  //          If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB
 | 
						|
  //          copies.
 | 
						|
  //      2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB
 | 
						|
  //      copy was triggered to that address before):
 | 
						|
  //      2a) Entry doesn't exist:
 | 
						|
  //          - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture)
 | 
						|
  //          - Create a texture cache entry for the target (type = TCET_EC_VRAM)
 | 
						|
  //          - Store a hash of the encoded RAM data in the texcache entry.
 | 
						|
  //      2b) Entry exists AND type is TCET_EC_VRAM:
 | 
						|
  //          - Like case 2a, but reuse the old texcache entry instead of creating a new one.
 | 
						|
  //      2c) Entry exists AND type is TCET_EC_DYNAMIC:
 | 
						|
  //          - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded
 | 
						|
  //          data in the existing texcache entry.
 | 
						|
  //          - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic,
 | 
						|
  //          i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end
 | 
						|
  //          up deleting it and reloading the data from RAM anyway.
 | 
						|
  //      3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you
 | 
						|
  //      stored when encoding the EFB data to RAM.
 | 
						|
  //      3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created
 | 
						|
  //      3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set
 | 
						|
  //      type to TCET_EC_DYNAMIC.
 | 
						|
  //          Redecode the source RAM data to a VRAM object. The entry basically behaves like a
 | 
						|
  //          normal texture now.
 | 
						|
  //      3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture.
 | 
						|
  //      Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture.
 | 
						|
  //                 Compatibility is as good as EFB to RAM.
 | 
						|
  //      Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM.
 | 
						|
  //                    EFB copy cache depends on accurate texture hashing being enabled. However,
 | 
						|
  //                    with accurate hashing you end up being as slow as without a copy cache
 | 
						|
  //                    anyway.
 | 
						|
  //
 | 
						|
  // Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush
 | 
						|
  // which stalls any further CPU processing.
 | 
						|
  const bool is_xfb_copy = !is_depth_copy && !isIntensity && dstFormat == EFBCopyFormat::XFB;
 | 
						|
  bool copy_to_vram =
 | 
						|
      g_ActiveConfig.backend_info.bSupportsCopyToVram && !g_ActiveConfig.bDisableCopyToVRAM;
 | 
						|
  bool copy_to_ram =
 | 
						|
      !(is_xfb_copy ? g_ActiveConfig.bSkipXFBCopyToRam : g_ActiveConfig.bSkipEFBCopyToRam) ||
 | 
						|
      !copy_to_vram;
 | 
						|
 | 
						|
  u8* dst = Memory::GetPointer(dstAddr);
 | 
						|
  if (dst == nullptr)
 | 
						|
  {
 | 
						|
    ERROR_LOG(VIDEO, "Trying to copy from EFB to invalid address 0x%8x", dstAddr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // tex_w and tex_h are the native size of the texture in the GC memory.
 | 
						|
  // The size scaled_* represents the emulated texture. Those differ
 | 
						|
  // because of upscaling and because of yscaling of XFB copies.
 | 
						|
  // For the latter, we keep the EFB resolution for the virtual XFB blit.
 | 
						|
  u32 tex_w = width;
 | 
						|
  u32 tex_h = height;
 | 
						|
  u32 scaled_tex_w = g_renderer->EFBToScaledX(srcRect.GetWidth());
 | 
						|
  u32 scaled_tex_h = g_renderer->EFBToScaledY(srcRect.GetHeight());
 | 
						|
 | 
						|
  if (scaleByHalf)
 | 
						|
  {
 | 
						|
    tex_w /= 2;
 | 
						|
    tex_h /= 2;
 | 
						|
    scaled_tex_w /= 2;
 | 
						|
    scaled_tex_h /= 2;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!is_xfb_copy && !g_ActiveConfig.bCopyEFBScaled)
 | 
						|
  {
 | 
						|
    // No upscaling
 | 
						|
    scaled_tex_w = tex_w;
 | 
						|
    scaled_tex_h = tex_h;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the base (in memory) format of this efb copy.
 | 
						|
  TextureFormat baseFormat = TexDecoder_GetEFBCopyBaseFormat(dstFormat);
 | 
						|
 | 
						|
  u32 blockH = TexDecoder_GetBlockHeightInTexels(baseFormat);
 | 
						|
  const u32 blockW = TexDecoder_GetBlockWidthInTexels(baseFormat);
 | 
						|
 | 
						|
  // Round up source height to multiple of block size
 | 
						|
  u32 actualHeight = Common::AlignUp(tex_h, blockH);
 | 
						|
  const u32 actualWidth = Common::AlignUp(tex_w, blockW);
 | 
						|
 | 
						|
  u32 num_blocks_y = actualHeight / blockH;
 | 
						|
  const u32 num_blocks_x = actualWidth / blockW;
 | 
						|
 | 
						|
  // RGBA takes two cache lines per block; all others take one
 | 
						|
  const u32 bytes_per_block = baseFormat == TextureFormat::RGBA8 ? 64 : 32;
 | 
						|
 | 
						|
  const u32 bytes_per_row = num_blocks_x * bytes_per_block;
 | 
						|
  const u32 covered_range = num_blocks_y * dstStride;
 | 
						|
 | 
						|
  if (dstStride < bytes_per_row)
 | 
						|
  {
 | 
						|
    // This kind of efb copy results in a scrambled image.
 | 
						|
    // I'm pretty sure no game actually wants to do this, it might be caused by a
 | 
						|
    // programming bug in the game, or a CPU/Bounding box emulation issue with dolphin.
 | 
						|
    // The copy_to_ram code path above handles this "correctly" and scrambles the image
 | 
						|
    // but the copy_to_vram code path just saves and uses unscrambled texture instead.
 | 
						|
 | 
						|
    // To avoid a "incorrect" result, we simply skip doing the copy_to_vram code path
 | 
						|
    // so if the game does try to use the scrambled texture, dolphin will grab the scrambled
 | 
						|
    // texture (or black if copy_to_ram is also disabled) out of ram.
