forked from dolphin-emu/dolphin
		
	Was causing fog errors on the left half of the screen. Only appeared to affect visual studio builds, GCC did the correct thing.
		
			
				
	
	
		
			882 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			882 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2009 Dolphin Emulator Project
 | |
| // Licensed under GPLv2+
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| #include <cmath>
 | |
| 
 | |
| #include "Common/ChunkFile.h"
 | |
| #include "Common/CommonTypes.h"
 | |
| #include "VideoBackends/Software/DebugUtil.h"
 | |
| #include "VideoBackends/Software/EfbInterface.h"
 | |
| #include "VideoBackends/Software/Tev.h"
 | |
| #include "VideoBackends/Software/TextureSampler.h"
 | |
| 
 | |
| #include "VideoCommon/BoundingBox.h"
 | |
| #include "VideoCommon/PerfQueryBase.h"
 | |
| #include "VideoCommon/PixelShaderManager.h"
 | |
| #include "VideoCommon/Statistics.h"
 | |
| #include "VideoCommon/VideoConfig.h"
 | |
| #include "VideoCommon/XFMemory.h"
 | |
| 
 | |
| #ifdef _DEBUG
 | |
| #define ALLOW_TEV_DUMPS 1
 | |
| #else
 | |
| #define ALLOW_TEV_DUMPS 0
 | |
| #endif
 | |
| 
 | |
| void Tev::Init()
 | |
| {
 | |
|   FixedConstants[0] = 0;
 | |
|   FixedConstants[1] = 32;
 | |
|   FixedConstants[2] = 64;
 | |
|   FixedConstants[3] = 96;
 | |
|   FixedConstants[4] = 128;
 | |
|   FixedConstants[5] = 159;
 | |
|   FixedConstants[6] = 191;
 | |
|   FixedConstants[7] = 223;
 | |
|   FixedConstants[8] = 255;
 | |
| 
 | |
|   for (s16& comp : Zero16)
 | |
|   {
 | |
|     comp = 0;
 | |
|   }
 | |
| 
 | |
|   m_ColorInputLUT[0][RED_INP] = &Reg[0][RED_C];
 | |
|   m_ColorInputLUT[0][GRN_INP] = &Reg[0][GRN_C];
 | |
|   m_ColorInputLUT[0][BLU_INP] = &Reg[0][BLU_C];  // prev.rgb
 | |
|   m_ColorInputLUT[1][RED_INP] = &Reg[0][ALP_C];
 | |
|   m_ColorInputLUT[1][GRN_INP] = &Reg[0][ALP_C];
 | |
|   m_ColorInputLUT[1][BLU_INP] = &Reg[0][ALP_C];  // prev.aaa
 | |
|   m_ColorInputLUT[2][RED_INP] = &Reg[1][RED_C];
 | |
|   m_ColorInputLUT[2][GRN_INP] = &Reg[1][GRN_C];
 | |
|   m_ColorInputLUT[2][BLU_INP] = &Reg[1][BLU_C];  // c0.rgb
 | |
|   m_ColorInputLUT[3][RED_INP] = &Reg[1][ALP_C];
 | |
|   m_ColorInputLUT[3][GRN_INP] = &Reg[1][ALP_C];
 | |
|   m_ColorInputLUT[3][BLU_INP] = &Reg[1][ALP_C];  // c0.aaa
 | |
|   m_ColorInputLUT[4][RED_INP] = &Reg[2][RED_C];
 | |
|   m_ColorInputLUT[4][GRN_INP] = &Reg[2][GRN_C];
 | |
|   m_ColorInputLUT[4][BLU_INP] = &Reg[2][BLU_C];  // c1.rgb
 | |
|   m_ColorInputLUT[5][RED_INP] = &Reg[2][ALP_C];
 | |
|   m_ColorInputLUT[5][GRN_INP] = &Reg[2][ALP_C];
 | |
|   m_ColorInputLUT[5][BLU_INP] = &Reg[2][ALP_C];  // c1.aaa
 | |
|   m_ColorInputLUT[6][RED_INP] = &Reg[3][RED_C];
 | |
|   m_ColorInputLUT[6][GRN_INP] = &Reg[3][GRN_C];
 | |
|   m_ColorInputLUT[6][BLU_INP] = &Reg[3][BLU_C];  // c2.rgb
