forked from dolphin-emu/dolphin
		
	
		
			
				
	
	
		
			833 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			833 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2008 Dolphin Emulator Project
 | |
| // Licensed under GPLv2+
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| #include <cfloat>
 | |
| #include <cmath>
 | |
| #include <cstring>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| 
 | |
| #include "Common/BitSet.h"
 | |
| #include "Common/ChunkFile.h"
 | |
| #include "Common/CommonFuncs.h"
 | |
| #include "Common/CommonTypes.h"
 | |
| #include "Common/Logging/Log.h"
 | |
| #include "Common/MathUtil.h"
 | |
| #include "Core/ConfigManager.h"
 | |
| #include "Core/Core.h"
 | |
| #include "VideoCommon/BPMemory.h"
 | |
| #include "VideoCommon/CPMemory.h"
 | |
| #include "VideoCommon/RenderBase.h"
 | |
| #include "VideoCommon/Statistics.h"
 | |
| #include "VideoCommon/VertexManagerBase.h"
 | |
| #include "VideoCommon/VertexShaderManager.h"
 | |
| #include "VideoCommon/VideoCommon.h"
 | |
| #include "VideoCommon/VideoConfig.h"
 | |
| #include "VideoCommon/XFMemory.h"
 | |
| 
 | |
| alignas(16) static float g_fProjectionMatrix[16];
 | |
| 
 | |
| // track changes
 | |
| static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged;
 | |
| static BitSet32 nMaterialsChanged;
 | |
| static int nTransformMatricesChanged[2];      // min,max
 | |
| static int nNormalMatricesChanged[2];         // min,max
 | |
| static int nPostTransformMatricesChanged[2];  // min,max
 | |
| static int nLightsChanged[2];                 // min,max
 | |
| 
 | |
| static Matrix44 s_viewportCorrection;
 | |
| static Matrix33 s_viewRotationMatrix;
 | |
| static Matrix33 s_viewInvRotationMatrix;
 | |
| static float s_fViewTranslationVector[3];
 | |
| static float s_fViewRotation[2];
 | |
| 
 | |
| VertexShaderConstants VertexShaderManager::constants;
 | |
| bool VertexShaderManager::dirty;
 | |
| 
 | |
| struct ProjectionHack
 | |
| {
 | |
|   float sign;
 | |
|   float value;
 | |
|   ProjectionHack() {}
 | |
|   ProjectionHack(float new_sign, float new_value) : sign(new_sign), value(new_value) {}
 | |
| };
 | |
| 
 | |
| namespace
 | |
| {
 | |
| // Control Variables
 | |
| static ProjectionHack g_ProjHack1;
 | |
| static ProjectionHack g_ProjHack2;
 | |
| }  // Namespace
 | |
| 
 | |
| static float PHackValue(std::string sValue)
 | |
| {
 | |
|   float f = 0;
 | |
|   bool fp = false;
 | |
|   const char* cStr = sValue.c_str();
 | |
|   char* c = new char[strlen(cStr) + 1];
 | |
|   std::istringstream sTof("");
 | |
| 
 | |
|   for (unsigned int i = 0; i <= strlen(cStr); ++i)
 | |
|   {
 | |
|     if (i == 20)
 | |
|     {
 | |
|       c[i] = '\0';
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     c[i] = (cStr[i] == ',') ? '.' : *(cStr + i);
 | |
|     if (c[i] == '.')
 | |
|       fp = true;
 | |
|   }
 | |
| 
 | |
|   cStr = c;
 | |
|   sTof.str(cStr);
 | |
|   sTof >> f;
 | |
| 
 | |
|   if (!fp)
 | |
|     f /= 0xF4240;
 | |
| 
 | |
|   delete[] c;
 | |
|   return f;
 | |
| }
 | |
| 
 | |
| // Due to the BT.601 standard which the GameCube is based on being a compromise
 | |
| // between PAL and NTSC, neither standard gets square pixels. They are each off
 | |
| // by ~9% in opposite directions.
 | |
| // Just in case any game decides to take this into account, we do both these
 | |
| // tests with a large amount of slop.
 | |
| static bool AspectIs4_3(float width, float height)
 | |
| {
 | |
|   float aspect = fabsf(width / height);
 | |
|   return fabsf(aspect - 4.0f / 3.0f) < 4.0f / 3.0f * 0.11;  // within 11% of 4:3
 | |
| }
 | |
| 
 | |
| static bool AspectIs16_9(float width, float height)
 | |
| {
 | |
|   float aspect = fabsf(width / height);
 | |
|   return fabsf(aspect - 16.0f / 9.0f) < 16.0f / 9.0f * 0.11;  // within 11% of 16:9
 | |
| }
 | |
| 
 | |
| void UpdateProjectionHack(int iPhackvalue[], std::string sPhackvalue[])
 | |
| {
 | |
|   float fhackvalue1 = 0, fhackvalue2 = 0;
 | |
|   float fhacksign1 = 1.0, fhacksign2 = 1.0;
 | |
|   const char* sTemp[2];
 | |
| 
 | |
|   if (iPhackvalue[0] == 1)
 | |
|   {
 | |
|     NOTICE_LOG(VIDEO, "\t\t--- Orthographic Projection Hack ON ---");
 | |
| 
 | |
|     fhacksign1 *= (iPhackvalue[1] == 1) ? -1.0f : fhacksign1;
 | |
|     sTemp[0] = (iPhackvalue[1] == 1) ? " * (-1)" : "";
 | |
|     fhacksign2 *= (iPhackvalue[2] == 1) ? -1.0f : fhacksign2;
 | |
|     sTemp[1] = (iPhackvalue[2] == 1) ? " * (-1)" : "";
 | |
| 
 | |
|     fhackvalue1 = PHackValue(sPhackvalue[0]);
 | |
|     NOTICE_LOG(VIDEO, "- zNear Correction = (%f + zNear)%s", fhackvalue1, sTemp[0]);
 | |
| 
 | |
|     fhackvalue2 = PHackValue(sPhackvalue[1]);
 | |
|     NOTICE_LOG(VIDEO, "- zFar Correction =  (%f + zFar)%s", fhackvalue2, sTemp[1]);
 | |
|   }
 | |
| 
 | |
|   // Set the projections hacks
 | |
|   g_ProjHack1 = ProjectionHack(fhacksign1, fhackvalue1);
 | |
|   g_ProjHack2 = ProjectionHack(fhacksign2, fhackvalue2);
 | |
| }
 | |
| 
 | |
| // Viewport correction:
 | |
| // In D3D, the viewport rectangle must fit within the render target.