 | 
						|
    ERROR_LOG(VIDEO, "Memory stride too small (%i < %i)", dstStride, bytes_per_row);
 | 
						|
    copy_to_vram = false;
 | 
						|
  }
 | 
						|
 | 
						|
  TCacheEntry* entry = nullptr;
 | 
						|
  if (copy_to_vram)
 | 
						|
  {
 | 
						|
    // create the texture
 | 
						|
    const TextureConfig config(scaled_tex_w, scaled_tex_h, 1, g_framebuffer_manager->GetEFBLayers(),
 | 
						|
                               1, AbstractTextureFormat::RGBA8, AbstractTextureFlag_RenderTarget);
 | 
						|
    entry = AllocateCacheEntry(config);
 | 
						|
    if (entry)
 | 
						|
    {
 | 
						|
      entry->SetGeneralParameters(dstAddr, 0, baseFormat, is_xfb_copy);
 | 
						|
      entry->SetDimensions(tex_w, tex_h, 1);
 | 
						|
      entry->frameCount = FRAMECOUNT_INVALID;
 | 
						|
      if (is_xfb_copy)
 | 
						|
      {
 | 
						|
        entry->should_force_safe_hashing = is_xfb_copy;
 | 
						|
        entry->SetXfbCopy(dstStride);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        entry->SetEfbCopy(dstStride);
 | 
						|
      }
 | 
						|
      entry->may_have_overlapping_textures = false;
 | 
						|
      entry->is_custom_tex = false;
 | 
						|
 | 
						|
      CopyEFBToCacheEntry(entry, is_depth_copy, srcRect, scaleByHalf, dstFormat, isIntensity, gamma,
 | 
						|
                          clamp_top, clamp_bottom,
 | 
						|
                          GetVRAMCopyFilterCoefficients(filter_coefficients));
 | 
						|
 | 
						|
      if (g_ActiveConfig.bDumpEFBTarget && !is_xfb_copy)
 | 
						|
      {
 | 
						|
        static int efb_count = 0;
 | 
						|
        entry->texture->Save(StringFromFormat("%sefb_frame_%i.png",
 | 
						|
                                              File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(),
 | 
						|
                                              efb_count++),
 | 
						|
                             0);
 | 
						|
      }
 | 
						|
 | 
						|
      if (g_ActiveConfig.bDumpXFBTarget && is_xfb_copy)
 | 
						|
      {
 | 
						|
        static int xfb_count = 0;
 | 
						|
        entry->texture->Save(StringFromFormat("%sxfb_copy_%i.png",
 | 
						|
                                              File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(),
 | 
						|
                                              xfb_count++),
 | 
						|
                             0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (copy_to_ram)
 | 
						|
  {
 | 
						|
    EFBCopyFilterCoefficients coefficients = GetRAMCopyFilterCoefficients(filter_coefficients);
 | 
						|
    PEControl::PixelFormat srcFormat = bpmem.zcontrol.pixel_format;
 | 
						|
    EFBCopyParams format(srcFormat, dstFormat, is_depth_copy, isIntensity,
 | 
						|
                         NeedsCopyFilterInShader(coefficients));
 | 
						|
 | 
						|
    std::unique_ptr<AbstractStagingTexture> staging_texture = GetEFBCopyStagingTexture();
 | 
						|
    if (staging_texture)
 | 
						|
    {
 | 
						|
      CopyEFB(staging_texture.get(), format, tex_w, bytes_per_row, num_blocks_y, dstStride, srcRect,
 | 
						|
              scaleByHalf, y_scale, gamma, clamp_top, clamp_bottom, coefficients);
 | 
						|
 | 
						|
      // We can't defer if there is no VRAM copy (since we need to update the hash).
 | 
						|
      if (!copy_to_vram || !g_ActiveConfig.bDeferEFBCopies)
 | 
						|
      {
 | 
						|
        // Immediately flush it.
 | 
						|
        WriteEFBCopyToRAM(dst, bytes_per_row / sizeof(u32), num_blocks_y, dstStride,
 | 
						|
                          std::move(staging_texture));
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        // Defer the flush until later.
 | 
						|
        entry->pending_efb_copy = std::move(staging_texture);
 | 
						|
        entry->pending_efb_copy_width = bytes_per_row / sizeof(u32);
 | 
						|
        entry->pending_efb_copy_height = num_blocks_y;
 | 
						|
        entry->pending_efb_copy_invalidated = false;
 | 
						|
        m_pending_efb_copies.push_back(entry);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    if (is_xfb_copy)
 | 
						|
    {
 | 
						|
      UninitializeXFBMemory(dst, dstStride, bytes_per_row, num_blocks_y);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      // Hack: Most games don't actually need the correct texture data in RAM
 | 
						|
      //       and we can just keep a copy in VRAM. We zero the memory so we
 | 
						|
      //       can check it hasn't changed before using our copy in VRAM.
 | 
						|
      u8* ptr = dst;
 | 
						|
      for (u32 i = 0; i < num_blocks_y; i++)
 | 
						|
      {
 | 
						|
        std::memset(ptr, 0, bytes_per_row);
 | 
						|
        ptr += dstStride;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Invalidate all textures, if they are either fully overwritten by our efb copy, or if they
 | 
						|
  // have a different stride than our efb copy. Partly overwritten textures with the same stride
 | 
						|
  // as our efb copy are marked to check them for partial texture updates.
 | 
						|
  // TODO: The logic to detect overlapping strided efb copies is not 100% accurate.
 | 
						|
  bool strided_efb_copy = dstStride != bytes_per_row;
 | 
						|
  auto iter = FindOverlappingTextures(dstAddr, covered_range);
 | 
						|
  while (iter.first != iter.second)
 | 
						|
  {
 | 
						|
    TCacheEntry* overlapping_entry = iter.first->second;
 | 
						|
 | 
						|
    if (overlapping_entry->addr == dstAddr && overlapping_entry->is_xfb_copy)
 | 
						|
    {
 | 
						|
      for (auto& reference : overlapping_entry->references)
 | 
						|
      {
 | 
						|
        reference->reference_changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (overlapping_entry->OverlapsMemoryRange(dstAddr, covered_range))
 | 
						|
    {
 | 
						|
      u32 overlap_range = std::min(overlapping_entry->addr + overlapping_entry->size_in_bytes,
 | 
						|
                                   dstAddr + covered_range) -
 | 
						|
                          std::max(overlapping_entry->addr, dstAddr);
 | 
						|
      if (!copy_to_vram || overlapping_entry->memory_stride != dstStride ||
 | 
						|
          (!strided_efb_copy && overlapping_entry->size_in_bytes == overlap_range) ||
 | 
						|
          (strided_efb_copy && overlapping_entry->size_in_bytes == overlap_range &&
 | 
						|
           overlapping_entry->addr == dstAddr))
 | 
						|
      {
 | 
						|
        // Pending EFB copies which are completely covered by this new copy can simply be tossed,
 | 
						|
        // instead of having to flush them later on, since this copy will write over everything.
