forked from dolphin-emu/dolphin
		
	stacks), addition of a register cache(currently accumulators on 64bit only). It feels a bit slower, but the numbers are about the same. Caching accumulators doesn't change speed either. git-svn-id: https://dolphin-emu.googlecode.com/svn/trunk@6848 8ced0084-cf51-0410-be5f-012b33b47a6e
		
			
				
	
	
		
			763 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			763 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright (C) 2003 Dolphin Project.
 | 
						|
 | 
						|
// This program is free software: you can redistribute it and/or modify
 | 
						|
// it under the terms of the GNU General Public License as published by
 | 
						|
// the Free Software Foundation, version 2.0.
 | 
						|
 | 
						|
// This program is distributed in the hope that it will be useful,
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
// GNU General Public License 2.0 for more details.
 | 
						|
 | 
						|
// A copy of the GPL 2.0 should have been included with the program.
 | 
						|
// If not, see http://www.gnu.org/licenses/
 | 
						|
 | 
						|
// Official SVN repository and contact information can be found at
 | 
						|
// http://code.google.com/p/dolphin-emu/
 | 
						|
 | 
						|
// WARNING - THIS LIBRARY IS NOT THREAD SAFE!!!
 | 
						|
 | 
						|
#ifndef _DOLPHIN_INTEL_CODEGEN_
 | 
						|
#define _DOLPHIN_INTEL_CODEGEN_
 | 
						|
 | 
						|
#include "Common.h"
 | 
						|
#include "MemoryUtil.h"
 | 
						|
 | 
						|
namespace Gen
 | 
						|
{
 | 
						|
 | 
						|
enum X64Reg
 | 
						|
{
 | 
						|
	EAX = 0, EBX = 3, ECX = 1, EDX = 2,
 | 
						|
	ESI = 6, EDI = 7, EBP = 5, ESP = 4,
 | 
						|
	
 | 
						|
	RAX = 0, RBX = 3, RCX = 1, RDX = 2,
 | 
						|
	RSI = 6, RDI = 7, RBP = 5, RSP = 4,
 | 
						|
	R8  = 8, R9  = 9, R10 = 10,R11 = 11,
 | 
						|
	R12 = 12,R13 = 13,R14 = 14,R15 = 15,
 | 
						|
 | 
						|
	AL = 0, BL = 3, CL = 1, DL = 2,
 | 
						|
	AH = 4, BH = 7, CH = 5, DH = 6,
 | 
						|
 | 
						|
	AX = 0, BX = 3, CX = 1, DX = 2,
 | 
						|
	SI = 6, DI = 7, BP = 5, SP = 4,
 | 
						|
 | 
						|
	XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, 
 | 
						|
	XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15,
 | 
						|
 | 
						|
	INVALID_REG = 0xFFFFFFFF
 | 
						|
};
 | 
						|
 | 
						|
enum CCFlags
 | 
						|
{
 | 
						|
	CC_O   = 0,
 | 
						|
	CC_NO  = 1,
 | 
						|
	CC_B   = 2, CC_C  = 2, CC_NAE = 2,
 | 
						|
	CC_NB  = 3, CC_NC = 3, CC_AE  = 3,
 | 
						|
	CC_Z   = 4, CC_E   = 4,
 | 
						|
	CC_NZ  = 5,	CC_NE  = 5, 
 | 
						|
	CC_BE  = 6, CC_NA  = 6,
 | 
						|
	CC_NBE = 7, CC_A   = 7,
 | 
						|
	CC_S   = 8,
 | 
						|
	CC_NS  = 9,
 | 
						|
	CC_P   = 0xA, CC_PE  = 0xA,
 | 
						|
	CC_NP  = 0xB, CC_PO  = 0xB,
 | 
						|
	CC_L   = 0xC, CC_NGE = 0xC,
 | 
						|
	CC_NL  = 0xD, CC_GE  = 0xD,
 | 
						|
	CC_LE  = 0xE, CC_NG  = 0xE,
 | 
						|
	CC_NLE = 0xF, CC_G   = 0xF
 | 
						|
};
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
	NUMGPRs = 16,
 | 
						|
	NUMXMMs = 16,
 | 
						|
};
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
	SCALE_NONE = 0,
 | 
						|
	SCALE_1 = 1,
 | 
						|
	SCALE_2 = 2,
 | 
						|
	SCALE_4 = 4,
 | 
						|
	SCALE_8 = 8,
 | 
						|
	SCALE_ATREG = 16,
 | 
						|
	SCALE_RIP = 0xFF,
 | 
						|
	SCALE_IMM8  = 0xF0,
 | 
						|
	SCALE_IMM16 = 0xF1,
 | 
						|
	SCALE_IMM32 = 0xF2,
 | 
						|
	SCALE_IMM64 = 0xF3,
 | 
						|
};
 | 
						|
 | 
						|
enum NormalOp {
 | 
						|
	nrmADD,
 | 
						|
	nrmADC,
 | 
						|
	nrmSUB,
 | 
						|
	nrmSBB,
 | 
						|
	nrmAND,
 | 
						|
	nrmOR ,
 | 
						|
	nrmXOR,
 | 
						|
	nrmMOV,
 | 
						|
	nrmTEST,
 | 
						|
	nrmCMP,
 | 
						|
	nrmXCHG,
 | 
						|
};
 | 
						|
 | 
						|
class XEmitter;
 | 
						|
 | 
						|
// RIP addressing does not benefit from micro op fusion on Core arch
 | 
						|
struct OpArg
 | 
						|
{
 | 
						|
	OpArg() {}  // dummy op arg, used for storage
 | 
						|
	OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
 | 
						|
	{
 | 
						|
		operandReg = 0;
 | 
						|
		scale = (u8)_scale;
 | 
						|
		offsetOrBaseReg = (u8)rmReg;
 | 
						|
		indexReg = (u8)scaledReg;
 | 
						|
		//if scale == 0 never mind offseting
 | 
						|
		offset = _offset;
 | 
						|
	}
 | 
						|
	void WriteRex(XEmitter *emit, bool op64, int customOp = -1) const;
 | 
						|
	void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=(X64Reg)0xFF) const;
 | 
						|
	void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits);
 | 
						|
	// This one is public - must be written to
 | 
						|
	u64 offset;  // use RIP-relative as much as possible - 64-bit immediates are not available.