 | |
| // Say you want a viewport at (ix, iy) with size (iw, ih),
 | |
| // but your viewport must be clamped at (ax, ay) with size (aw, ah).
 | |
| // Just multiply the projection matrix with the following to get the same
 | |
| // effect:
 | |
| // [   (iw/aw)         0     0    ((iw - 2*(ax-ix)) / aw - 1)   ]
 | |
| // [         0   (ih/ah)     0   ((-ih + 2*(ay-iy)) / ah + 1)   ]
 | |
| // [         0         0     1                              0   ]
 | |
| // [         0         0     0                              1   ]
 | |
| static void ViewportCorrectionMatrix(Matrix44& result)
 | |
| {
 | |
|   int scissorXOff = bpmem.scissorOffset.x * 2;
 | |
|   int scissorYOff = bpmem.scissorOffset.y * 2;
 | |
| 
 | |
|   // TODO: ceil, floor or just cast to int?
 | |
|   // TODO: Directly use the floats instead of rounding them?
 | |
|   float intendedX = xfmem.viewport.xOrig - xfmem.viewport.wd - scissorXOff;
 | |
|   float intendedY = xfmem.viewport.yOrig + xfmem.viewport.ht - scissorYOff;
 | |
|   float intendedWd = 2.0f * xfmem.viewport.wd;
 | |
|   float intendedHt = -2.0f * xfmem.viewport.ht;
 | |
| 
 | |
|   if (intendedWd < 0.f)
 | |
|   {
 | |
|     intendedX += intendedWd;
 | |
|     intendedWd = -intendedWd;
 | |
|   }
 | |
|   if (intendedHt < 0.f)
 | |
|   {
 | |
|     intendedY += intendedHt;
 | |
|     intendedHt = -intendedHt;
 | |
|   }
 | |
| 
 | |
|   // fit to EFB size
 | |
|   float X = (intendedX >= 0.f) ? intendedX : 0.f;
 | |
|   float Y = (intendedY >= 0.f) ? intendedY : 0.f;
 | |
|   float Wd = (X + intendedWd <= EFB_WIDTH) ? intendedWd : (EFB_WIDTH - X);
 | |
|   float Ht = (Y + intendedHt <= EFB_HEIGHT) ? intendedHt : (EFB_HEIGHT - Y);
 | |
| 
 | |
|   Matrix44::LoadIdentity(result);
 | |
|   if (Wd == 0 || Ht == 0)
 | |
|     return;
 | |
| 
 | |
|   result.data[4 * 0 + 0] = intendedWd / Wd;
 | |
|   result.data[4 * 0 + 3] = (intendedWd - 2.f * (X - intendedX)) / Wd - 1.f;
 | |
|   result.data[4 * 1 + 1] = intendedHt / Ht;
 | |
|   result.data[4 * 1 + 3] = (-intendedHt + 2.f * (Y - intendedY)) / Ht + 1.f;
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::Init()
 | |
| {
 | |
|   // Initialize state tracking variables
 | |
|   nTransformMatricesChanged[0] = -1;
 | |
|   nTransformMatricesChanged[1] = -1;
 | |
|   nNormalMatricesChanged[0] = -1;
 | |
|   nNormalMatricesChanged[1] = -1;
 | |
|   nPostTransformMatricesChanged[0] = -1;
 | |
|   nPostTransformMatricesChanged[1] = -1;
 | |
|   nLightsChanged[0] = -1;
 | |
|   nLightsChanged[1] = -1;
 | |
|   nMaterialsChanged = BitSet32(0);
 | |
|   bTexMatricesChanged[0] = false;
 | |
|   bTexMatricesChanged[1] = false;
 | |
|   bPosNormalMatrixChanged = false;
 | |
|   bProjectionChanged = true;
 | |
|   bViewportChanged = false;
 | |
| 
 | |
|   xfmem = {};
 | |
|   constants = {};
 | |
|   ResetView();
 | |
| 
 | |
|   // TODO: should these go inside ResetView()?