 | 
						|
        iter.first = InvalidateTexture(iter.first, true);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      overlapping_entry->may_have_overlapping_textures = true;
 | 
						|
 | 
						|
      // There are cases (Rogue Squadron 2 / Texas Holdem on Wiiware) where
 | 
						|
      // for xfb copies the textures overlap which causes the hash of the first copy
 | 
						|
      // to be different (from when it was originally created).  This has no implications
 | 
						|
      // for XFB2Tex because the underlying memory doesn't change (dummy values) but
 | 
						|
      // can affect XFB2Ram when we compare the texture cache copy hash with the
 | 
						|
      // newly computed hash
 | 
						|
      // By calculating the hash when we receive overlapping xfbs, we are able
 | 
						|
      // to mitigate this
 | 
						|
      if (overlapping_entry->is_xfb_copy && copy_to_ram)
 | 
						|
      {
 | 
						|
        overlapping_entry->hash = overlapping_entry->CalculateHash();
 | 
						|
      }
 | 
						|
 | 
						|
      // Do not load textures by hash, if they were at least partly overwritten by an efb copy.
 | 
						|
      // In this case, comparing the hash is not enough to check, if two textures are identical.
 | 
						|
      if (overlapping_entry->textures_by_hash_iter != textures_by_hash.end())
 | 
						|
      {
 | 
						|
        textures_by_hash.erase(overlapping_entry->textures_by_hash_iter);
 | 
						|
        overlapping_entry->textures_by_hash_iter = textures_by_hash.end();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ++iter.first;
 | 
						|
  }
 | 
						|
 | 
						|
  if (g_bRecordFifoData)
 | 
						|
  {
 | 
						|
    // Mark the memory behind this efb copy as dynamicly generated for the Fifo log
 | 
						|
    u32 address = dstAddr;
 | 
						|
    for (u32 i = 0; i < num_blocks_y; i++)
 | 
						|
    {
 | 
						|
      FifoRecorder::GetInstance().UseMemory(address, bytes_per_row, MemoryUpdate::TEXTURE_MAP,
 | 
						|
                                            true);
 | 
						|
      address += dstStride;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Even if the copy is deferred, still compute the hash. This way if the copy is used as a texture
 | 
						|
  // in a subsequent draw before it is flushed, it will have the same hash.
 | 
						|
  if (entry)
 | 
						|
  {
 | 
						|
    const u64 hash = entry->CalculateHash();
 | 
						|
    entry->SetHashes(hash, hash);
 | 
						|
    textures_by_address.emplace(dstAddr, entry);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::FlushEFBCopies()
 | 
						|
{
 | 
						|
  if (m_pending_efb_copies.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (TCacheEntry* entry : m_pending_efb_copies)
 | 
						|
    FlushEFBCopy(entry);
 | 
						|
  m_pending_efb_copies.clear();
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::WriteEFBCopyToRAM(u8* dst_ptr, u32 width, u32 height, u32 stride,
 | 
						|
                                         std::unique_ptr<AbstractStagingTexture> staging_texture)
 | 
						|
{
 | 
						|
  MathUtil::Rectangle<int> copy_rect(0, 0, static_cast<int>(width), static_cast<int>(height));
 | 
						|
  staging_texture->ReadTexels(copy_rect, dst_ptr, stride);
 | 
						|
  ReleaseEFBCopyStagingTexture(std::move(staging_texture));
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::FlushEFBCopy(TCacheEntry* entry)
 | 
						|
{
 | 
						|
  // Copy from texture -> guest memory.
 | 
						|
  u8* const dst = Memory::GetPointer(entry->addr);
 | 
						|
  WriteEFBCopyToRAM(dst, entry->pending_efb_copy_width, entry->pending_efb_copy_height,
 | 
						|
                    entry->memory_stride, std::move(entry->pending_efb_copy));
 | 
						|
 | 
						|
  // If the EFB copy was invalidated (e.g. the bloom case mentioned in InvalidateTexture), now is
 | 
						|
  // the time to clean up the TCacheEntry. In which case, we don't need to compute the new hash of
 | 
						|
  // the RAM copy. But we need to clean up the TCacheEntry, as InvalidateTexture doesn't free it.
 | 
						|
  if (entry->pending_efb_copy_invalidated)
 | 
						|
  {
 | 
						|
    delete entry;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Re-hash the texture now that the guest memory is populated.
 | 
						|
  // This should be safe because we'll catch any writes before the game can modify it.
 | 
						|
  const u64 hash = entry->CalculateHash();
 | 
						|
  entry->SetHashes(hash, hash);
 | 
						|
 | 
						|
  // Check for any overlapping XFB copies which now need the hash recomputed.
 | 
						|
  // See the comment above regarding Rogue Squadron 2.
 | 
						|
  if (entry->is_xfb_copy)
 | 
						|
  {
 | 
						|
    const u32 covered_range = entry->pending_efb_copy_height * entry->memory_stride;
 | 
						|
    auto range = FindOverlappingTextures(entry->addr, covered_range);
 | 
						|
    for (auto iter = range.first; iter != range.second; ++iter)
 | 
						|
    {
 | 
						|
      TCacheEntry* overlapping_entry = iter->second;
 | 
						|
      if (overlapping_entry->may_have_overlapping_textures && overlapping_entry->is_xfb_copy &&
 | 
						|
          overlapping_entry->OverlapsMemoryRange(entry->addr, covered_range))
 | 
						|
      {
 | 
						|
        const u64 overlapping_hash = overlapping_entry->CalculateHash();
 | 
						|
        entry->SetHashes(overlapping_hash, overlapping_hash);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<AbstractStagingTexture> TextureCacheBase::GetEFBCopyStagingTexture()
 | 
						|
{
 | 
						|
  // Pull off the back first to re-use the most frequently used textures.