 | 
						|
	u8 operandReg;
 | 
						|
 | 
						|
	void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
 | 
						|
	bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
 | 
						|
	bool IsSimpleReg() const {return scale == SCALE_NONE;}
 | 
						|
	bool IsSimpleReg(X64Reg reg) const {
 | 
						|
		if (!IsSimpleReg())
 | 
						|
			return false;
 | 
						|
		return GetSimpleReg() == reg;
 | 
						|
	}
 | 
						|
 | 
						|
	bool CanDoOpWith(const OpArg &other) const
 | 
						|
	{
 | 
						|
		if (IsSimpleReg()) return true;
 | 
						|
		if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	int GetImmBits() const
 | 
						|
	{
 | 
						|
		switch (scale)
 | 
						|
		{
 | 
						|
		case SCALE_IMM8: return 8;
 | 
						|
		case SCALE_IMM16: return 16;
 | 
						|
		case SCALE_IMM32: return 32;
 | 
						|
		case SCALE_IMM64: return 64;
 | 
						|
		default: return -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	X64Reg GetSimpleReg() const
 | 
						|
	{
 | 
						|
		if (scale == SCALE_NONE)
 | 
						|
			return (X64Reg)offsetOrBaseReg;
 | 
						|
		else
 | 
						|
			return INVALID_REG;
 | 
						|
	}
 | 
						|
private:
 | 
						|
	u8 scale;
 | 
						|
	u8 offsetOrBaseReg;
 | 
						|
	u8 indexReg;
 | 
						|
};
 | 
						|
 | 
						|
inline OpArg M(void *ptr)	    {return OpArg((u64)ptr, (int)SCALE_RIP);}
 | 
						|
inline OpArg R(X64Reg value)	{return OpArg(0, SCALE_NONE, value);}
 | 
						|
inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);}
 | 
						|
inline OpArg MDisp(X64Reg value, int offset) {
 | 
						|
	return OpArg((u32)offset, SCALE_ATREG, value);
 | 
						|
}
 | 
						|
inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset) {
 | 
						|
	return OpArg(offset, scale, base, scaled);
 | 
						|
}
 | 
						|
inline OpArg MRegSum(X64Reg base, X64Reg offset) {
 | 
						|
	return MComplex(base, offset, 1, 0);
 | 
						|
}
 | 
						|
inline OpArg Imm8 (u8 imm)  {return OpArg(imm, SCALE_IMM8);}
 | 
						|
inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used
 | 
						|
inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);}
 | 
						|
inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);}
 | 
						|
#ifdef _M_X64
 | 
						|
inline OpArg ImmPtr(void* imm) {return Imm64((u64)imm);}
 | 
						|
#else
 | 
						|
inline OpArg ImmPtr(void* imm) {return Imm32((u32)imm);}
 | 
						|
#endif
 | 
						|
inline u32 PtrOffset(void* ptr, void* base) {
 | 
						|
#ifdef _M_X64
 | 
						|
	s64 distance = (s64)ptr-(s64)base;
 | 
						|
	if (distance >= 0x80000000LL ||
 | 
						|
	    distance < -0x80000000LL) {
 | 
						|
		_assert_msg_(DYNA_REC, 0, "pointer offset out of range");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return (u32)distance;
 | 
						|
#else
 | 
						|
	return (u32)ptr-(u32)base;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//usage: int a[]; ARRAY_OFFSET(a,10)
 | 
						|
#define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0]))
 | 
						|
//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
 | 
						|
#define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str)))
 | 
						|
 | 
						|
struct FixupBranch
 | 
						|
{
 | 
						|
	u8 *ptr;
 | 
						|
	int type; //0 = 8bit 1 = 32bit
 | 
						|
};
 | 
						|
 | 
						|
enum SSECompare
 | 
						|
{
 | 
						|
	EQ = 0,
 | 
						|
	LT,
 | 
						|
	LE,
 | 
						|
	UNORD,
 | 
						|
	NEQ,
 | 
						|
	NLT,
 | 
						|
	NLE,
 | 
						|
	ORD,
 | 
						|
};
 | 
						|
 | 
						|
typedef const u8* JumpTarget;
 | 
						|
 | 
						|
class XEmitter
 | 
						|
{
 | 
						|
	friend struct OpArg;  // for Write8 etc
 | 
						|
private:
 | 
						|
	u8 *code;
 | 
						|
 | 
						|
	void Rex(int w, int r, int x, int b);