 | |
|   Matrix44::LoadIdentity(s_viewportCorrection);
 | |
|   memset(g_fProjectionMatrix, 0, sizeof(g_fProjectionMatrix));
 | |
|   for (int i = 0; i < 4; ++i)
 | |
|     g_fProjectionMatrix[i * 5] = 1.0f;
 | |
| 
 | |
|   dirty = true;
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::Dirty()
 | |
| {
 | |
|   // This function is called after a savestate is loaded.
 | |
|   // Any constants that can changed based on settings should be re-calculated
 | |
|   bProjectionChanged = true;
 | |
| 
 | |
|   dirty = true;
 | |
| }
 | |
| 
 | |
| // Syncs the shader constant buffers with xfmem
 | |
| // TODO: A cleaner way to control the matrices without making a mess in the parameters field
 | |
| void VertexShaderManager::SetConstants()
 | |
| {
 | |
|   if (nTransformMatricesChanged[0] >= 0)
 | |
|   {
 | |
|     int startn = nTransformMatricesChanged[0] / 4;
 | |
|     int endn = (nTransformMatricesChanged[1] + 3) / 4;
 | |
|     memcpy(constants.transformmatrices[startn], &xfmem.posMatrices[startn * 4],
 | |
|            (endn - startn) * sizeof(float4));
 | |
|     dirty = true;
 | |
|     nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1;
 | |
|   }
 | |
| 
 | |
|   if (nNormalMatricesChanged[0] >= 0)
 | |
|   {
 | |
|     int startn = nNormalMatricesChanged[0] / 3;
 | |
|     int endn = (nNormalMatricesChanged[1] + 2) / 3;
 | |
|     for (int i = startn; i < endn; i++)
 | |
|     {
 | |
|       memcpy(constants.normalmatrices[i], &xfmem.normalMatrices[3 * i], 12);
 | |
|     }
 | |
|     dirty = true;
 | |
|     nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1;
 | |
|   }
 | |
| 
 | |
|   if (nPostTransformMatricesChanged[0] >= 0)
 | |
|   {
 | |
|     int startn = nPostTransformMatricesChanged[0] / 4;
 | |
|     int endn = (nPostTransformMatricesChanged[1] + 3) / 4;
 | |
|     memcpy(constants.posttransformmatrices[startn], &xfmem.postMatrices[startn * 4],
 | |
|            (endn - startn) * sizeof(float4));
 | |
|     dirty = true;
 | |
|     nPostTransformMatricesChanged[0] = nPostTransformMatricesChanged[1] = -1;
 | |
|   }
 | |
| 
 | |
|   if (nLightsChanged[0] >= 0)
 | |
|   {
 | |
|     // TODO: Outdated comment
 | |
|     // lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats
 | |
|     int istart = nLightsChanged[0] / 0x10;
 | |
|     int iend = (nLightsChanged[1] + 15) / 0x10;
 | |
| 
 | |
|     for (int i = istart; i < iend; ++i)
 | |
|     {
 | |
|       const Light& light = xfmem.lights[i];
 | |
|       VertexShaderConstants::Light& dstlight = constants.lights[i];
 | |
| 
 | |
|       // xfmem.light.color is packed as abgr in u8[4], so we have to swap the order
 | |
|       dstlight.color[0] = light.color[3];
 | |
|       dstlight.color[1] = light.color[2];
 | |
|       dstlight.color[2] = light.color[1];
 | |
|       dstlight.color[3] = light.color[0];
 | |
| 
 | |
|       dstlight.cosatt[0] = light.cosatt[0];
 | |
|       dstlight.cosatt[1] = light.cosatt[1];
 | |
|       dstlight.cosatt[2] = light.cosatt[2];
 | |
| 
 | |
|       if (fabs(light.distatt[0]) < 0.00001f && fabs(light.distatt[1]) < 0.00001f &&
 | |
|           fabs(light.distatt[2]) < 0.00001f)
 | |
|       {
 | |
|         // dist attenuation, make sure not equal to 0!!!