 | 
						|
  if (!m_efb_copy_staging_texture_pool.empty())
 | 
						|
  {
 | 
						|
    auto ptr = std::move(m_efb_copy_staging_texture_pool.back());
 | 
						|
    m_efb_copy_staging_texture_pool.pop_back();
 | 
						|
    return ptr;
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<AbstractStagingTexture> tex = g_renderer->CreateStagingTexture(
 | 
						|
      StagingTextureType::Readback, m_efb_encoding_texture->GetConfig());
 | 
						|
  if (!tex)
 | 
						|
    WARN_LOG(VIDEO, "Failed to create EFB copy staging texture");
 | 
						|
 | 
						|
  return tex;
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::ReleaseEFBCopyStagingTexture(std::unique_ptr<AbstractStagingTexture> tex)
 | 
						|
{
 | 
						|
  m_efb_copy_staging_texture_pool.push_back(std::move(tex));
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::UninitializeXFBMemory(u8* dst, u32 stride, u32 bytes_per_row,
 | 
						|
                                             u32 num_blocks_y)
 | 
						|
{
 | 
						|
// Originally, we planned on using a 'key color'
 | 
						|
// for alpha to address partial xfbs (Mario Strikers / Chicken Little).
 | 
						|
// This work was removed since it was unfinished but there
 | 
						|
// was still a desire to differentiate between the old and the new approach
 | 
						|
// which is why we still set uninitialized xfb memory to fuchsia
 | 
						|
// (Y=1,U=254,V=254) instead of dark green (Y=0,U=0,V=0) in YUV
 | 
						|
// like is done in the EFB path.
 | 
						|
// This comment is indented wrong because of the silly linter, btw.
 | 
						|
 | 
						|
#if defined(_M_X86) || defined(_M_X86_64)
 | 
						|
  __m128i sixteenBytes = _mm_set1_epi16((s16)(u16)0xFE01);
 | 
						|
#endif
 | 
						|
 | 
						|
  for (u32 i = 0; i < num_blocks_y; i++)
 | 
						|
  {
 | 
						|
    u32 size = bytes_per_row;
 | 
						|
    u8* rowdst = dst;
 | 
						|
#if defined(_M_X86) || defined(_M_X86_64)
 | 
						|
    while (size >= 16)
 | 
						|
    {
 | 
						|
      _mm_storeu_si128((__m128i*)rowdst, sixteenBytes);
 | 
						|
      size -= 16;
 | 
						|
      rowdst += 16;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    for (u32 offset = 0; offset < size; offset++)
 | 
						|
    {
 | 
						|
      if (offset & 1)
 | 
						|
      {
 | 
						|
        rowdst[offset] = 254;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        rowdst[offset] = 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    dst += stride;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TCacheEntry* TextureCacheBase::AllocateCacheEntry(const TextureConfig& config)
 | 
						|
{
 | 
						|
  std::optional<TexPoolEntry> alloc = AllocateTexture(config);
 | 
						|
  if (!alloc)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  TCacheEntry* cacheEntry =
 | 
						|
      new TCacheEntry(std::move(alloc->texture), std::move(alloc->framebuffer));
 | 
						|
  cacheEntry->textures_by_hash_iter = textures_by_hash.end();
 | 
						|
  cacheEntry->id = last_entry_id++;
 | 
						|
  return cacheEntry;
 | 
						|
}
 | 
						|
 | 
						|
std::optional<TextureCacheBase::TexPoolEntry>
 | 
						|
TextureCacheBase::AllocateTexture(const TextureConfig& config)
 | 
						|
{
 | 
						|
  TexPool::iterator iter = FindMatchingTextureFromPool(config);
 | 
						|
  if (iter != texture_pool.end())
 | 
						|
  {
 | 
						|
    auto entry = std::move(iter->second);
 | 
						|
    texture_pool.erase(iter);
 | 
						|
    return std::move(entry);
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<AbstractTexture> texture = g_renderer->CreateTexture(config);
 | 
						|
  if (!texture)
 | 
						|
  {
 | 
						|
    WARN_LOG(VIDEO, "Failed to allocate a %ux%ux%u texture", config.width, config.height,
 | 
						|
             config.layers);
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<AbstractFramebuffer> framebuffer;
 | 
						|
  if (config.IsRenderTarget())
 | 
						|
  {
 | 
						|
    framebuffer = g_renderer->CreateFramebuffer(texture.get(), nullptr);
 | 
						|
    if (!framebuffer)
 | 
						|
    {
 | 
						|
      WARN_LOG(VIDEO, "Failed to allocate a %ux%ux%u framebuffer", config.width, config.height,
 | 
						|
               config.layers);
 | 
						|
      return {};
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  INCSTAT(stats.numTexturesCreated);
 | 
						|
  return TexPoolEntry(std::move(texture), std::move(framebuffer));
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TexPool::iterator
 | 
						|
TextureCacheBase::FindMatchingTextureFromPool(const TextureConfig& config)
 | 
						|
{
 | 
						|
  // Find a texture from the pool that does not have a frameCount of FRAMECOUNT_INVALID.
 | 
						|
  // This prevents a texture from being used twice in a single frame with different data,
 | 
						|
  // which potentially means that a driver has to maintain two copies of the texture anyway.
 | 
						|
  // Render-target textures are fine through, as they have to be generated in a seperated pass.
 | 
						|
  // As non-render-target textures are usually static, this should not matter much.
 | 
						|
  auto range = texture_pool.equal_range(config);
 | 
						|
  auto matching_iter = std::find_if(range.first, range.second, [](const auto& iter) {
 | 
						|
    return iter.first.IsRenderTarget() || iter.second.frameCount != FRAMECOUNT_INVALID;
 | 
						|
  });
 | 
						|
  return matching_iter != range.second ? matching_iter : texture_pool.end();
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TexAddrCache::iterator
 | 
						|
TextureCacheBase::GetTexCacheIter(TextureCacheBase::TCacheEntry* entry)
 | 
						|
{
 | 
						|
  auto iter_range = textures_by_address.equal_range(entry->addr);
 | 
						|
  TexAddrCache::iterator iter = iter_range.first;
 | 
						|
  while (iter != iter_range.second)
 | 
						|
  {
 | 
						|
    if (iter->second == entry)
 | 
						|
    {
 | 
						|
      return iter;
 | 
						|
    }
 | 
						|
    ++iter;
 | 
						|
  }
 | 
						|
  return textures_by_address.end();
 | 
						|
}
 | 
						|
 | 
						|
std::pair<TextureCacheBase::TexAddrCache::iterator, TextureCacheBase::TexAddrCache::iterator>
 | 
						|
TextureCacheBase::FindOverlappingTextures(u32 addr, u32 size_in_bytes)
 | 
						|
{
 | 
						|
  // We index by the starting address only, so there is no way to query all textures
 | 
						|
  // which end after the given addr. But the GC textures have a limited size, so we
 | 
						|
  // look for all textures which have a start address bigger than addr minus the maximal
 | 
						|
  // texture size. But this yields false-positives which must be checked later on.