 | 
						|
	void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
 | 
						|
	void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
 | 
						|
	void WriteMulDivType(int bits, OpArg src, int ext);
 | 
						|
	void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2);
 | 
						|
	void WriteShift(int bits, OpArg dest, OpArg &shift, int ext);
 | 
						|
	void WriteMXCSR(OpArg arg, int ext);
 | 
						|
	void WriteSSEOp(int size, u8 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes = 0);
 | 
						|
	void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2);
 | 
						|
 | 
						|
protected:
 | 
						|
	inline void Write8(u8 value)   {*code++ = value;}
 | 
						|
	inline void Write16(u16 value) {*(u16*)code = (value); code += 2;}
 | 
						|
	inline void Write32(u32 value) {*(u32*)code = (value); code += 4;}
 | 
						|
	inline void Write64(u64 value) {*(u64*)code = (value); code += 8;}
 | 
						|
 | 
						|
public:
 | 
						|
	XEmitter() { code = NULL; }
 | 
						|
	XEmitter(u8 *code_ptr) { code = code_ptr; }
 | 
						|
	virtual ~XEmitter() {}
 | 
						|
 | 
						|
	void WriteModRM(int mod, int rm, int reg);
 | 
						|
	void WriteSIB(int scale, int index, int base);
 | 
						|
 | 
						|
	void SetCodePtr(u8 *ptr);
 | 
						|
	void ReserveCodeSpace(int bytes);
 | 
						|
	const u8 *AlignCode4();
 | 
						|
	const u8 *AlignCode16();
 | 
						|
	const u8 *AlignCodePage();
 | 
						|
	const u8 *GetCodePtr() const;
 | 
						|
	u8 *GetWritableCodePtr();
 | 
						|
 | 
						|
	// Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
 | 
						|
	// INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr., 
 | 
						|
	// INC and DEC are slow on Intel Core, but not on AMD. They create a
 | 
						|
	// false flag dependency because they only update a subset of the flags.
 | 
						|
	// XCHG is SLOW and should be avoided.
 | 
						|
 | 
						|
	// Debug breakpoint
 | 
						|
	void INT3();
 | 
						|
 | 
						|
	// Do nothing
 | 
						|
	void NOP(int count = 1); //nop padding - TODO: fast nop slides, for amd and intel (check their manuals)
 | 
						|
 | 
						|
	// Save energy in wait-loops on P4 only. Probably not too useful.
 | 
						|
	void PAUSE();
 | 
						|
 | 
						|
	// Flag control
 | 
						|
	void STC();
 | 
						|
	void CLC();
 | 
						|
	void CMC();
 | 
						|
 | 
						|
	// These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD!
 | 
						|
	void LAHF(); // 3 cycle vector path
 | 
						|
	void SAHF(); // direct path fast
 | 
						|
 | 
						|
 | 
						|
	// Stack control
 | 
						|
	void PUSH(X64Reg reg);
 | 
						|
	void POP(X64Reg reg);
 | 
						|
	void PUSH(int bits, const OpArg ®);
 | 
						|
	void POP(int bits, const OpArg ®);
 | 
						|
	void PUSHF();
 | 
						|
	void POPF();
 | 
						|
 | 
						|
	// Flow control
 | 
						|
	void RET();
 | 
						|
	void RET_FAST();
 | 
						|
	void UD2();
 | 
						|
	FixupBranch J(bool force5bytes = false);
 | 
						|
 | 
						|
	void JMP(const u8 * addr, bool force5Bytes = false);
 | 
						|
	void JMP(OpArg arg);
 | 
						|
	void JMPptr(const OpArg &arg);
 | 
						|
	void JMPself(); //infinite loop!
 | 
						|
#ifdef CALL
 | 
						|
#undef CALL
 | 
						|
#endif
 | 
						|
	void CALL(const void *fnptr);
 | 
						|
	void CALLptr(OpArg arg);
 | 
						|
 | 
						|
	FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
 | 
						|
	//void J_CC(CCFlags conditionCode, JumpTarget target);
 | 
						|
	void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false);
 | 
						|
 | 
						|
	void SetJumpTarget(const FixupBranch &branch);
 | 
						|
 | 
						|
	void SETcc(CCFlags flag, OpArg dest);
 | 
						|
	// Note: CMOV brings small if any benefit on current cpus.