 | |
|   m_ColorInputLUT[7][RED_INP] = &Reg[3][ALP_C];
 | |
|   m_ColorInputLUT[7][GRN_INP] = &Reg[3][ALP_C];
 | |
|   m_ColorInputLUT[7][BLU_INP] = &Reg[3][ALP_C];  // c2.aaa
 | |
|   m_ColorInputLUT[8][RED_INP] = &TexColor[RED_C];
 | |
|   m_ColorInputLUT[8][GRN_INP] = &TexColor[GRN_C];
 | |
|   m_ColorInputLUT[8][BLU_INP] = &TexColor[BLU_C];  // tex.rgb
 | |
|   m_ColorInputLUT[9][RED_INP] = &TexColor[ALP_C];
 | |
|   m_ColorInputLUT[9][GRN_INP] = &TexColor[ALP_C];
 | |
|   m_ColorInputLUT[9][BLU_INP] = &TexColor[ALP_C];  // tex.aaa
 | |
|   m_ColorInputLUT[10][RED_INP] = &RasColor[RED_C];
 | |
|   m_ColorInputLUT[10][GRN_INP] = &RasColor[GRN_C];
 | |
|   m_ColorInputLUT[10][BLU_INP] = &RasColor[BLU_C];  // ras.rgb
 | |
|   m_ColorInputLUT[11][RED_INP] = &RasColor[ALP_C];
 | |
|   m_ColorInputLUT[11][GRN_INP] = &RasColor[ALP_C];
 | |
|   m_ColorInputLUT[11][BLU_INP] = &RasColor[ALP_C];  // ras.rgb
 | |
|   m_ColorInputLUT[12][RED_INP] = &FixedConstants[8];
 | |
|   m_ColorInputLUT[12][GRN_INP] = &FixedConstants[8];
 | |
|   m_ColorInputLUT[12][BLU_INP] = &FixedConstants[8];  // one
 | |
|   m_ColorInputLUT[13][RED_INP] = &FixedConstants[4];
 | |
|   m_ColorInputLUT[13][GRN_INP] = &FixedConstants[4];
 | |
|   m_ColorInputLUT[13][BLU_INP] = &FixedConstants[4];  // half
 | |
|   m_ColorInputLUT[14][RED_INP] = &StageKonst[RED_C];
 | |
|   m_ColorInputLUT[14][GRN_INP] = &StageKonst[GRN_C];
 | |
|   m_ColorInputLUT[14][BLU_INP] = &StageKonst[BLU_C];  // konst
 | |
|   m_ColorInputLUT[15][RED_INP] = &FixedConstants[0];
 | |
|   m_ColorInputLUT[15][GRN_INP] = &FixedConstants[0];
 | |
|   m_ColorInputLUT[15][BLU_INP] = &FixedConstants[0];  // zero
 | |
| 
 | |
|   m_AlphaInputLUT[0] = &Reg[0][ALP_C];      // prev
 | |
|   m_AlphaInputLUT[1] = &Reg[1][ALP_C];      // c0
 | |
|   m_AlphaInputLUT[2] = &Reg[2][ALP_C];      // c1
 | |
|   m_AlphaInputLUT[3] = &Reg[3][ALP_C];      // c2
 | |
|   m_AlphaInputLUT[4] = &TexColor[ALP_C];    // tex
 | |
|   m_AlphaInputLUT[5] = &RasColor[ALP_C];    // ras
 | |
|   m_AlphaInputLUT[6] = &StageKonst[ALP_C];  // konst
 | |
|   m_AlphaInputLUT[7] = &Zero16[ALP_C];      // zero
 | |
| 
 | |
|   for (int comp = 0; comp < 4; comp++)
 | |
|   {
 | |
|     m_KonstLUT[0][comp] = &FixedConstants[8];
 | |
|     m_KonstLUT[1][comp] = &FixedConstants[7];
 | |
|     m_KonstLUT[2][comp] = &FixedConstants[6];
 | |
|     m_KonstLUT[3][comp] = &FixedConstants[5];
 | |
|     m_KonstLUT[4][comp] = &FixedConstants[4];
 | |
|     m_KonstLUT[5][comp] = &FixedConstants[3];
 | |
|     m_KonstLUT[6][comp] = &FixedConstants[2];
 | |
|     m_KonstLUT[7][comp] = &FixedConstants[1];
 | |
| 
 | |
|     // These are "invalid" values, not meant to be used. On hardware,
 | |
|     // they all output zero.