 | 
						|
 | 
						|
  // 1024 x 1024 texel times 8 nibbles per texel
 | 
						|
  constexpr u32 max_texture_size = 1024 * 1024 * 4;
 | 
						|
  u32 lower_addr = addr > max_texture_size ? addr - max_texture_size : 0;
 | 
						|
  auto begin = textures_by_address.lower_bound(lower_addr);
 | 
						|
  auto end = textures_by_address.upper_bound(addr + size_in_bytes);
 | 
						|
 | 
						|
  return std::make_pair(begin, end);
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TexAddrCache::iterator
 | 
						|
TextureCacheBase::InvalidateTexture(TexAddrCache::iterator iter, bool discard_pending_efb_copy)
 | 
						|
{
 | 
						|
  if (iter == textures_by_address.end())
 | 
						|
    return textures_by_address.end();
 | 
						|
 | 
						|
  TCacheEntry* entry = iter->second;
 | 
						|
 | 
						|
  if (entry->textures_by_hash_iter != textures_by_hash.end())
 | 
						|
  {
 | 
						|
    textures_by_hash.erase(entry->textures_by_hash_iter);
 | 
						|
    entry->textures_by_hash_iter = textures_by_hash.end();
 | 
						|
  }
 | 
						|
 | 
						|
  for (size_t i = 0; i < bound_textures.size(); ++i)
 | 
						|
  {
 | 
						|
    // If the entry is currently bound and not invalidated, keep it, but mark it as invalidated.
 | 
						|
    // This way it can still be used via tmem cache emulation, but nothing else.
 | 
						|
    // Spyro: A Hero's Tail is known for using such overwritten textures.
 | 
						|
    if (bound_textures[i] == entry && IsValidBindPoint(static_cast<u32>(i)))
 | 
						|
    {
 | 
						|
      bound_textures[i]->tmem_only = true;
 | 
						|
      return ++iter;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a pending EFB copy, we don't want to flush it here.
 | 
						|
  // Why? Because let's say a game is rendering a bloom-type effect, using EFB copies to essentially
 | 
						|
  // downscale the framebuffer. Copy from EFB->Texture, draw texture to EFB, copy EFB->Texture,
 | 
						|
  // draw, repeat. The second copy will invalidate the first, forcing a flush. Which means we lose
 | 
						|
  // any benefit of EFB copy batching. So instead, let's just leave the EFB copy pending, but remove
 | 
						|
  // it from the texture cache. This way we don't use the old VRAM copy. When the EFB copies are
 | 
						|
  // eventually flushed, they will overwrite each other, and the end result should be the same.
 | 
						|
  if (entry->pending_efb_copy)
 | 
						|
  {
 | 
						|
    if (discard_pending_efb_copy)
 | 
						|
    {
 | 
						|
      // If the RAM copy is being completely overwritten by a new EFB copy, we can discard the
 | 
						|
      // existing pending copy, and not bother waiting for it in the future. This happens in
 | 
						|
      // Xenoblade's sunset scene, where 35 copies are done per frame, and 25 of them are
 | 
						|
      // copied to the same address, and can be skipped.
 | 
						|
      ReleaseEFBCopyStagingTexture(std::move(entry->pending_efb_copy));
 | 
						|
      auto pending_it = std::find(m_pending_efb_copies.begin(), m_pending_efb_copies.end(), entry);
 | 
						|
      if (pending_it != m_pending_efb_copies.end())
 | 
						|
        m_pending_efb_copies.erase(pending_it);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      entry->pending_efb_copy_invalidated = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto config = entry->texture->GetConfig();
 | 
						|
  texture_pool.emplace(config,
 | 
						|
                       TexPoolEntry(std::move(entry->texture), std::move(entry->framebuffer)));
 | 
						|
 | 
						|
  // Don't delete if there's a pending EFB copy, as we need the TCacheEntry alive.
 | 
						|
  if (!entry->pending_efb_copy)
 | 
						|
    delete entry;
 | 
						|
 | 
						|
  return textures_by_address.erase(iter);
 | 
						|
}
 | 
						|
 | 
						|
bool TextureCacheBase::CreateUtilityTextures()
 | 
						|
{
 | 
						|
  constexpr TextureConfig encoding_texture_config(
 | 
						|
      EFB_WIDTH * 4, 1024, 1, 1, 1, AbstractTextureFormat::BGRA8, AbstractTextureFlag_RenderTarget);
 | 
						|
  m_efb_encoding_texture = g_renderer->CreateTexture(encoding_texture_config);
 | 
						|
  if (!m_efb_encoding_texture)
 | 
						|
    return false;
 | 
						|
 | 
						|
  m_efb_encoding_framebuffer = g_renderer->CreateFramebuffer(m_efb_encoding_texture.get(), nullptr);
 | 
						|
  if (!m_efb_encoding_framebuffer)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (g_ActiveConfig.backend_info.bSupportsGPUTextureDecoding)
 | 
						|
  {
 | 
						|
    constexpr TextureConfig decoding_texture_config(
 | 
						|
        1024, 1024, 1, 1, 1, AbstractTextureFormat::RGBA8, AbstractTextureFlag_ComputeImage);
 | 
						|
    m_decoding_texture = g_renderer->CreateTexture(decoding_texture_config);
 | 
						|
    if (!m_decoding_texture)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::CopyEFBToCacheEntry(TCacheEntry* entry, bool is_depth_copy,
 | 
						|
                                           const EFBRectangle& src_rect, bool scale_by_half,
 | 
						|
                                           EFBCopyFormat dst_format, bool is_intensity, float gamma,
 | 
						|
                                           bool clamp_top, bool clamp_bottom,
 | 
						|
                                           const EFBCopyFilterCoefficients& filter_coefficients)
 | 
						|
{
 | 
						|
  // Flush EFB pokes first, as they're expected to be included.
 | 
						|
  g_framebuffer_manager->FlushEFBPokes();
 | 
						|
 | 
						|
  // Get the pipeline which we will be using. If the compilation failed, this will be null.