 | 
						|
	void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
 | 
						|
 | 
						|
	// Fences
 | 
						|
	void LFENCE();
 | 
						|
	void MFENCE();
 | 
						|
	void SFENCE();
 | 
						|
 | 
						|
	// Bit scan
 | 
						|
	void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit
 | 
						|
	void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit
 | 
						|
 | 
						|
	// Cache control
 | 
						|
	enum PrefetchLevel
 | 
						|
	{
 | 
						|
		PF_NTA, //Non-temporal (data used once and only once)
 | 
						|
		PF_T0,  //All cache levels
 | 
						|
		PF_T1,  //Levels 2+ (aliased to T0 on AMD)
 | 
						|
		PF_T2,  //Levels 3+ (aliased to T0 on AMD)
 | 
						|
	};
 | 
						|
	void PREFETCH(PrefetchLevel level, OpArg arg);
 | 
						|
	void MOVNTI(int bits, OpArg dest, X64Reg src);
 | 
						|
	void MOVNTDQ(OpArg arg, X64Reg regOp);
 | 
						|
	void MOVNTPS(OpArg arg, X64Reg regOp);
 | 
						|
	void MOVNTPD(OpArg arg, X64Reg regOp);
 | 
						|
 | 
						|
	// Multiplication / division
 | 
						|
	void MUL(int bits, OpArg src); //UNSIGNED
 | 
						|
	void IMUL(int bits, OpArg src); //SIGNED
 | 
						|
	void IMUL(int bits, X64Reg regOp, OpArg src);
 | 
						|
	void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm);
 | 
						|
	void DIV(int bits, OpArg src);
 | 
						|
	void IDIV(int bits, OpArg src);
 | 
						|
 | 
						|
	// Shift 
 | 
						|
	void ROL(int bits, OpArg dest, OpArg shift);
 | 
						|
	void ROR(int bits, OpArg dest, OpArg shift);
 | 
						|
	void RCL(int bits, OpArg dest, OpArg shift);
 | 
						|
	void RCR(int bits, OpArg dest, OpArg shift);
 | 
						|
	void SHL(int bits, OpArg dest, OpArg shift);
 | 
						|
	void SHR(int bits, OpArg dest, OpArg shift);
 | 
						|
	void SAR(int bits, OpArg dest, OpArg shift);
 | 
						|
 | 
						|
	// Extend EAX into EDX in various ways
 | 
						|
	void CWD(int bits = 16);
 | 
						|
	inline void CDQ() {CWD(32);}
 | 
						|
	inline void CQO() {CWD(64);}
 | 
						|
	void CBW(int bits = 8);
 | 
						|
	inline void CWDE() {CBW(16);}
 | 
						|
	inline void CDQE() {CBW(32);}
 | 
						|
 | 
						|
	// Load effective address
 | 
						|
	void LEA(int bits, X64Reg dest, OpArg src);
 | 
						|
 | 
						|
	// Integer arithmetic
 | 
						|
	void NEG (int bits, OpArg src);
 | 
						|
	void ADD (int bits, const OpArg &a1, const OpArg &a2);
 | 
						|
	void ADC (int bits, const OpArg &a1, const OpArg &a2);
 | 
						|
	void SUB (int bits, const OpArg &a1, const OpArg &a2);
 | 
						|
	void SBB (int bits, const OpArg &a1, const OpArg &a2);
 | 
						|
	void AND (int bits, const OpArg &a1, const OpArg &a2);
 | 
						|
	void CMP (int bits, const OpArg &a1, const OpArg &a2);
 | 
						|
 | 
						|
	// Bit operations
 | 
						|
	void NOT (int bits, OpArg src);
 | 
						|
	void OR  (int bits, const OpArg &a1, const OpArg &a2);
 | 
						|
	void XOR (int bits, const OpArg &a1, const OpArg &a2);
 | 
						|
	void MOV (int bits, const OpArg &a1, const OpArg &a2);
 | 
						|
	void TEST(int bits, const OpArg &a1, const OpArg &a2);
 | 
						|
 | 
						|
	// Are these useful at all? Consider removing.
 | 
						|
	void XCHG(int bits, const OpArg &a1, const OpArg &a2);
 | 
						|
	void XCHG_AHAL();
 | 
						|
 | 
						|
	// Byte swapping (32 and 64-bit only).