 | |
|         dstlight.distatt[0] = .00001f;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         dstlight.distatt[0] = light.distatt[0];
 | |
|       }
 | |
|       dstlight.distatt[1] = light.distatt[1];
 | |
|       dstlight.distatt[2] = light.distatt[2];
 | |
| 
 | |
|       dstlight.pos[0] = light.dpos[0];
 | |
|       dstlight.pos[1] = light.dpos[1];
 | |
|       dstlight.pos[2] = light.dpos[2];
 | |
| 
 | |
|       double norm = double(light.ddir[0]) * double(light.ddir[0]) +
 | |
|                     double(light.ddir[1]) * double(light.ddir[1]) +
 | |
|                     double(light.ddir[2]) * double(light.ddir[2]);
 | |
|       norm = 1.0 / sqrt(norm);
 | |
|       float norm_float = static_cast<float>(norm);
 | |
|       dstlight.dir[0] = light.ddir[0] * norm_float;
 | |
|       dstlight.dir[1] = light.ddir[1] * norm_float;
 | |
|       dstlight.dir[2] = light.ddir[2] * norm_float;
 | |
|     }
 | |
|     dirty = true;
 | |
| 
 | |
|     nLightsChanged[0] = nLightsChanged[1] = -1;
 | |
|   }
 | |
| 
 | |
|   for (int i : nMaterialsChanged)
 | |
|   {
 | |
|     u32 data = i >= 2 ? xfmem.matColor[i - 2] : xfmem.ambColor[i];
 | |
|     constants.materials[i][0] = (data >> 24) & 0xFF;
 | |
|     constants.materials[i][1] = (data >> 16) & 0xFF;
 | |
|     constants.materials[i][2] = (data >> 8) & 0xFF;
 | |
|     constants.materials[i][3] = data & 0xFF;
 | |
|     dirty = true;
 | |
|   }
 | |
|   nMaterialsChanged = BitSet32(0);
 | |
| 
 | |
|   if (bPosNormalMatrixChanged)
 | |
|   {
 | |
|     bPosNormalMatrixChanged = false;
 | |
| 
 | |
|     const float* pos = &xfmem.posMatrices[g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4];
 | |
|     const float* norm =
 | |
|         &xfmem.normalMatrices[3 * (g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31)];
 | |
| 
 | |
|     memcpy(constants.posnormalmatrix, pos, 3 * sizeof(float4));
 | |
|     memcpy(constants.posnormalmatrix[3], norm, 3 * sizeof(float));
 | |
|     memcpy(constants.posnormalmatrix[4], norm + 3, 3 * sizeof(float));
 | |
|     memcpy(constants.posnormalmatrix[5], norm + 6, 3 * sizeof(float));
 | |
|     dirty = true;
 | |
|   }
 | |
| 
 | |
|   if (bTexMatricesChanged[0])
 | |
|   {
 | |
|     bTexMatricesChanged[0] = false;
 | |
|     const float* pos_matrix_ptrs[] = {
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4]};
 | |
| 
 | |
|     for (size_t i = 0; i < ArraySize(pos_matrix_ptrs); ++i)
 | |
|     {
 | |
|       memcpy(constants.texmatrices[3 * i], pos_matrix_ptrs[i], 3 * sizeof(float4));
 | |
|     }
 | |
|     dirty = true;
 | |
|   }
 | |
| 
 | |
|   if (bTexMatricesChanged[1])
 | |
|   {
 | |
|     bTexMatricesChanged[1] = false;
 | |
|     const float* pos_matrix_ptrs[] = {
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4],
 | |
|         &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4]};
 | |
| 
 | |
|     for (size_t i = 0; i < ArraySize(pos_matrix_ptrs); ++i)
 | |
|     {
 | |
|       memcpy(constants.texmatrices[3 * i + 12], pos_matrix_ptrs[i], 3 * sizeof(float4));
 | |
|     }
 | |
|     dirty = true;
 | |
|   }
 | |
| 
 | |
|   if (bViewportChanged)
 | |
|   {
 | |
|     bViewportChanged = false;
 | |
| 
 | |
|     // The console GPU places the pixel center at 7/12 unless antialiasing
 | |
|     // is enabled, while D3D and OpenGL place it at 0.5. See the comment
 | |
|     // in VertexShaderGen.cpp for details.
 | |
|     // NOTE: If we ever emulate antialiasing, the sample locations set by
 | |
|     // BP registers 0x01-0x04 need to be considered here.
 | |
|     const float pixel_center_correction = 7.0f / 12.0f - 0.5f;
 | |
|     const float pixel_size_x = 2.f / Renderer::EFBToScaledXf(2.f * xfmem.viewport.wd);
 | |
|     const float pixel_size_y = 2.f / Renderer::EFBToScaledXf(2.f * xfmem.viewport.ht);
 | |
|     constants.pixelcentercorrection[0] = pixel_center_correction * pixel_size_x;
 | |
|     constants.pixelcentercorrection[1] = pixel_center_correction * pixel_size_y;
 | |
| 
 | |
|     // By default we don't change the depth value at all in the vertex shader.
 | |
|     constants.pixelcentercorrection[2] = 1.0f;
 | |
|     constants.pixelcentercorrection[3] = 0.0f;
 | |
| 
 | |
|     if (g_ActiveConfig.backend_info.bSupportsDepthClamp)
 | |
|     {
 | |
|       // Oversized depth ranges are handled in the vertex shader. We need to reverse
 | |
|       // the far value to get a reversed depth range mapping. This is necessary
 | |
|       // because the standard depth range equation pushes all depth values towards
 | |
|       // the back of the depth buffer where conventionally depth buffers have the
 | |
|       // least precision.
 | |
|       if (g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
 | |
|       {
 | |
|         if (fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f)
 | |
|         {
 | |
|           // For backends that support reversing the depth range we also support cases
 | |
|           // where the console also uses reversed depth with the same accuracy. We need
 | |
|           // to make sure the depth range is positive here and then reverse the depth in
 | |
|           // the backend viewport.
 | |
|           constants.pixelcentercorrection[2] = fabs(xfmem.viewport.zRange) / 16777215.0f;
 | |
|           if (xfmem.viewport.zRange < 0.0f)
 | |
|             constants.pixelcentercorrection[3] = xfmem.viewport.farZ / 16777215.0f;
 | |
|           else
 | |
|             constants.pixelcentercorrection[3] = 1.0f - xfmem.viewport.farZ / 16777215.0f;
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         if (xfmem.viewport.zRange < 0.0f || xfmem.viewport.zRange > 16777215.0f ||
 | |
|             fabs(xfmem.viewport.farZ) > 16777215.0f)
 | |
|         {
 | |
|           // For backends that don't support reversing the depth range we can still render
 | |
|           // cases where the console uses reversed depth correctly. But we simply can't
 | |
|           // provide the same accuracy as the console.