 | |
|     for (int i = 8; i < 16; ++i)
 | |
|     {
 | |
|       m_KonstLUT[i][comp] = &FixedConstants[0];
 | |
|     }
 | |
| 
 | |
|     if (comp != ALP_C)
 | |
|     {
 | |
|       m_KonstLUT[12][comp] = &KonstantColors[0][comp];
 | |
|       m_KonstLUT[13][comp] = &KonstantColors[1][comp];
 | |
|       m_KonstLUT[14][comp] = &KonstantColors[2][comp];
 | |
|       m_KonstLUT[15][comp] = &KonstantColors[3][comp];
 | |
|     }
 | |
| 
 | |
|     m_KonstLUT[16][comp] = &KonstantColors[0][RED_C];
 | |
|     m_KonstLUT[17][comp] = &KonstantColors[1][RED_C];
 | |
|     m_KonstLUT[18][comp] = &KonstantColors[2][RED_C];
 | |
|     m_KonstLUT[19][comp] = &KonstantColors[3][RED_C];
 | |
|     m_KonstLUT[20][comp] = &KonstantColors[0][GRN_C];
 | |
|     m_KonstLUT[21][comp] = &KonstantColors[1][GRN_C];
 | |
|     m_KonstLUT[22][comp] = &KonstantColors[2][GRN_C];
 | |
|     m_KonstLUT[23][comp] = &KonstantColors[3][GRN_C];
 | |
|     m_KonstLUT[24][comp] = &KonstantColors[0][BLU_C];
 | |
|     m_KonstLUT[25][comp] = &KonstantColors[1][BLU_C];
 | |
|     m_KonstLUT[26][comp] = &KonstantColors[2][BLU_C];
 | |
|     m_KonstLUT[27][comp] = &KonstantColors[3][BLU_C];
 | |
|     m_KonstLUT[28][comp] = &KonstantColors[0][ALP_C];
 | |
|     m_KonstLUT[29][comp] = &KonstantColors[1][ALP_C];
 | |
|     m_KonstLUT[30][comp] = &KonstantColors[2][ALP_C];
 | |
|     m_KonstLUT[31][comp] = &KonstantColors[3][ALP_C];
 | |
|   }
 | |
| 
 | |
|   m_BiasLUT[0] = 0;
 | |
|   m_BiasLUT[1] = 128;
 | |
|   m_BiasLUT[2] = -128;
 | |
|   m_BiasLUT[3] = 0;
 | |
| 
 | |
|   m_ScaleLShiftLUT[0] = 0;
 | |
|   m_ScaleLShiftLUT[1] = 1;
 | |
|   m_ScaleLShiftLUT[2] = 2;
 | |
|   m_ScaleLShiftLUT[3] = 0;
 | |
| 
 | |
|   m_ScaleRShiftLUT[0] = 0;
 | |
|   m_ScaleRShiftLUT[1] = 0;
 | |
|   m_ScaleRShiftLUT[2] = 0;
 | |
|   m_ScaleRShiftLUT[3] = 1;
 | |
| }
 | |
| 
 | |
| static inline s16 Clamp255(s16 in)
 | |
| {
 | |
|   return in > 255 ? 255 : (in < 0 ? 0 : in);
 | |
| }
 | |
| 
 | |
| static inline s16 Clamp1024(s16 in)
 | |
| {
 | |
|   return in > 1023 ? 1023 : (in < -1024 ? -1024 : in);
 | |
| }
 | |
| 
 | |
| void Tev::SetRasColor(int colorChan, int swaptable)
 | |
| {
 | |
|   switch (colorChan)
 | |
|   {
 | |
|   case 0:  // Color0
 | |
|   {
 | |
|     u8* color = Color[0];
 | |
|     RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
 | |
|     RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
 | |
|     swaptable++;
 | |
|     RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
 | |
|     RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
 | |
|   }
 | |
|   break;
 | |
|   case 1:  // Color1
 | |
|   {
 | |
|     u8* color = Color[1];
 | |
|     RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
 | |
|     RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
 | |
|     swaptable++;
 | |
|     RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
 | |
|     RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
 | |
|   }
 | |
|   break;
 | |
|   case 5:  // alpha bump
 | |
|   {
 | |
|     for (s16& comp : RasColor)
 | |
|     {
 | |
|       comp = AlphaBump;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
|   case 6:  // alpha bump normalized
 | |
|   {
 | |
|     u8 normalized = AlphaBump | AlphaBump >> 5;
 | |
|     for (s16& comp : RasColor)
 | |
|     {
 | |
|       comp = normalized;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
|   default:  // zero
 | |
|   {
 | |
|     for (s16& comp : RasColor)
 | |
|     {
 | |
|       comp = 0;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Tev::DrawColorRegular(TevStageCombiner::ColorCombiner& cc, const InputRegType inputs[4])
 | |
| {
 | |
|   for (int i = 0; i < 3; i++)
 | |
|   {
 | |
|     const InputRegType& InputReg = inputs[BLU_C + i];
 | |
| 
 | |
|     u16 c = InputReg.c + (InputReg.c >> 7);
 | |
| 
 | |
|     s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
 | |
|     temp <<= m_ScaleLShiftLUT[cc.shift];
 | |
|     temp += (cc.shift == 3) ? 0 : (cc.op == 1) ? 127 : 128;
 | |
|     temp >>= 8;
 | |
|     temp = cc.op ? -temp : temp;
 | |
| 
 | |
|     s32 result = ((InputReg.d + m_BiasLUT[cc.bias]) << m_ScaleLShiftLUT[cc.shift]) + temp;
 | |
|     result = result >> m_ScaleRShiftLUT[cc.shift];
 | |
| 
 | |
|     Reg[cc.dest][BLU_C + i] = result;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Tev::DrawColorCompare(TevStageCombiner::ColorCombiner& cc, const InputRegType inputs[4])
 | |