 | 
						|
  const AbstractPipeline* copy_pipeline =
 | 
						|
      g_shader_cache->GetEFBCopyToVRAMPipeline(TextureConversionShaderGen::GetShaderUid(
 | 
						|
          dst_format, is_depth_copy, is_intensity, scale_by_half,
 | 
						|
          NeedsCopyFilterInShader(filter_coefficients)));
 | 
						|
  if (!copy_pipeline)
 | 
						|
  {
 | 
						|
    WARN_LOG(VIDEO, "Skipping EFB copy to VRAM due to missing pipeline.");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const auto scaled_src_rect = g_renderer->ConvertEFBRectangle(src_rect);
 | 
						|
  AbstractTexture* src_texture =
 | 
						|
      is_depth_copy ? g_framebuffer_manager->ResolveEFBDepthTexture(scaled_src_rect) :
 | 
						|
                      g_framebuffer_manager->ResolveEFBColorTexture(scaled_src_rect);
 | 
						|
 | 
						|
  g_renderer->BeginUtilityDrawing();
 | 
						|
 | 
						|
  // Fill uniform buffer.
 | 
						|
  struct Uniforms
 | 
						|
  {
 | 
						|
    float src_left, src_top, src_width, src_height;
 | 
						|
    float filter_coefficients[3];
 | 
						|
    float gamma_rcp;
 | 
						|
    float clamp_top;
 | 
						|
    float clamp_bottom;
 | 
						|
    float pixel_height;
 | 
						|
    u32 padding;
 | 
						|
  };
 | 
						|
  Uniforms uniforms;
 | 
						|
  const auto framebuffer_rect = g_renderer->ConvertFramebufferRectangle(
 | 
						|
      scaled_src_rect, g_framebuffer_manager->GetEFBFramebuffer());
 | 
						|
  const float rcp_efb_width = 1.0f / static_cast<float>(g_framebuffer_manager->GetEFBWidth());
 | 
						|
  const float rcp_efb_height = 1.0f / static_cast<float>(g_framebuffer_manager->GetEFBHeight());
 | 
						|
  uniforms.src_left = framebuffer_rect.left * rcp_efb_width;
 | 
						|
  uniforms.src_top = framebuffer_rect.top * rcp_efb_height;
 | 
						|
  uniforms.src_width = framebuffer_rect.GetWidth() * rcp_efb_width;
 | 
						|
  uniforms.src_height = framebuffer_rect.GetHeight() * rcp_efb_height;
 | 
						|
  uniforms.filter_coefficients[0] = filter_coefficients.upper;
 | 
						|
  uniforms.filter_coefficients[1] = filter_coefficients.middle;
 | 
						|
  uniforms.filter_coefficients[2] = filter_coefficients.lower;
 | 
						|
  uniforms.gamma_rcp = 1.0f / gamma;
 | 
						|
  uniforms.clamp_top = clamp_top ? framebuffer_rect.top * rcp_efb_height : 0.0f;
 | 
						|
  uniforms.clamp_bottom = clamp_bottom ? framebuffer_rect.bottom * rcp_efb_height : 1.0f;
 | 
						|
  uniforms.pixel_height = g_ActiveConfig.bCopyEFBScaled ? rcp_efb_height : 1.0f / EFB_HEIGHT;
 | 
						|
  uniforms.padding = 0;
 | 
						|
  g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms));
 | 
						|
 | 
						|
  // Use the copy pipeline to render the VRAM copy.
 | 
						|
  g_renderer->SetAndDiscardFramebuffer(entry->framebuffer.get());
 | 
						|
  g_renderer->SetViewportAndScissor(entry->framebuffer->GetRect());
 | 
						|
  g_renderer->SetPipeline(copy_pipeline);
 | 
						|
  g_renderer->SetTexture(0, src_texture);
 | 
						|
  g_renderer->SetSamplerState(0, scale_by_half ? RenderState::GetLinearSamplerState() :
 | 
						|
                                                 RenderState::GetPointSamplerState());
 | 
						|
  g_renderer->Draw(0, 3);
 | 
						|
  g_renderer->EndUtilityDrawing();
 | 
						|
  entry->texture->FinishedRendering();
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::CopyEFB(AbstractStagingTexture* dst, const EFBCopyParams& params,
 | 
						|
                               u32 native_width, u32 bytes_per_row, u32 num_blocks_y,
 | 
						|
                               u32 memory_stride, const EFBRectangle& src_rect, bool scale_by_half,
 | 
						|
                               float y_scale, float gamma, bool clamp_top, bool clamp_bottom,
 | 
						|
                               const EFBCopyFilterCoefficients& filter_coefficients)
 | 
						|
{
 | 
						|
  // Flush EFB pokes first, as they're expected to be included.
 | 
						|
  g_framebuffer_manager->FlushEFBPokes();
 | 
						|
 | 
						|
  // Get the pipeline which we will be using. If the compilation failed, this will be null.
 | 
						|
  const AbstractPipeline* copy_pipeline = g_shader_cache->GetEFBCopyToRAMPipeline(params);
 | 
						|
  if (!copy_pipeline)
 | 
						|
  {
 | 
						|
    WARN_LOG(VIDEO, "Skipping EFB copy to VRAM due to missing pipeline.");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const auto scaled_src_rect = g_renderer->ConvertEFBRectangle(src_rect);
 | 
						|
  AbstractTexture* src_texture =
 | 
						|
      params.depth ? g_framebuffer_manager->ResolveEFBDepthTexture(scaled_src_rect) :
 | 
						|
                     g_framebuffer_manager->ResolveEFBColorTexture(scaled_src_rect);
 | 
						|
 | 
						|
  g_renderer->BeginUtilityDrawing();
 | 
						|
 | 
						|
  // Fill uniform buffer.