 | |
|           constants.pixelcentercorrection[2] = xfmem.viewport.zRange / 16777215.0f;
 | |
|           constants.pixelcentercorrection[3] = 1.0f - xfmem.viewport.farZ / 16777215.0f;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     dirty = true;
 | |
|     // This is so implementation-dependent that we can't have it here.
 | |
|     g_renderer->SetViewport();
 | |
| 
 | |
|     // Update projection if the viewport isn't 1:1 useable
 | |
|     if (!g_ActiveConfig.backend_info.bSupportsOversizedViewports)
 | |
|     {
 | |
|       ViewportCorrectionMatrix(s_viewportCorrection);
 | |
|       bProjectionChanged = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (bProjectionChanged)
 | |
|   {
 | |
|     bProjectionChanged = false;
 | |
| 
 | |
|     float* rawProjection = xfmem.projection.rawProjection;
 | |
| 
 | |
|     switch (xfmem.projection.type)
 | |
|     {
 | |
|     case GX_PERSPECTIVE:
 | |
| 
 | |
|       g_fProjectionMatrix[0] = rawProjection[0] * g_ActiveConfig.fAspectRatioHackW;
 | |
|       g_fProjectionMatrix[1] = 0.0f;
 | |
|       g_fProjectionMatrix[2] = rawProjection[1];
 | |
|       g_fProjectionMatrix[3] = 0.0f;
 | |
| 
 | |
|       g_fProjectionMatrix[4] = 0.0f;
 | |
|       g_fProjectionMatrix[5] = rawProjection[2] * g_ActiveConfig.fAspectRatioHackH;
 | |
|       g_fProjectionMatrix[6] = rawProjection[3];
 | |
|       g_fProjectionMatrix[7] = 0.0f;
 | |
| 
 | |
|       g_fProjectionMatrix[8] = 0.0f;
 | |
|       g_fProjectionMatrix[9] = 0.0f;
 | |
|       g_fProjectionMatrix[10] = rawProjection[4];
 | |
| 
 | |
|       g_fProjectionMatrix[11] = rawProjection[5];
 | |
| 
 | |
|       g_fProjectionMatrix[12] = 0.0f;
 | |
|       g_fProjectionMatrix[13] = 0.0f;
 | |
| 
 | |
|       g_fProjectionMatrix[14] = -1.0f;
 | |
|       g_fProjectionMatrix[15] = 0.0f;
 | |
| 
 | |
|       // Heuristic to detect if a GameCube game is in 16:9 anamorphic widescreen mode.
 | |
|       if (!SConfig::GetInstance().bWii)
 | |
|       {
 | |
|         bool viewport_is_4_3 = AspectIs4_3(xfmem.viewport.wd, xfmem.viewport.ht);
 | |
|         if (AspectIs16_9(rawProjection[2], rawProjection[0]) && viewport_is_4_3)
 | |
|           Core::g_aspect_wide = true;  // Projection is 16:9 and viewport is 4:3, we are rendering
 | |
|                                        // an anamorphic widescreen picture
 | |
|         else if (AspectIs4_3(rawProjection[2], rawProjection[0]) && viewport_is_4_3)
 | |
|           Core::g_aspect_wide =
 | |
|               false;  // Project and viewports are both 4:3, we are rendering a normal image.
 | |
|       }
 | |
| 
 | |
|       SETSTAT_FT(stats.gproj_0, g_fProjectionMatrix[0]);
 | |
|       SETSTAT_FT(stats.gproj_1, g_fProjectionMatrix[1]);
 | |
|       SETSTAT_FT(stats.gproj_2, g_fProjectionMatrix[2]);
 | |
|       SETSTAT_FT(stats.gproj_3, g_fProjectionMatrix[3]);
 | |
|       SETSTAT_FT(stats.gproj_4, g_fProjectionMatrix[4]);
 | |
|       SETSTAT_FT(stats.gproj_5, g_fProjectionMatrix[5]);
 | |
|       SETSTAT_FT(stats.gproj_6, g_fProjectionMatrix[6]);
 | |
|       SETSTAT_FT(stats.gproj_7, g_fProjectionMatrix[7]);
 | |
|       SETSTAT_FT(stats.gproj_8, g_fProjectionMatrix[8]);
 | |
|       SETSTAT_FT(stats.gproj_9, g_fProjectionMatrix[9]);
 | |
|       SETSTAT_FT(stats.gproj_10, g_fProjectionMatrix[10]);
 | |
|       SETSTAT_FT(stats.gproj_11, g_fProjectionMatrix[11]);
 | |
|       SETSTAT_FT(stats.gproj_12, g_fProjectionMatrix[12]);
 | |
|       SETSTAT_FT(stats.gproj_13, g_fProjectionMatrix[13]);
 | |
|       SETSTAT_FT(stats.gproj_14, g_fProjectionMatrix[14]);
 | |
|       SETSTAT_FT(stats.gproj_15, g_fProjectionMatrix[15]);
 | |
|       break;
 | |
| 
 | |
|     case GX_ORTHOGRAPHIC:
 | |
| 
 | |
|       g_fProjectionMatrix[0] = rawProjection[0];
 | |
|       g_fProjectionMatrix[1] = 0.0f;
 | |
|       g_fProjectionMatrix[2] = 0.0f;
 | |
|       g_fProjectionMatrix[3] = rawProjection[1];
 | |
| 
 | |
|       g_fProjectionMatrix[4] = 0.0f;
 | |
|       g_fProjectionMatrix[5] = rawProjection[2];
 | |
|       g_fProjectionMatrix[6] = 0.0f;
 | |
|       g_fProjectionMatrix[7] = rawProjection[3];
 | |
| 
 | |
|       g_fProjectionMatrix[8] = 0.0f;
 | |
|       g_fProjectionMatrix[9] = 0.0f;
 | |
|       g_fProjectionMatrix[10] = (g_ProjHack1.value + rawProjection[4]) *