 | 
						|
	void BSWAP(int bits, X64Reg reg);
 | 
						|
 | 
						|
	// Sign/zero extension
 | 
						|
	void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary
 | 
						|
	void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src); 
 | 
						|
 | 
						|
	// WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
 | 
						|
	void STMXCSR(OpArg memloc);
 | 
						|
	void LDMXCSR(OpArg memloc);
 | 
						|
 | 
						|
	// Prefixes
 | 
						|
	void LOCK();
 | 
						|
	void REP();
 | 
						|
	void REPNE();
 | 
						|
 | 
						|
	void FWAIT();
 | 
						|
 | 
						|
	// SSE/SSE2: Floating point arithmetic
 | 
						|
	void ADDSS(X64Reg regOp, OpArg arg);  
 | 
						|
	void ADDSD(X64Reg regOp, OpArg arg);  
 | 
						|
	void SUBSS(X64Reg regOp, OpArg arg);  
 | 
						|
	void SUBSD(X64Reg regOp, OpArg arg);  
 | 
						|
	void MULSS(X64Reg regOp, OpArg arg);  
 | 
						|
	void MULSD(X64Reg regOp, OpArg arg);  
 | 
						|
	void DIVSS(X64Reg regOp, OpArg arg);  
 | 
						|
	void DIVSD(X64Reg regOp, OpArg arg);  
 | 
						|
	void MINSS(X64Reg regOp, OpArg arg);  
 | 
						|
	void MINSD(X64Reg regOp, OpArg arg);  
 | 
						|
	void MAXSS(X64Reg regOp, OpArg arg);  
 | 
						|
	void MAXSD(X64Reg regOp, OpArg arg);  
 | 
						|
	void SQRTSS(X64Reg regOp, OpArg arg); 
 | 
						|
	void SQRTSD(X64Reg regOp, OpArg arg); 
 | 
						|
	void RSQRTSS(X64Reg regOp, OpArg arg);
 | 
						|
 | 
						|
	// SSE/SSE2: Floating point bitwise (yes)
 | 
						|
	void CMPSS(X64Reg regOp, OpArg arg, u8 compare);  
 | 
						|
	void CMPSD(X64Reg regOp, OpArg arg, u8 compare);  
 | 
						|
	void ANDSS(X64Reg regOp, OpArg arg);  
 | 
						|
	void ANDSD(X64Reg regOp, OpArg arg);  
 | 
						|
	void ANDNSS(X64Reg regOp, OpArg arg); 
 | 
						|
	void ANDNSD(X64Reg regOp, OpArg arg); 
 | 
						|
	void ORSS(X64Reg regOp, OpArg arg);   
 | 
						|
	void ORSD(X64Reg regOp, OpArg arg);   
 | 
						|
	void XORSS(X64Reg regOp, OpArg arg);   
 | 
						|
	void XORSD(X64Reg regOp, OpArg arg);   
 | 
						|
 | 
						|
	// SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
 | 
						|
	void ADDPS(X64Reg regOp, OpArg arg); 
 | 
						|
	void ADDPD(X64Reg regOp, OpArg arg); 
 | 
						|
	void SUBPS(X64Reg regOp, OpArg arg); 
 | 
						|
	void SUBPD(X64Reg regOp, OpArg arg); 
 | 
						|
	void CMPPS(X64Reg regOp, OpArg arg, u8 compare);  
 | 
						|
	void CMPPD(X64Reg regOp, OpArg arg, u8 compare);
 | 
						|
	void MULPS(X64Reg regOp, OpArg arg);
 | 
						|
	void MULPD(X64Reg regOp, OpArg arg);
 | 
						|
	void DIVPS(X64Reg regOp, OpArg arg);
 | 
						|
	void DIVPD(X64Reg regOp, OpArg arg);
 | 
						|
	void MINPS(X64Reg regOp, OpArg arg);
 | 
						|
	void MINPD(X64Reg regOp, OpArg arg);
 | 
						|
	void MAXPS(X64Reg regOp, OpArg arg);
 | 
						|
	void MAXPD(X64Reg regOp, OpArg arg);
 | 
						|
	void SQRTPS(X64Reg regOp, OpArg arg);
 | 
						|
	void SQRTPD(X64Reg regOp, OpArg arg);
 | 
						|
	void RSQRTPS(X64Reg regOp, OpArg arg);
 | 
						|
 | 
						|
	// SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
 | 
						|
	void ANDPS(X64Reg regOp, OpArg arg); 
 | 
						|
	void ANDPD(X64Reg regOp, OpArg arg); 
 | 
						|
	void ANDNPS(X64Reg regOp, OpArg arg);
 | 
						|
	void ANDNPD(X64Reg regOp, OpArg arg);
 | 
						|
	void ORPS(X64Reg regOp, OpArg arg);
 | 
						|
	void ORPD(X64Reg regOp, OpArg arg);
 | 
						|
	void XORPS(X64Reg regOp, OpArg arg);
 | 
						|
	void XORPD(X64Reg regOp, OpArg arg);
 | 
						|
 | 
						|
	// SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
 | 
						|
	void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle);  
 | 
						|
	void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle);  
 | 
						|
	
 | 
						|
	// SSE/SSE2: Useful alternative to shuffle in some cases.
 | 
						|
	void MOVDDUP(X64Reg regOp, OpArg arg);
 | 
						|
 | 
						|
	// THESE TWO ARE NEW AND UNTESTED
 | 
						|
	void UNPCKLPS(X64Reg dest, OpArg src);
 | 
						|
	void UNPCKHPS(X64Reg dest, OpArg src);
 | 
						|
 | 
						|
	// These are OK.
 | 
						|
	void UNPCKLPD(X64Reg dest, OpArg src);
 | 
						|
	void UNPCKHPD(X64Reg dest, OpArg src);
 | 
						|
 | 
						|
	// SSE/SSE2: Compares.
 | 
						|
	void COMISS(X64Reg regOp, OpArg arg);
 | 
						|
	void COMISD(X64Reg regOp, OpArg arg);
 | 
						|
	void UCOMISS(X64Reg regOp, OpArg arg);
 | 
						|
	void UCOMISD(X64Reg regOp, OpArg arg);
 | 
						|
 | 
						|
	// SSE/SSE2: Moves. Use the right data type for your data, in most cases.