| {
 | |
|   for (int i = BLU_C; i <= RED_C; i++)
 | |
|   {
 | |
|     switch ((cc.shift << 1) | cc.op | 8)  // encoded compare mode
 | |
|     {
 | |
|     case TEVCMP_R8_GT:
 | |
|       Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[i].c : 0);
 | |
|       break;
 | |
| 
 | |
|     case TEVCMP_R8_EQ:
 | |
|       Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[i].c : 0);
 | |
|       break;
 | |
| 
 | |
|     case TEVCMP_GR16_GT:
 | |
|     {
 | |
|       u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
 | |
|       u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
 | |
|       Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     case TEVCMP_GR16_EQ:
 | |
|     {
 | |
|       u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
 | |
|       u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
 | |
|       Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     case TEVCMP_BGR24_GT:
 | |
|     {
 | |
|       u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
 | |
|       u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
 | |
|       Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     case TEVCMP_BGR24_EQ:
 | |
|     {
 | |
|       u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
 | |
|       u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
 | |
|       Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     case TEVCMP_RGB8_GT:
 | |
|       Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a > inputs[i].b) ? inputs[i].c : 0);
 | |
|       break;
 | |
| 
 | |
|     case TEVCMP_RGB8_EQ:
 | |
|       Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a == inputs[i].b) ? inputs[i].c : 0);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Tev::DrawAlphaRegular(TevStageCombiner::AlphaCombiner& ac, const InputRegType inputs[4])
 | |
| {
 | |
|   const InputRegType& InputReg = inputs[ALP_C];
 | |
| 
 | |
|   u16 c = InputReg.c + (InputReg.c >> 7);
 | |
| 
 | |
|   s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
 | |
|   temp <<= m_ScaleLShiftLUT[ac.shift];
 | |
|   temp += (ac.shift != 3) ? 0 : (ac.op == 1) ? 127 : 128;
 | |
|   temp = ac.op ? (-temp >> 8) : (temp >> 8);
 | |
| 
 | |
|   s32 result = ((InputReg.d + m_BiasLUT[ac.bias]) << m_ScaleLShiftLUT[ac.shift]) + temp;
 | |
|   result = result >> m_ScaleRShiftLUT[ac.shift];
 | |
| 
 | |
|   Reg[ac.dest][ALP_C] = result;
 | |
| }
 | |
| 
 | |
| void Tev::DrawAlphaCompare(TevStageCombiner::AlphaCombiner& ac, const InputRegType inputs[4])
 | |
| {
 | |
|   switch ((ac.shift << 1) | ac.op | 8)  // encoded compare mode
 | |
|   {
 | |
|   case TEVCMP_R8_GT:
 | |
|     Reg[ac.dest][ALP_C] =
 | |
|         inputs[ALP_C].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[ALP_C].c : 0);
 | |
|     break;
 | |
| 
 | |
|   case TEVCMP_R8_EQ:
 | |
|     Reg[ac.dest][ALP_C] =
 | |
|         inputs[ALP_C].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[ALP_C].c : 0);
 | |
|     break;
 | |
| 
 | |
|   case TEVCMP_GR16_GT:
 | |
|   {
 | |
|     u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
 | |
|     u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
 | |
|     Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0);
 | |
|   }
 | |
|   break;
 | |
| 
 | |
|   case TEVCMP_GR16_EQ:
 | |
|   {
 | |
|     u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
 | |
|     u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
 | |
|     Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0);
 | |
|   }
 | |
|   break;
 | |
| 
 | |
|   case TEVCMP_BGR24_GT:
 | |
|   {
 | |
|     u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
 | |
|     u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
 | |
|     Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0);
 | |
|   }
 | |
|   break;
 | |
| 
 | |
|   case TEVCMP_BGR24_EQ:
 | |
|   {
 | |
|     u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
 | |
|     u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
 | |
|     Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0);
 | |
|   }
 | |
|   break;
 | |
| 
 | |
|   case TEVCMP_A8_GT:
 | |
|     Reg[ac.dest][ALP_C] =
 | |
|         inputs[ALP_C].d + ((inputs[ALP_C].a > inputs[ALP_C].b) ? inputs[ALP_C].c : 0);
 | |
|     break;
 | |
| 
 | |
|   case TEVCMP_A8_EQ:
 | |
|     Reg[ac.dest][ALP_C] =
 | |
|         inputs[ALP_C].d + ((inputs[ALP_C].a == inputs[ALP_C].b) ? inputs[ALP_C].c : 0);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool AlphaCompare(int alpha, int ref, AlphaTest::CompareMode comp)