 | |
|                                 ((g_ProjHack1.sign == 0) ? 1.0f : g_ProjHack1.sign);
 | |
|       g_fProjectionMatrix[11] = (g_ProjHack2.value + rawProjection[5]) *
 | |
|                                 ((g_ProjHack2.sign == 0) ? 1.0f : g_ProjHack2.sign);
 | |
| 
 | |
|       g_fProjectionMatrix[12] = 0.0f;
 | |
|       g_fProjectionMatrix[13] = 0.0f;
 | |
| 
 | |
|       g_fProjectionMatrix[14] = 0.0f;
 | |
|       g_fProjectionMatrix[15] = 1.0f;
 | |
| 
 | |
|       SETSTAT_FT(stats.g2proj_0, g_fProjectionMatrix[0]);
 | |
|       SETSTAT_FT(stats.g2proj_1, g_fProjectionMatrix[1]);
 | |
|       SETSTAT_FT(stats.g2proj_2, g_fProjectionMatrix[2]);
 | |
|       SETSTAT_FT(stats.g2proj_3, g_fProjectionMatrix[3]);
 | |
|       SETSTAT_FT(stats.g2proj_4, g_fProjectionMatrix[4]);
 | |
|       SETSTAT_FT(stats.g2proj_5, g_fProjectionMatrix[5]);
 | |
|       SETSTAT_FT(stats.g2proj_6, g_fProjectionMatrix[6]);
 | |
|       SETSTAT_FT(stats.g2proj_7, g_fProjectionMatrix[7]);
 | |
|       SETSTAT_FT(stats.g2proj_8, g_fProjectionMatrix[8]);
 | |
|       SETSTAT_FT(stats.g2proj_9, g_fProjectionMatrix[9]);
 | |
|       SETSTAT_FT(stats.g2proj_10, g_fProjectionMatrix[10]);
 | |
|       SETSTAT_FT(stats.g2proj_11, g_fProjectionMatrix[11]);
 | |
|       SETSTAT_FT(stats.g2proj_12, g_fProjectionMatrix[12]);
 | |
|       SETSTAT_FT(stats.g2proj_13, g_fProjectionMatrix[13]);
 | |
|       SETSTAT_FT(stats.g2proj_14, g_fProjectionMatrix[14]);
 | |
|       SETSTAT_FT(stats.g2proj_15, g_fProjectionMatrix[15]);
 | |
|       SETSTAT_FT(stats.proj_0, rawProjection[0]);
 | |
|       SETSTAT_FT(stats.proj_1, rawProjection[1]);
 | |
|       SETSTAT_FT(stats.proj_2, rawProjection[2]);
 | |
|       SETSTAT_FT(stats.proj_3, rawProjection[3]);
 | |
|       SETSTAT_FT(stats.proj_4, rawProjection[4]);
 | |
|       SETSTAT_FT(stats.proj_5, rawProjection[5]);
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       ERROR_LOG(VIDEO, "Unknown projection type: %d", xfmem.projection.type);
 | |
|     }
 | |
| 
 | |
|     PRIM_LOG("Projection: %f %f %f %f %f %f", rawProjection[0], rawProjection[1], rawProjection[2],
 | |
|              rawProjection[3], rawProjection[4], rawProjection[5]);
 | |
| 
 | |
|     if (g_ActiveConfig.bFreeLook && xfmem.projection.type == GX_PERSPECTIVE)
 | |
|     {
 | |
|       Matrix44 mtxA;
 | |
|       Matrix44 mtxB;
 | |
|       Matrix44 viewMtx;
 | |
| 
 | |
|       Matrix44::Translate(mtxA, s_fViewTranslationVector);
 | |
|       Matrix44::LoadMatrix33(mtxB, s_viewRotationMatrix);
 | |
|       Matrix44::Multiply(mtxB, mtxA, viewMtx);  // view = rotation x translation
 | |
|       Matrix44::Set(mtxB, g_fProjectionMatrix);
 | |
|       Matrix44::Multiply(mtxB, viewMtx, mtxA);               // mtxA = projection x view
 | |
|       Matrix44::Multiply(s_viewportCorrection, mtxA, mtxB);  // mtxB = viewportCorrection x mtxA
 | |
|       memcpy(constants.projection, mtxB.data, 4 * sizeof(float4));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       Matrix44 projMtx;
 | |
|       Matrix44::Set(projMtx, g_fProjectionMatrix);
 | |
| 
 | |
|       Matrix44 correctedMtx;
 | |
|       Matrix44::Multiply(s_viewportCorrection, projMtx, correctedMtx);
 | |
|       memcpy(constants.projection, correctedMtx.data, 4 * sizeof(float4));
 | |
|     }
 | |
| 
 | |
|     dirty = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::InvalidateXFRange(int start, int end)
 | |
| {
 | |
|   if (((u32)start >= (u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4 &&
 | |
|        (u32)start < (u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4 + 12) ||
 | |
|       ((u32)start >=
 | |
|            XFMEM_NORMALMATRICES + ((u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31) * 3 &&
 | |
|        (u32)start < XFMEM_NORMALMATRICES +
 | |
|                         ((u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31) * 3 + 9))
 | |
|   {
 | |
|     bPosNormalMatrixChanged = true;
 | |
|   }
 | |
| 
 | |
|   if (((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4 &&
 | |
|        (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4 + 12) ||
 | |
|       ((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4 &&
 | |
|        (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4 + 12) ||
 | |