 | 
						|
	void MOVAPS(X64Reg regOp, OpArg arg);
 | 
						|
	void MOVAPD(X64Reg regOp, OpArg arg);
 | 
						|
	void MOVAPS(OpArg arg, X64Reg regOp);
 | 
						|
	void MOVAPD(OpArg arg, X64Reg regOp);
 | 
						|
 | 
						|
	void MOVUPS(X64Reg regOp, OpArg arg);
 | 
						|
	void MOVUPD(X64Reg regOp, OpArg arg);
 | 
						|
	void MOVUPS(OpArg arg, X64Reg regOp);
 | 
						|
	void MOVUPD(OpArg arg, X64Reg regOp);
 | 
						|
 | 
						|
	void MOVSS(X64Reg regOp, OpArg arg);
 | 
						|
	void MOVSD(X64Reg regOp, OpArg arg);
 | 
						|
	void MOVSS(OpArg arg, X64Reg regOp);
 | 
						|
	void MOVSD(OpArg arg, X64Reg regOp);
 | 
						|
 | 
						|
	void MOVD_xmm(X64Reg dest, const OpArg &arg);
 | 
						|
	void MOVQ_xmm(X64Reg dest, OpArg arg);
 | 
						|
	void MOVD_xmm(const OpArg &arg, X64Reg src);
 | 
						|
	void MOVQ_xmm(OpArg arg, X64Reg src);
 | 
						|
 | 
						|
	// SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question.
 | 
						|
	void MOVMSKPS(X64Reg dest, OpArg arg);
 | 
						|
	void MOVMSKPD(X64Reg dest, OpArg arg);
 | 
						|
 | 
						|
	// SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one.
 | 
						|
	void MASKMOVDQU(X64Reg dest, X64Reg src);
 | 
						|
	void LDDQU(X64Reg dest, OpArg src);
 | 
						|
 | 
						|
	// SSE/SSE2: Data type conversions.
 | 
						|
	void CVTPS2PD(X64Reg dest, OpArg src);
 | 
						|
	void CVTPD2PS(X64Reg dest, OpArg src);
 | 
						|
	void CVTSS2SD(X64Reg dest, OpArg src);
 | 
						|
	void CVTSD2SS(X64Reg dest, OpArg src);
 | 
						|
	void CVTSD2SI(X64Reg dest, OpArg src);
 | 
						|
	void CVTDQ2PD(X64Reg regOp, OpArg arg);
 | 
						|
	void CVTPD2DQ(X64Reg regOp, OpArg arg);
 | 
						|
	void CVTDQ2PS(X64Reg regOp, OpArg arg);
 | 
						|
	void CVTPS2DQ(X64Reg regOp, OpArg arg);
 | 
						|
 | 
						|
	void CVTTSS2SI(X64Reg xregdest, OpArg arg);  // Yeah, destination really is a GPR like EAX!
 | 
						|
	void CVTTPS2DQ(X64Reg regOp, OpArg arg);
 | 
						|
 | 
						|
	// SSE2: Packed integer instructions
 | 
						|
	void PACKSSDW(X64Reg dest, OpArg arg);
 | 
						|
	void PACKSSWB(X64Reg dest, OpArg arg);
 | 
						|
	//void PACKUSDW(X64Reg dest, OpArg arg);
 | 
						|
	void PACKUSWB(X64Reg dest, OpArg arg);
 | 
						|
 | 
						|
	void PUNPCKLBW(X64Reg dest, const OpArg &arg);
 | 
						|
	void PUNPCKLWD(X64Reg dest, const OpArg &arg);
 | 
						|
	void PUNPCKLDQ(X64Reg dest, const OpArg &arg);
 | 
						|
 | 
						|
	void PAND(X64Reg dest, OpArg arg);
 | 
						|
	void PANDN(X64Reg dest, OpArg arg);   
 | 
						|
	void PXOR(X64Reg dest, OpArg arg);    
 | 
						|
	void POR(X64Reg dest, OpArg arg);     
 | 
						|
 | 
						|
	void PADDB(X64Reg dest, OpArg arg);
 | 
						|
	void PADDW(X64Reg dest, OpArg arg);   
 | 
						|
	void PADDD(X64Reg dest, OpArg arg);   
 | 
						|
	void PADDQ(X64Reg dest, OpArg arg);   
 | 
						|
 | 
						|
	void PADDSB(X64Reg dest, OpArg arg);  
 | 
						|
	void PADDSW(X64Reg dest, OpArg arg);  
 | 
						|
	void PADDUSB(X64Reg dest, OpArg arg); 
 | 
						|
	void PADDUSW(X64Reg dest, OpArg arg); 
 | 
						|
 | 
						|
	void PSUBB(X64Reg dest, OpArg arg);   
 | 
						|
	void PSUBW(X64Reg dest, OpArg arg);   
 | 
						|
	void PSUBD(X64Reg dest, OpArg arg);   
 | 
						|
	void PSUBQ(X64Reg dest, OpArg arg);   
 | 
						|
 | 
						|
	void PSUBSB(X64Reg dest, OpArg arg);  
 | 
						|
	void PSUBSW(X64Reg dest, OpArg arg);  
 | 
						|
	void PSUBUSB(X64Reg dest, OpArg arg); 
 | 
						|
	void PSUBUSW(X64Reg dest, OpArg arg); 
 | 
						|
 | 
						|
	void PAVGB(X64Reg dest, OpArg arg);   
 | 
						|
	void PAVGW(X64Reg dest, OpArg arg);   
 | 
						|
 | 
						|
	void PCMPEQB(X64Reg dest, OpArg arg); 
 | 
						|
	void PCMPEQW(X64Reg dest, OpArg arg); 
 | 
						|
	void PCMPEQD(X64Reg dest, OpArg arg); 
 | 
						|
 | 
						|
	void PCMPGTB(X64Reg dest, OpArg arg); 
 | 
						|
