forked from dolphin-emu/dolphin
		
	
		
			
				
	
	
		
			91 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2009 Dolphin Emulator Project
 | 
						|
// Licensed under GPLv2+
 | 
						|
// Refer to the license.txt file included.
 | 
						|
 | 
						|
// IWYU pragma: private, include "Common/Atomic.h"
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <Windows.h>
 | 
						|
 | 
						|
#include "Common/CommonTypes.h"
 | 
						|
 | 
						|
// Atomic operations are performed in a single step by the CPU. It is
 | 
						|
// impossible for other threads to see the operation "half-done."
 | 
						|
//
 | 
						|
// Some atomic operations can be combined with different types of memory
 | 
						|
// barriers called "Acquire semantics" and "Release semantics", defined below.
 | 
						|
//
 | 
						|
// Acquire semantics: Future memory accesses cannot be relocated to before the
 | 
						|
//                    operation.
 | 
						|
//
 | 
						|
// Release semantics: Past memory accesses cannot be relocated to after the
 | 
						|
//                    operation.
 | 
						|
//
 | 
						|
// These barriers affect not only the compiler, but also the CPU.
 | 
						|
//
 | 
						|
// NOTE: Acquire and Release are not differentiated right now. They perform a
 | 
						|
// full memory barrier instead of a "one-way" memory barrier. The newest
 | 
						|
// Windows SDK has Acquire and Release versions of some Interlocked* functions.
 | 
						|
 | 
						|
namespace Common
 | 
						|
{
 | 
						|
inline void AtomicAdd(volatile u32& target, u32 value)
 | 
						|
{
 | 
						|
  _InterlockedExchangeAdd((volatile LONG*)&target, (LONG)value);
 | 
						|
}
 | 
						|
 | 
						|
inline void AtomicAnd(volatile u32& target, u32 value)
 | 
						|
{
 | 
						|
  _InterlockedAnd((volatile LONG*)&target, (LONG)value);
 | 
						|
}
 | 
						|
 | 
						|
inline void AtomicIncrement(volatile u32& target)
 | 
						|
{
 | 
						|
  _InterlockedIncrement((volatile LONG*)&target);
 | 
						|
}
 | 
						|
 | 
						|
inline void AtomicDecrement(volatile u32& target)
 | 
						|
{
 | 
						|
  _InterlockedDecrement((volatile LONG*)&target);
 | 
						|
}
 | 
						|
 | 
						|
inline void AtomicOr(volatile u32& target, u32 value)
 | 
						|
{
 | 
						|
  _InterlockedOr((volatile LONG*)&target, (LONG)value);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
inline T AtomicLoad(volatile T& src)
 | 
						|
{
 | 
						|
  return src;  // 32-bit reads are always atomic.
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
inline T AtomicLoadAcquire(volatile T& src)
 | 
						|
{
 | 
						|
  T result = src;  // 32-bit reads are always atomic.
 | 
						|
  _ReadBarrier();  // Compiler instruction only. x86 loads always have acquire semantics.
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, typename U>
 | 
						|
inline void AtomicStore(volatile T& dest, U value)
 | 
						|
{
 | 
						|
  dest = (T)value;  // 32-bit writes are always atomic.
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, typename U>
 | 
						|
inline void AtomicStoreRelease(volatile T& dest, U value)
 | 
						|
{
 | 
						|
  _WriteBarrier();  // Compiler instruction only. x86 stores always have release semantics.
 | 
						|
  dest = (T)value;  // 32-bit writes are always atomic.
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, typename U>
 | 
						|
inline T* AtomicExchangeAcquire(T* volatile& loc, U newval)
 | 
						|
{
 | 
						|
  return (T*)_InterlockedExchangePointer_acq((void* volatile*)&loc, (void*)newval);
 | 
						|
}
 | 
						|
}
 |