 | |
| {
 | |
|   switch (comp)
 | |
|   {
 | |
|   case AlphaTest::ALWAYS:
 | |
|     return true;
 | |
|   case AlphaTest::NEVER:
 | |
|     return false;
 | |
|   case AlphaTest::LEQUAL:
 | |
|     return alpha <= ref;
 | |
|   case AlphaTest::LESS:
 | |
|     return alpha < ref;
 | |
|   case AlphaTest::GEQUAL:
 | |
|     return alpha >= ref;
 | |
|   case AlphaTest::GREATER:
 | |
|     return alpha > ref;
 | |
|   case AlphaTest::EQUAL:
 | |
|     return alpha == ref;
 | |
|   case AlphaTest::NEQUAL:
 | |
|     return alpha != ref;
 | |
|   default:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool TevAlphaTest(int alpha)
 | |
| {
 | |
|   bool comp0 = AlphaCompare(alpha, bpmem.alpha_test.ref0, bpmem.alpha_test.comp0);
 | |
|   bool comp1 = AlphaCompare(alpha, bpmem.alpha_test.ref1, bpmem.alpha_test.comp1);
 | |
| 
 | |
|   switch (bpmem.alpha_test.logic)
 | |
|   {
 | |
|   case 0:
 | |
|     return comp0 && comp1;  // and
 | |
|   case 1:
 | |
|     return comp0 || comp1;  // or
 | |
|   case 2:
 | |
|     return comp0 ^ comp1;  // xor
 | |
|   case 3:
 | |
|     return !(comp0 ^ comp1);  // xnor
 | |
|   default:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static inline s32 WrapIndirectCoord(s32 coord, int wrapMode)
 | |
| {
 | |
|   switch (wrapMode)
 | |
|   {
 | |
|   case ITW_OFF:
 | |
|     return coord;
 | |
|   case ITW_256:
 | |
|     return (coord & ((256 << 7) - 1));
 | |
|   case ITW_128:
 | |
|     return (coord & ((128 << 7) - 1));
 | |
|   case ITW_64:
 | |
|     return (coord & ((64 << 7) - 1));
 | |
|   case ITW_32:
 | |
|     return (coord & ((32 << 7) - 1));
 | |
|   case ITW_16:
 | |
|     return (coord & ((16 << 7) - 1));
 | |
|   case ITW_0:
 | |
|     return 0;
 | |
|   default:
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Tev::Indirect(unsigned int stageNum, s32 s, s32 t)
 | |
| {
 | |
|   TevStageIndirect& indirect = bpmem.tevind[stageNum];
 | |
|   u8* indmap = IndirectTex[indirect.bt];
 | |
| 
 | |
|   s32 indcoord[3];
 | |
| 
 | |
|   // alpha bump select
 | |
|   switch (indirect.bs)
 | |
|   {
 | |
|   case ITBA_OFF:
 | |
|     AlphaBump = 0;
 | |
|     break;
 | |
|   case ITBA_S:
 | |
|     AlphaBump = indmap[TextureSampler::ALP_SMP];
 | |
|     break;
 | |
|   case ITBA_T:
 | |
|     AlphaBump = indmap[TextureSampler::BLU_SMP];
 | |
|     break;
 | |
|   case ITBA_U:
 | |
|     AlphaBump = indmap[TextureSampler::GRN_SMP];
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // bias select
 | |
|   s16 biasValue = indirect.fmt == ITF_8 ? -128 : 1;
 | |
|   s16 bias[3];
 | |
|   bias[0] = indirect.bias & 1 ? biasValue : 0;
 | |
|   bias[1] = indirect.bias & 2 ? biasValue : 0;
 | |
|   bias[2] = indirect.bias & 4 ? biasValue : 0;
 | |
| 
 | |
|   // format
 | |
|   switch (indirect.fmt)
 | |
|   {
 | |
|   case ITF_8:
 | |
|     indcoord[0] = indmap[TextureSampler::ALP_SMP] + bias[0];
 | |
|     indcoord[1] = indmap[TextureSampler::BLU_SMP] + bias[1];
 | |
|     indcoord[2] = indmap[TextureSampler::GRN_SMP] + bias[2];
 | |
|     AlphaBump = AlphaBump & 0xf8;
 | |
|     break;
 | |
|   case ITF_5:
 | |
|     indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x1f) + bias[0];
 | |
|     indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x1f) + bias[1];
 | |
|     indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x1f) + bias[2];
 | |
|     AlphaBump = AlphaBump & 0xe0;
 | |
|     break;
 | |
|   case ITF_4:
 | |
|     indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x0f) + bias[0];
 | |
|     indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x0f) + bias[1];
 | |
|     indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x0f) + bias[2];
 | |
|     AlphaBump = AlphaBump & 0xf0;
 | |
|     break;
 | |
|   case ITF_3:
 | |
|     indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x07) + bias[0];
 | |
|     indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x07) + bias[1];
 | |
|     indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x07) + bias[2];
 | |
|     AlphaBump = AlphaBump & 0xf8;
 | |
|     break;
 | |
|   default:
 | |
|     PanicAlert("Tev::Indirect");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   s32 indtevtrans[2] = {0, 0};
 | |
| 
 | |
|   // matrix multiply - results might overflow, but we don't care since we only use the lower 24 bits
 | |
|   // of the result.