	void PCMPGTW(X64Reg dest, OpArg arg); 
 | 
						|
	void PCMPGTD(X64Reg dest, OpArg arg); 
 | 
						|
 | 
						|
	void PEXTRW(X64Reg dest, OpArg arg, u8 subreg);
 | 
						|
	void PINSRW(X64Reg dest, OpArg arg, u8 subreg);
 | 
						|
 | 
						|
	void PMADDWD(X64Reg dest, OpArg arg); 
 | 
						|
	void PSADBW(X64Reg dest, OpArg arg);  
 | 
						|
 | 
						|
	void PMAXSW(X64Reg dest, OpArg arg);  
 | 
						|
	void PMAXUB(X64Reg dest, OpArg arg);  
 | 
						|
	void PMINSW(X64Reg dest, OpArg arg);  
 | 
						|
	void PMINUB(X64Reg dest, OpArg arg);  
 | 
						|
 | 
						|
	void PMOVMSKB(X64Reg dest, OpArg arg);
 | 
						|
	void PSHUFB(X64Reg dest, OpArg arg);
 | 
						|
 | 
						|
	void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle);
 | 
						|
 | 
						|
	void PSRLW(X64Reg reg, int shift);
 | 
						|
	void PSRLD(X64Reg reg, int shift);
 | 
						|
	void PSRLQ(X64Reg reg, int shift);
 | 
						|
 | 
						|
	void PSLLW(X64Reg reg, int shift);
 | 
						|
	void PSLLD(X64Reg reg, int shift);
 | 
						|
	void PSLLQ(X64Reg reg, int shift);
 | 
						|
 | 
						|
	void PSRAW(X64Reg reg, int shift);
 | 
						|
	void PSRAD(X64Reg reg, int shift);
 | 
						|
 | 
						|
	void RTDSC();
 | 
						|
 | 
						|
	// Utility functions
 | 
						|
	// The difference between this and CALL is that this aligns the stack
 | 
						|
	// where appropriate.
 | 
						|
	void ABI_CallFunction(void *func);
 | 
						|
 | 
						|
	void ABI_CallFunctionC16(void *func, u16 param1);
 | 
						|
	void ABI_CallFunctionCC16(void *func, u32 param1, u16 param2);
 | 
						|
	
 | 
						|
	// These only support u32 parameters, but that's enough for a lot of uses.
 | 
						|
	// These will destroy the 1 or 2 first "parameter regs".
 | 
						|
	void ABI_CallFunctionC(void *func, u32 param1);
 | 
						|
	void ABI_CallFunctionCC(void *func, u32 param1, u32 param2);
 | 
						|
	void ABI_CallFunctionCCC(void *func, u32 param1, u32 param2, u32 param3);
 | 
						|
	void ABI_CallFunctionCCP(void *func, u32 param1, u32 param2, void *param3);
 | 
						|
	void ABI_CallFunctionCCCP(void *func, u32 param1, u32 param2,u32 param3, void *param4);
 | 
						|
	void ABI_CallFunctionAC(void *func, const Gen::OpArg &arg1, u32 param2);
 | 
						|
	void ABI_CallFunctionA(void *func, const Gen::OpArg &arg1);
 | 
						|
 | 
						|
	// Pass a register as a paremeter.
 | 
						|
	void ABI_CallFunctionR(void *func, Gen::X64Reg reg1);
 | 
						|
	void ABI_CallFunctionRR(void *func, Gen::X64Reg reg1, Gen::X64Reg reg2);
 | 
						|
 | 
						|
	// A function that doesn't have any control over what it will do to regs,
 | 
						|
	// such as the dispatcher, should be surrounded by these.
 | 
						|
	void ABI_PushAllCalleeSavedRegsAndAdjustStack();
 | 
						|
	void ABI_PopAllCalleeSavedRegsAndAdjustStack();
 | 
						|
 | 
						|
	// A function that doesn't know anything about it's surroundings, should
 | 
						|
	// be surrounded by these to establish a safe environment, where it can roam free.
 | 
						|
	// An example is a backpatch injected function.
 | 
						|
	void ABI_PushAllCallerSavedRegsAndAdjustStack();
 | 
						|
	void ABI_PopAllCallerSavedRegsAndAdjustStack();
 | 
						|
 | 
						|
	unsigned int ABI_GetAlignedFrameSize(unsigned int frameSize);
 | 
						|
	void ABI_AlignStack(unsigned int frameSize);
 | 
						|
	void ABI_RestoreStack(unsigned int frameSize);
 | 
						|
 | 
						|
	// Sets up a __cdecl function.
 | 
						|
	// Only x64 really needs the parameter count.
 | 
						|
	void ABI_EmitPrologue(int maxCallParams);
 | 
						|
	void ABI_EmitEpilogue(int maxCallParams);
 | 
						|
 | 
						|
	#ifdef _M_IX86
 | 
						|
	inline int ABI_GetNumXMMRegs() { return 8; }
 | 
						|
	#else
 | 
						|
	inline int ABI_GetNumXMMRegs() { return 16; }
 | 
						|
	#endif
 | 
						|
 | 
						|
	// Strange call wrappers.