|       ((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4 &&
 | |
|        (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4 + 12) ||
 | |
|       ((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4 &&
 | |
|        (u32)start < (u32)g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4 + 12))
 | |
|   {
 | |
|     bTexMatricesChanged[0] = true;
 | |
|   }
 | |
| 
 | |
|   if (((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4 &&
 | |
|        (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4 + 12) ||
 | |
|       ((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4 &&
 | |
|        (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4 + 12) ||
 | |
|       ((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4 &&
 | |
|        (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4 + 12) ||
 | |
|       ((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4 &&
 | |
|        (u32)start < (u32)g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4 + 12))
 | |
|   {
 | |
|     bTexMatricesChanged[1] = true;
 | |
|   }
 | |
| 
 | |
|   if (start < XFMEM_POSMATRICES_END)
 | |
|   {
 | |
|     if (nTransformMatricesChanged[0] == -1)
 | |
|     {
 | |
|       nTransformMatricesChanged[0] = start;
 | |
|       nTransformMatricesChanged[1] = end > XFMEM_POSMATRICES_END ? XFMEM_POSMATRICES_END : end;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if (nTransformMatricesChanged[0] > start)
 | |
|         nTransformMatricesChanged[0] = start;
 | |
| 
 | |
|       if (nTransformMatricesChanged[1] < end)
 | |
|         nTransformMatricesChanged[1] = end > XFMEM_POSMATRICES_END ? XFMEM_POSMATRICES_END : end;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES)
 | |
|   {
 | |
|     int _start = start < XFMEM_NORMALMATRICES ? 0 : start - XFMEM_NORMALMATRICES;
 | |
|     int _end = end < XFMEM_NORMALMATRICES_END ? end - XFMEM_NORMALMATRICES :
 | |
|                                                 XFMEM_NORMALMATRICES_END - XFMEM_NORMALMATRICES;
 | |
| 
 | |
|     if (nNormalMatricesChanged[0] == -1)
 | |
|     {
 | |
|       nNormalMatricesChanged[0] = _start;
 | |
|       nNormalMatricesChanged[1] = _end;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if (nNormalMatricesChanged[0] > _start)
 | |
|         nNormalMatricesChanged[0] = _start;
 | |
| 
 | |
|       if (nNormalMatricesChanged[1] < _end)
 | |
|         nNormalMatricesChanged[1] = _end;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES)
 | |
|   {
 | |
|     int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start - XFMEM_POSTMATRICES;
 | |
|     int _end = end < XFMEM_POSTMATRICES_END ? end - XFMEM_POSTMATRICES :
 | |
|                                               XFMEM_POSTMATRICES_END - XFMEM_POSTMATRICES;
 | |
| 
 | |
|     if (nPostTransformMatricesChanged[0] == -1)
 | |
|     {
 | |
|       nPostTransformMatricesChanged[0] = _start;
 | |
|       nPostTransformMatricesChanged[1] = _end;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if (nPostTransformMatricesChanged[0] > _start)
 | |
|         nPostTransformMatricesChanged[0] = _start;
 | |
| 
 | |
|       if (nPostTransformMatricesChanged[1] < _end)
 | |
|         nPostTransformMatricesChanged[1] = _end;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS)
 | |
|   {
 | |
|     int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start - XFMEM_LIGHTS;
 | |
|     int _end = end < XFMEM_LIGHTS_END ? end - XFMEM_LIGHTS : XFMEM_LIGHTS_END - XFMEM_LIGHTS;
 | |
| 
 | |
|     if (nLightsChanged[0] == -1)
 | |
|     {
 | |
|       nLightsChanged[0] = _start;
 | |
|       nLightsChanged[1] = _end;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if (nLightsChanged[0] > _start)
 | |
|         nLightsChanged[0] = _start;
 | |
| 
 | |
|       if (nLightsChanged[1] < _end)
 | |
|         nLightsChanged[1] = _end;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::SetTexMatrixChangedA(u32 Value)
 | |
| {
 | |
|   if (g_main_cp_state.matrix_index_a.Hex != Value)
 | |
|   {
 | |
|     g_vertex_manager->Flush();
 | |
|     if (g_main_cp_state.matrix_index_a.PosNormalMtxIdx != (Value & 0x3f))
 | |
|       bPosNormalMatrixChanged = true;
 | |
|     bTexMatricesChanged[0] = true;
 | |
|     g_main_cp_state.matrix_index_a.Hex = Value;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::SetTexMatrixChangedB(u32 Value)