 | |
|   int indmtxid = indirect.mid & 3;
 | |
|   if (indmtxid)
 | |
|   {
 | |
|     IND_MTX& indmtx = bpmem.indmtx[indmtxid - 1];
 | |
|     int scale =
 | |
|         ((u32)indmtx.col0.s0 << 0) | ((u32)indmtx.col1.s1 << 2) | ((u32)indmtx.col2.s2 << 4);
 | |
| 
 | |
|     int shift;
 | |
| 
 | |
|     switch (indirect.mid & 12)
 | |
|     {
 | |
|     case 0:
 | |
|       // matrix values are S0.10, output format is S17.7, so divide by 8
 | |
|       shift = (17 - scale);
 | |
|       indtevtrans[0] = (indmtx.col0.ma * indcoord[0] + indmtx.col1.mc * indcoord[1] +
 | |
|                         indmtx.col2.me * indcoord[2]) >>
 | |
|                        3;
 | |
|       indtevtrans[1] = (indmtx.col0.mb * indcoord[0] + indmtx.col1.md * indcoord[1] +
 | |
|                         indmtx.col2.mf * indcoord[2]) >>
 | |
|                        3;
 | |
|       break;
 | |
|     case 4:  // s matrix
 | |
|       // s is S17.7, matrix elements are divided by 256, output is S17.7, so divide by 256. - TODO:
 | |
|       // Maybe, since s is actually stored as S24, we should divide by 256*64?
 | |
|       shift = (17 - scale);
 | |
|       indtevtrans[0] = s * indcoord[0] / 256;
 | |
|       indtevtrans[1] = t * indcoord[0] / 256;
 | |
|       break;
 | |
|     case 8:  // t matrix
 | |
|       shift = (17 - scale);
 | |
|       indtevtrans[0] = s * indcoord[1] / 256;
 | |
|       indtevtrans[1] = t * indcoord[1] / 256;
 | |
|       break;
 | |
|     default:
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     indtevtrans[0] = shift >= 0 ? indtevtrans[0] >> shift : indtevtrans[0] << -shift;
 | |
|     indtevtrans[1] = shift >= 0 ? indtevtrans[1] >> shift : indtevtrans[1] << -shift;
 | |
|   }
 | |
| 
 | |
|   if (indirect.fb_addprev)
 | |
|   {
 | |
|     TexCoord.s += (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
 | |
|     TexCoord.t += (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     TexCoord.s = (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
 | |
|     TexCoord.t = (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Tev::Draw()
 | |
| {
 | |
|   _assert_(Position[0] >= 0 && Position[0] < EFB_WIDTH);
 | |
|   _assert_(Position[1] >= 0 && Position[1] < EFB_HEIGHT);
 | |
| 
 | |
|   INCSTAT(stats.thisFrame.tevPixelsIn);
 | |
| 
 | |
|   // initial color values
 | |
|   for (int i = 0; i < 4; i++)
 | |
|   {
 | |
|     Reg[i][RED_C] = PixelShaderManager::constants.colors[i][0];
 | |
|     Reg[i][GRN_C] = PixelShaderManager::constants.colors[i][1];
 | |
|     Reg[i][BLU_C] = PixelShaderManager::constants.colors[i][2];
 | |
|     Reg[i][ALP_C] = PixelShaderManager::constants.colors[i][3];
 | |
|   }
 | |
| 
 | |
|   for (unsigned int stageNum = 0; stageNum < bpmem.genMode.numindstages; stageNum++)
 | |
|   {
 | |
|     int stageNum2 = stageNum >> 1;
 | |
|     int stageOdd = stageNum & 1;
 | |
| 
 | |
|     u32 texcoordSel = bpmem.tevindref.getTexCoord(stageNum);
 | |
|     u32 texmap = bpmem.tevindref.getTexMap(stageNum);
 | |
| 
 | |
|     const TEXSCALE& texscale = bpmem.texscale[stageNum2];
 | |
|     s32 scaleS = stageOdd ? texscale.ss1 : texscale.ss0;
 | |
|     s32 scaleT = stageOdd ? texscale.ts1 : texscale.ts0;
 | |
| 
 | |
|     TextureSampler::Sample(Uv[texcoordSel].s >> scaleS, Uv[texcoordSel].t >> scaleT,
 | |
|                            IndirectLod[stageNum], IndirectLinear[stageNum], texmap,
 | |
|                            IndirectTex[stageNum]);
 | |
| 
 | |
| #if ALLOW_TEV_DUMPS
 | |
|     if (g_ActiveConfig.bDumpTevStages)
 | |
|     {
 | |
|       u8 stage[4] = {IndirectTex[stageNum][TextureSampler::ALP_SMP],
 | |
|                      IndirectTex[stageNum][TextureSampler::BLU_SMP],
 | |
|                      IndirectTex[stageNum][TextureSampler::GRN_SMP], 255};
 | |
|       DebugUtil::DrawTempBuffer(stage, INDIRECT + stageNum);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   for (unsigned int stageNum = 0; stageNum <= bpmem.genMode.numtevstages; stageNum++)