 | 
						|
	void CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2);
 | 
						|
	void CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3);
 | 
						|
	void CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4);
 | 
						|
	void CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5);
 | 
						|
 | 
						|
#if defined(_M_IX86) 
 | 
						|
 | 
						|
	#define CallCdeclFunction3_I(a,b,c,d) CallCdeclFunction3((void *)(a), (b), (c), (d))
 | 
						|
	#define CallCdeclFunction4_I(a,b,c,d,e) CallCdeclFunction4((void *)(a), (b), (c), (d), (e)) 
 | 
						|
	#define CallCdeclFunction5_I(a,b,c,d,e,f) CallCdeclFunction5((void *)(a), (b), (c), (d), (e), (f)) 
 | 
						|
	#define CallCdeclFunction6_I(a,b,c,d,e,f,g) CallCdeclFunction6((void *)(a), (b), (c), (d), (e), (f), (g)) 
 | 
						|
 | 
						|
	#define DECLARE_IMPORT(x)
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
	// Comments from VertexLoader.cpp about these horrors:
 | 
						|
 | 
						|
	// This is a horrible hack that is necessary in 64-bit mode because Opengl32.dll is based way, way above the 32-bit
 | 
						|
	// address space that is within reach of a CALL, and just doing &fn gives us these high uncallable addresses. So we
 | 
						|
	// want to grab the function pointers from the import table instead.
 | 
						|
 | 
						|
	void ___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2);
 | 
						|
	void ___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3);
 | 
						|
	void ___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4);
 | 
						|
	void ___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5);
 | 
						|
 | 
						|
	#define CallCdeclFunction3_I(a,b,c,d) ___CallCdeclImport3(&__imp_##a,b,c,d)
 | 
						|
	#define CallCdeclFunction4_I(a,b,c,d,e) ___CallCdeclImport4(&__imp_##a,b,c,d,e)
 | 
						|
	#define CallCdeclFunction5_I(a,b,c,d,e,f) ___CallCdeclImport5(&__imp_##a,b,c,d,e,f)
 | 
						|
	#define CallCdeclFunction6_I(a,b,c,d,e,f,g) ___CallCdeclImport6(&__imp_##a,b,c,d,e,f,g)
 | 
						|
 | 
						|
	#define DECLARE_IMPORT(x) extern "C" void *__imp_##x
 | 
						|
 | 
						|
#endif
 | 
						|
};  // class XEmitter
 | 
						|
 | 
						|
 | 
						|
// Everything that needs to generate X86 code should inherit from this.
 | 
						|
// You get memory management for free, plus, you can use all the MOV etc functions without
 | 
						|
// having to prefix them with gen-> or something similar.
 | 
						|
class XCodeBlock : public XEmitter
 | 
						|
{
 | 
						|
protected:
 | 
						|
	u8 *region;
 | 
						|
	size_t region_size;
 | 
						|
 | 
						|
public:
 | 
						|
	XCodeBlock() : region(NULL), region_size(0) {}
 | 
						|
	virtual ~XCodeBlock() { if (region) FreeCodeSpace(); }
 | 
						|
 | 
						|
	// Call this before you generate any code.
 | 
						|
	void AllocCodeSpace(int size)
 | 
						|
	{
 | 
						|
		region_size = size;
 | 
						|
		region = (u8*)AllocateExecutableMemory(region_size);
 | 
						|
		SetCodePtr(region);
 | 
						|
	}
 | 
						|
 | 
						|
	// Always clear code space with breakpoints, so that if someone accidentally executes
 | 
						|
	// uninitialized, it just breaks into the debugger.
 | 
						|
	void ClearCodeSpace() 
 | 
						|
	{
 | 
						|
		// x86/64: 0xCC = breakpoint
 | 
						|
		memset(region, 0xCC, region_size);
 | 
						|
		ResetCodePtr();
 | 
						|
	}
 | 
						|
 | 
						|
	// Call this when shutting down. Don't rely on the destructor, even though it'll do the job.
 | 
						|
	void FreeCodeSpace()
 | 
						|
	{
 | 
						|
		FreeMemoryPages(region, region_size);
 | 
						|
		region = NULL;
 | 
						|
		region_size = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	bool IsInCodeSpace(u8 *ptr)
 | 
						|
	{
 | 
						|
		return ptr >= region && ptr < region + region_size;
 | 
						|
	}
 | 
						|
 | 
						|
	// Cannot currently be undone. Will write protect the entire code region.
 | 
						|
	// Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
 | 
						|
	void WriteProtect()
 | 
						|
	{
 | 
						|
		WriteProtectMemory(region, region_size, true);		
 | 
						|
	}
 | 
						|
 | 
						|
	void ResetCodePtr()
 | 
						|
	{
 | 
						|
		SetCodePtr(region);
 | 
						|
	}
 | 
						|
 | 
						|
	size_t GetSpaceLeft() const
 | 
						|
	{
 | 
						|
		return region_size - (GetCodePtr() - region);
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace
 | 
						|
 | 
						|
#endif // _DOLPHIN_INTEL_CODEGEN_
 |