 | 
						|
  struct Uniforms
 | 
						|
  {
 | 
						|
    std::array<s32, 4> position_uniform;
 | 
						|
    float y_scale;
 | 
						|
    float gamma_rcp;
 | 
						|
    float clamp_top;
 | 
						|
    float clamp_bottom;
 | 
						|
    float filter_coefficients[3];
 | 
						|
    u32 padding;
 | 
						|
  };
 | 
						|
  Uniforms encoder_params;
 | 
						|
  const auto framebuffer_rect = g_renderer->ConvertFramebufferRectangle(
 | 
						|
      scaled_src_rect, g_framebuffer_manager->GetEFBFramebuffer());
 | 
						|
  const float rcp_efb_height = 1.0f / static_cast<float>(g_framebuffer_manager->GetEFBHeight());
 | 
						|
  encoder_params.position_uniform[0] = src_rect.left;
 | 
						|
  encoder_params.position_uniform[1] = src_rect.top;
 | 
						|
  encoder_params.position_uniform[2] = static_cast<s32>(native_width);
 | 
						|
  encoder_params.position_uniform[3] = scale_by_half ? 2 : 1;
 | 
						|
  encoder_params.y_scale = y_scale;
 | 
						|
  encoder_params.gamma_rcp = 1.0f / gamma;
 | 
						|
  encoder_params.clamp_top = clamp_top ? framebuffer_rect.top * rcp_efb_height : 0.0f;
 | 
						|
  encoder_params.clamp_bottom = clamp_bottom ? framebuffer_rect.bottom * rcp_efb_height : 1.0f;
 | 
						|
  encoder_params.filter_coefficients[0] = filter_coefficients.upper;
 | 
						|
  encoder_params.filter_coefficients[1] = filter_coefficients.middle;
 | 
						|
  encoder_params.filter_coefficients[2] = filter_coefficients.lower;
 | 
						|
  g_vertex_manager->UploadUtilityUniforms(&encoder_params, sizeof(encoder_params));
 | 
						|
 | 
						|
  // We also linear filtering for both box filtering and downsampling higher resolutions to 1x
 | 
						|
  // TODO: This only produces perfect downsampling for 2x IR, other resolutions will need more
 | 
						|
  //       complex down filtering to average all pixels and produce the correct result.
 | 
						|
  const bool linear_filter =
 | 
						|
      (scale_by_half && !params.depth) || g_renderer->GetEFBScale() != 1 || y_scale > 1.0f;
 | 
						|
 | 
						|
  // Because the shader uses gl_FragCoord and we read it back, we must render to the lower-left.
 | 
						|
  const u32 render_width = bytes_per_row / sizeof(u32);
 | 
						|
  const u32 render_height = num_blocks_y;
 | 
						|
  const auto encode_rect = MathUtil::Rectangle<int>(0, 0, render_width, render_height);
 | 
						|
 | 
						|
  // Render to GPU texture, and then copy to CPU-accessible texture.
 | 
						|
  g_renderer->SetAndDiscardFramebuffer(m_efb_encoding_framebuffer.get());
 | 
						|
  g_renderer->SetViewportAndScissor(encode_rect);
 | 
						|
  g_renderer->SetPipeline(copy_pipeline);
 | 
						|
  g_renderer->SetTexture(0, src_texture);
 | 
						|
  g_renderer->SetSamplerState(0, linear_filter ? RenderState::GetLinearSamplerState() :
 | 
						|
                                                 RenderState::GetPointSamplerState());
 | 
						|
  g_renderer->Draw(0, 3);
 | 
						|
  dst->CopyFromTexture(m_efb_encoding_texture.get(), encode_rect, 0, 0, encode_rect);
 | 
						|
  g_renderer->EndUtilityDrawing();
 | 
						|
 | 
						|
  // Flush if there's sufficient draws between this copy and the last.
 | 
						|
  g_vertex_manager->OnEFBCopyToRAM();
 | 
						|
}
 | 
						|
 | 
						|
bool TextureCacheBase::ConvertTexture(TCacheEntry* entry, TCacheEntry* unconverted,
 | 
						|
                                      const void* palette, TLUTFormat format)
 | 
						|
{
 | 
						|
  DEBUG_ASSERT(entry->texture->GetConfig().IsRenderTarget() && entry->framebuffer);
 | 
						|
  if (!g_ActiveConfig.backend_info.bSupportsPaletteConversion)
 | 
						|
  {
 | 
						|
    ERROR_LOG(VIDEO, "Backend does not support palette conversion!");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  g_renderer->BeginUtilityDrawing();
 | 
						|
 | 
						|
  const u32 palette_size = unconverted->format == TextureFormat::I4 ? 32 : 512;
 | 
						|
  u32 texel_buffer_offset;
 | 
						|
  if (!g_vertex_manager->UploadTexelBuffer(palette, palette_size,
 | 
						|
                                           TexelBufferFormat::TEXEL_BUFFER_FORMAT_R16_UINT,
 | 
						|
                                           &texel_buffer_offset))
 | 
						|
  {
 | 
						|
    ERROR_LOG(VIDEO, "Texel buffer upload failed");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  struct Uniforms
 | 
						|
  {
 | 
						|
    float multiplier;
 | 
						|
    u32 texel_buffer_offset;
 | 
						|
    u32 pad[2];
 | 
						|
  };
 | 
						|
  static_assert(std::is_standard_layout<Uniforms>::value);
 | 
						|
  Uniforms uniforms = {};
 | 
						|
  uniforms.multiplier = unconverted->format == TextureFormat::I4 ? 15.0f : 255.0f;
 | 
						|
  uniforms.texel_buffer_offset = texel_buffer_offset;
 | 
						|
  g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms));
 | 
						|
 | 
						|
  g_renderer->SetAndDiscardFramebuffer(entry->framebuffer.get());
 | 
						|
  g_renderer->SetViewportAndScissor(entry->texture->GetRect());
 | 
						|
  g_renderer->SetPipeline(g_shader_cache->GetPaletteConversionPipeline(format));
 | 
						|
  g_renderer->SetTexture(1, unconverted->texture.get());
 | 
						|
  g_renderer->SetSamplerState(1, RenderState::GetPointSamplerState());
 | 
						|
  g_renderer->Draw(0, 3);
 | 
						|
  g_renderer->EndUtilityDrawing();
 | 
						|
  entry->texture->FinishedRendering();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool TextureCacheBase::DecodeTextureOnGPU(TCacheEntry* entry, u32 dst_level, const u8* data,
 | 
						|
                                          u32 data_size, TextureFormat format, u32 width,
 | 
						|
                                          u32 height, u32 aligned_width, u32 aligned_height,
 | 
						|
                                          u32 row_stride, const u8* palette,
 | 
						|
                                          TLUTFormat palette_format)
 | 
						|
{
 | 
						|
  const auto* info = TextureConversionShaderTiled::GetDecodingShaderInfo(format);
 | 
						|
  if (!info)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const AbstractShader* shader = g_shader_cache->GetTextureDecodingShader(format, palette_format);
 | 
						|
  if (!shader)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Copy to GPU-visible buffer, aligned to the data type.
 | 
						|
  const u32 bytes_per_buffer_elem =
 | 
						|
      VertexManagerBase::GetTexelBufferElementSize(info->buffer_format);
 | 
						|
 | 
						|
  // Allocate space in stream buffer, and copy texture + palette across.