 | |
|   {
 | |
|     int stageNum2 = stageNum >> 1;
 | |
|     int stageOdd = stageNum & 1;
 | |
|     TwoTevStageOrders& order = bpmem.tevorders[stageNum2];
 | |
|     TevKSel& kSel = bpmem.tevksel[stageNum2];
 | |
| 
 | |
|     // stage combiners
 | |
|     TevStageCombiner::ColorCombiner& cc = bpmem.combiners[stageNum].colorC;
 | |
|     TevStageCombiner::AlphaCombiner& ac = bpmem.combiners[stageNum].alphaC;
 | |
| 
 | |
|     int texcoordSel = order.getTexCoord(stageOdd);
 | |
|     int texmap = order.getTexMap(stageOdd);
 | |
| 
 | |
|     Indirect(stageNum, Uv[texcoordSel].s, Uv[texcoordSel].t);
 | |
| 
 | |
|     // sample texture
 | |
|     if (order.getEnable(stageOdd))
 | |
|     {
 | |
|       // RGBA
 | |
|       u8 texel[4];
 | |
| 
 | |
|       TextureSampler::Sample(TexCoord.s, TexCoord.t, TextureLod[stageNum], TextureLinear[stageNum],
 | |
|                              texmap, texel);
 | |
| 
 | |
| #if ALLOW_TEV_DUMPS
 | |
|       if (g_ActiveConfig.bDumpTevTextureFetches)
 | |
|         DebugUtil::DrawTempBuffer(texel, DIRECT_TFETCH + stageNum);
 | |
| #endif
 | |
| 
 | |
|       int swaptable = ac.tswap * 2;
 | |
| 
 | |
|       TexColor[RED_C] = texel[bpmem.tevksel[swaptable].swap1];
 | |
|       TexColor[GRN_C] = texel[bpmem.tevksel[swaptable].swap2];
 | |
|       swaptable++;
 | |
|       TexColor[BLU_C] = texel[bpmem.tevksel[swaptable].swap1];
 | |
|       TexColor[ALP_C] = texel[bpmem.tevksel[swaptable].swap2];
 | |
|     }
 | |
| 
 | |
|     // set konst for this stage
 | |
|     int kc = kSel.getKC(stageOdd);
 | |
|     int ka = kSel.getKA(stageOdd);
 | |
|     StageKonst[RED_C] = *(m_KonstLUT[kc][RED_C]);
 | |
|     StageKonst[GRN_C] = *(m_KonstLUT[kc][GRN_C]);
 | |
|     StageKonst[BLU_C] = *(m_KonstLUT[kc][BLU_C]);
 | |
|     StageKonst[ALP_C] = *(m_KonstLUT[ka][ALP_C]);
 | |
| 
 | |
|     // set color
 | |
|     SetRasColor(order.getColorChan(stageOdd), ac.rswap * 2);
 | |
| 
 | |
|     // combine inputs
 | |
|     InputRegType inputs[4];
 | |
|     for (int i = 0; i < 3; i++)
 | |
|     {
 | |
|       inputs[BLU_C + i].a = *m_ColorInputLUT[cc.a][i];
 | |
|       inputs[BLU_C + i].b = *m_ColorInputLUT[cc.b][i];
 | |
|       inputs[BLU_C + i].c = *m_ColorInputLUT[cc.c][i];
 | |
|       inputs[BLU_C + i].d = *m_ColorInputLUT[cc.d][i];
 | |
|     }
 | |
|     inputs[ALP_C].a = *m_AlphaInputLUT[ac.a];
 | |
|     inputs[ALP_C].b = *m_AlphaInputLUT[ac.b];
 | |
|     inputs[ALP_C].c = *m_AlphaInputLUT[ac.c];
 | |
|     inputs[ALP_C].d = *m_AlphaInputLUT[ac.d];
 | |
| 
 | |
|     if (cc.bias != 3)
 | |
|       DrawColorRegular(cc, inputs);
 | |
|     else
 | |
|       DrawColorCompare(cc, inputs);
 | |
| 
 | |
|     if (cc.clamp)
 | |
|     {
 | |
|       Reg[cc.dest][RED_C] = Clamp255(Reg[cc.dest][RED_C]);
 | |
|       Reg[cc.dest][GRN_C] = Clamp255(Reg[cc.dest][GRN_C]);
 | |
|       Reg[cc.dest][BLU_C] = Clamp255(Reg[cc.dest][BLU_C]);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       Reg[cc.dest][RED_C] = Clamp1024(Reg[cc.dest][RED_C]);
 | |
|       Reg[cc.dest][GRN_C] = Clamp1024(Reg[cc.dest][GRN_C]);
 | |
|       Reg[cc.dest][BLU_C] = Clamp1024(Reg[cc.dest][BLU_C]);
 | |
|     }
 | |
| 
 | |
|     if (ac.bias != 3)
 | |
|       DrawAlphaRegular(ac, inputs);
 | |
|     else
 | |
|       DrawAlphaCompare(ac, inputs);
 | |
| 
 | |
|     if (ac.clamp)
 | |
|       Reg[ac.dest][ALP_C] = Clamp255(Reg[ac.dest][ALP_C]);
 | |
|     else
 | |
|       Reg[ac.dest][ALP_C] = Clamp1024(Reg[ac.dest][ALP_C]);
 | |
| 
 | |
| #if ALLOW_TEV_DUMPS
 | |
|     if (g_ActiveConfig.bDumpTevStages)
 | |
|     {
 | |
|       u8 stage[4] = {(u8)Reg[0][RED_C], (u8)Reg[0][GRN_C], (u8)Reg[0][BLU_C], (u8)Reg[0][ALP_C]};
 | |
|       DebugUtil::DrawTempBuffer(stage, DIRECT + stageNum);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // convert to 8 bits per component
 | |
|   // the results of the last tev stage are put onto the screen,
 | |
|   // regardless of the used destination register - TODO: Verify!