 | |
| {
 | |
|   if (g_main_cp_state.matrix_index_b.Hex != Value)
 | |
|   {
 | |
|     g_vertex_manager->Flush();
 | |
|     bTexMatricesChanged[1] = true;
 | |
|     g_main_cp_state.matrix_index_b.Hex = Value;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::SetViewportChanged()
 | |
| {
 | |
|   bViewportChanged = true;
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::SetProjectionChanged()
 | |
| {
 | |
|   bProjectionChanged = true;
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::SetMaterialColorChanged(int index)
 | |
| {
 | |
|   nMaterialsChanged[index] = true;
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::TranslateView(float x, float y, float z)
 | |
| {
 | |
|   float result[3];
 | |
|   float vector[3] = {x, z, y};
 | |
| 
 | |
|   Matrix33::Multiply(s_viewInvRotationMatrix, vector, result);
 | |
| 
 | |
|   for (size_t i = 0; i < ArraySize(result); i++)
 | |
|     s_fViewTranslationVector[i] += result[i];
 | |
| 
 | |
|   bProjectionChanged = true;
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::RotateView(float x, float y)
 | |
| {
 | |
|   s_fViewRotation[0] += x;
 | |
|   s_fViewRotation[1] += y;
 | |
| 
 | |
|   Matrix33 mx;
 | |
|   Matrix33 my;
 | |
|   Matrix33::RotateX(mx, s_fViewRotation[1]);
 | |
|   Matrix33::RotateY(my, s_fViewRotation[0]);
 | |
|   Matrix33::Multiply(mx, my, s_viewRotationMatrix);
 | |
| 
 | |
|   // reverse rotation
 | |
|   Matrix33::RotateX(mx, -s_fViewRotation[1]);
 | |
|   Matrix33::RotateY(my, -s_fViewRotation[0]);
 | |
|   Matrix33::Multiply(my, mx, s_viewInvRotationMatrix);
 | |
| 
 | |
|   bProjectionChanged = true;
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::ResetView()
 | |
| {
 | |
|   memset(s_fViewTranslationVector, 0, sizeof(s_fViewTranslationVector));
 | |
|   Matrix33::LoadIdentity(s_viewRotationMatrix);
 | |
|   Matrix33::LoadIdentity(s_viewInvRotationMatrix);
 | |
|   s_fViewRotation[0] = s_fViewRotation[1] = 0.0f;
 | |
| 
 | |
|   bProjectionChanged = true;
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::TransformToClipSpace(const float* data, float* out, u32 MtxIdx)
 | |
| {
 | |
|   const float* world_matrix = &xfmem.posMatrices[(MtxIdx & 0x3f) * 4];
 | |
| 
 | |
|   // We use the projection matrix calculated by VertexShaderManager, because it
 | |
|   // includes any free look transformations.
 | |
|   // Make sure VertexShaderManager::SetConstants() has been called first.
 | |
|   const float* proj_matrix = &g_fProjectionMatrix[0];
 | |
| 
 | |
|   const float t[3] = {data[0] * world_matrix[0] + data[1] * world_matrix[1] +
 | |
|                           data[2] * world_matrix[2] + world_matrix[3],
 | |
|                       data[0] * world_matrix[4] + data[1] * world_matrix[5] +
 | |
|                           data[2] * world_matrix[6] + world_matrix[7],
 | |
|                       data[0] * world_matrix[8] + data[1] * world_matrix[9] +
 | |
|                           data[2] * world_matrix[10] + world_matrix[11]};
 | |
| 
 | |
|   out[0] = t[0] * proj_matrix[0] + t[1] * proj_matrix[1] + t[2] * proj_matrix[2] + proj_matrix[3];
 | |
|   out[1] = t[0] * proj_matrix[4] + t[1] * proj_matrix[5] + t[2] * proj_matrix[6] + proj_matrix[7];
 | |
|   out[2] = t[0] * proj_matrix[8] + t[1] * proj_matrix[9] + t[2] * proj_matrix[10] + proj_matrix[11];
 | |
|   out[3] =
 | |
|       t[0] * proj_matrix[12] + t[1] * proj_matrix[13] + t[2] * proj_matrix[14] + proj_matrix[15];
 | |
| }
 | |
| 
 | |
| void VertexShaderManager::DoState(PointerWrap& p)
 | |
| {
 | |
|   p.Do(g_fProjectionMatrix);
 | |
|   p.Do(s_viewportCorrection);
 | |
|   p.Do(s_viewRotationMatrix);
 | |
|   p.Do(s_viewInvRotationMatrix);
 | |
|   p.Do(s_fViewTranslationVector);
 | |
|   p.Do(s_fViewRotation);
 | |
| 
 | |
|   p.Do(nTransformMatricesChanged);
 | |
|   p.Do(nNormalMatricesChanged);
 | |
|   p.Do(nPostTransformMatricesChanged);
 | |
|   p.Do(nLightsChanged);
 | |
| 
 | |
|   p.Do(nMaterialsChanged);
 | |
|   p.Do(bTexMatricesChanged);
 | |
|   p.Do(bPosNormalMatrixChanged);
 | |
|   p.Do(bProjectionChanged);
 | |
|   p.Do(bViewportChanged);
 | |
| 
 | |
|   p.Do(constants);
 | |
| 
 | |
|   if (p.GetMode() == PointerWrap::MODE_READ)
 | |
|   {
 | |
|     Dirty();
 | |
|   }
 | |
| }
 |