 | 
						|
  u32 src_offset = 0, palette_offset = 0;
 | 
						|
  if (info->palette_size > 0)
 | 
						|
  {
 | 
						|
    if (!g_vertex_manager->UploadTexelBuffer(data, data_size, info->buffer_format, &src_offset,
 | 
						|
                                             palette, info->palette_size,
 | 
						|
                                             TEXEL_BUFFER_FORMAT_R16_UINT, &palette_offset))
 | 
						|
    {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    if (!g_vertex_manager->UploadTexelBuffer(data, data_size, info->buffer_format, &src_offset))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set up uniforms.
 | 
						|
  struct Uniforms
 | 
						|
  {
 | 
						|
    u32 dst_width, dst_height;
 | 
						|
    u32 src_width, src_height;
 | 
						|
    u32 src_offset, src_row_stride;
 | 
						|
    u32 palette_offset, unused;
 | 
						|
  } uniforms = {width,          height,     aligned_width,
 | 
						|
                aligned_height, src_offset, row_stride / bytes_per_buffer_elem,
 | 
						|
                palette_offset};
 | 
						|
  g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms));
 | 
						|
  g_renderer->SetComputeImageTexture(m_decoding_texture.get(), false, true);
 | 
						|
 | 
						|
  auto dispatch_groups =
 | 
						|
      TextureConversionShaderTiled::GetDispatchCount(info, aligned_width, aligned_height);
 | 
						|
  g_renderer->DispatchComputeShader(shader, dispatch_groups.first, dispatch_groups.second, 1);
 | 
						|
 | 
						|
  // Copy from decoding texture -> final texture
 | 
						|
  // This is because we don't want to have to create compute view for every layer
 | 
						|
  const auto copy_rect = entry->texture->GetConfig().GetMipRect(dst_level);
 | 
						|
  entry->texture->CopyRectangleFromTexture(m_decoding_texture.get(), copy_rect, 0, 0, copy_rect, 0,
 | 
						|
                                           dst_level);
 | 
						|
  entry->texture->FinishedRendering();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
u32 TextureCacheBase::TCacheEntry::BytesPerRow() const
 | 
						|
{
 | 
						|
  const u32 blockW = TexDecoder_GetBlockWidthInTexels(format.texfmt);
 | 
						|
 | 
						|
  // Round up source height to multiple of block size
 | 
						|
  const u32 actualWidth = Common::AlignUp(native_width, blockW);
 | 
						|
 | 
						|
  const u32 numBlocksX = actualWidth / blockW;
 | 
						|
 | 
						|
  // RGBA takes two cache lines per block; all others take one
 | 
						|
  const u32 bytes_per_block = format == TextureFormat::RGBA8 ? 64 : 32;
 | 
						|
 | 
						|
  return numBlocksX * bytes_per_block;
 | 
						|
}
 | 
						|
 | 
						|
u32 TextureCacheBase::TCacheEntry::NumBlocksY() const
 | 
						|
{
 | 
						|
  u32 blockH = TexDecoder_GetBlockHeightInTexels(format.texfmt);
 | 
						|
  // Round up source height to multiple of block size
 | 
						|
  u32 actualHeight = Common::AlignUp(native_height, blockH);
 | 
						|
 | 
						|
  return actualHeight / blockH;
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::TCacheEntry::SetXfbCopy(u32 stride)
 | 
						|
{
 | 
						|
  is_efb_copy = false;
 | 
						|
  is_xfb_copy = true;
 | 
						|
  memory_stride = stride;
 | 
						|
 | 
						|
  ASSERT_MSG(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small");
 | 
						|
 | 
						|
  size_in_bytes = memory_stride * NumBlocksY();
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::TCacheEntry::SetEfbCopy(u32 stride)
 | 
						|
{
 | 
						|
  is_efb_copy = true;
 | 
						|
  is_xfb_copy = false;
 | 
						|
  memory_stride = stride;
 | 
						|
 | 
						|
  ASSERT_MSG(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small");
 | 
						|
 | 
						|
  size_in_bytes = memory_stride * NumBlocksY();
 | 
						|
}
 | 
						|
 | 
						|
void TextureCacheBase::TCacheEntry::SetNotCopy()
 | 
						|
{
 | 
						|
  is_xfb_copy = false;
 | 
						|
  is_efb_copy = false;
 | 
						|
}
 | 
						|
 | 
						|
int TextureCacheBase::TCacheEntry::HashSampleSize() const
 | 
						|
{
 | 
						|
  if (should_force_safe_hashing)
 | 
						|
  {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return g_ActiveConfig.iSafeTextureCache_ColorSamples;
 | 
						|
}
 | 
						|
 | 
						|
u64 TextureCacheBase::TCacheEntry::CalculateHash() const
 | 
						|
{
 | 
						|
  u8* ptr = Memory::GetPointer(addr);
 | 
						|
  if (memory_stride == BytesPerRow())
 | 
						|
  {
 | 
						|
    return Common::GetHash64(ptr, size_in_bytes, HashSampleSize());
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    u32 blocks = NumBlocksY();
 | 
						|
    u64 temp_hash = size_in_bytes;
 | 
						|
 | 
						|
    u32 samples_per_row = 0;
 | 
						|
    if (HashSampleSize() != 0)
 | 
						|
    {
 | 
						|
      // Hash at least 4 samples per row to avoid hashing in a bad pattern, like just on the left
 | 
						|
      // side of the efb copy
 | 
						|
      samples_per_row = std::max(HashSampleSize() / blocks, 4u);
 | 
						|
    }
 | 
						|
 | 
						|
    for (u32 i = 0; i < blocks; i++)
 | 
						|
    {
 | 
						|
      // Multiply by a prime number to mix the hash up a bit. This prevents identical blocks from
 | 
						|
      // canceling each other out
 | 
						|
      temp_hash = (temp_hash * 397) ^ Common::GetHash64(ptr, BytesPerRow(), samples_per_row);
 | 
						|
      ptr += memory_stride;
 | 
						|
    }
 | 
						|
    return temp_hash;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TextureCacheBase::TexPoolEntry::TexPoolEntry(std::unique_ptr<AbstractTexture> tex,
 | 
						|
                                             std::unique_ptr<AbstractFramebuffer> fb)
 | 
						|
    : texture(std::move(tex)), framebuffer(std::move(fb))
 | 
						|
{
 | 
						|
}
 |