 | |
|   u32 color_index = bpmem.combiners[bpmem.genMode.numtevstages].colorC.dest;
 | |
|   u32 alpha_index = bpmem.combiners[bpmem.genMode.numtevstages].alphaC.dest;
 | |
|   u8 output[4] = {(u8)Reg[alpha_index][ALP_C], (u8)Reg[color_index][BLU_C],
 | |
|                   (u8)Reg[color_index][GRN_C], (u8)Reg[color_index][RED_C]};
 | |
| 
 | |
|   if (!TevAlphaTest(output[ALP_C]))
 | |
|     return;
 | |
| 
 | |
|   // z texture
 | |
|   if (bpmem.ztex2.op)
 | |
|   {
 | |
|     u32 ztex = bpmem.ztex1.bias;
 | |
|     switch (bpmem.ztex2.type)
 | |
|     {
 | |
|     case 0:  // 8 bit
 | |
|       ztex += TexColor[ALP_C];
 | |
|       break;
 | |
|     case 1:  // 16 bit
 | |
|       ztex += TexColor[ALP_C] << 8 | TexColor[RED_C];
 | |
|       break;
 | |
|     case 2:  // 24 bit
 | |
|       ztex += TexColor[RED_C] << 16 | TexColor[GRN_C] << 8 | TexColor[BLU_C];
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (bpmem.ztex2.op == ZTEXTURE_ADD)
 | |
|       ztex += Position[2];
 | |
| 
 | |
|     Position[2] = ztex & 0x00ffffff;
 | |
|   }
 | |
| 
 | |
|   // fog
 | |
|   if (bpmem.fog.c_proj_fsel.fsel)
 | |
|   {
 | |
|     float ze;
 | |
| 
 | |
|     if (bpmem.fog.c_proj_fsel.proj == 0)
 | |
|     {
 | |
|       // perspective
 | |
|       // ze = A/(B - (Zs >> B_SHF))
 | |
|       s32 denom = bpmem.fog.b_magnitude - (Position[2] >> bpmem.fog.b_shift);
 | |
|       // in addition downscale magnitude and zs to 0.24 bits
 | |
|       ze = (bpmem.fog.a.GetA() * 16777215.0f) / (float)denom;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       // orthographic
 | |
|       // ze = a*Zs
 | |
|       // in addition downscale zs to 0.24 bits
 | |
|       ze = bpmem.fog.a.GetA() * ((float)Position[2] / 16777215.0f);
 | |
|     }
 | |
| 
 | |
|     if (bpmem.fogRange.Base.Enabled)
 | |
|     {
 | |
|       // TODO: This is untested and should definitely be checked against real hw.
 | |
|       // - No idea if offset is really normalized against the viewport width or against the
 | |
|       // projection matrix or yet something else
 | |
|       // - scaling of the "k" coefficient isn't clear either.
 | |
| 
 | |
|       // First, calculate the offset from the viewport center (normalized to 0..1)
 | |
|       float offset = (Position[0] - (static_cast<s32>(bpmem.fogRange.Base.Center) - 342)) /
 | |
|                      static_cast<float>(xfmem.viewport.wd);
 | |
| 
 | |
|       // Based on that, choose the index such that points which are far away from the z-axis use the
 | |
|       // 10th "k" value and such that central points use the first value.
 | |
|       float floatindex = 9.f - std::abs(offset) * 9.f;
 | |
|       floatindex = (floatindex < 0.f) ? 0.f : (floatindex > 9.f) ?
 | |
|                                         9.f :
 | |
|                                         floatindex;  // TODO: This shouldn't be necessary!
 | |
| 
 | |
|       // Get the two closest integer indices, look up the corresponding samples
 | |
|       int indexlower = (int)floor(floatindex);
 | |
|       int indexupper = indexlower + 1;
 | |
|       // Look up coefficient... Seems like multiplying by 4 makes Fortune Street work properly (fog
 | |
|       // is too strong without the factor)
 | |
|       float klower = bpmem.fogRange.K[indexlower / 2].GetValue(indexlower % 2) * 4.f;
 | |
|       float kupper = bpmem.fogRange.K[indexupper / 2].GetValue(indexupper % 2) * 4.f;
 | |
| 
 | |
|       // linearly interpolate the samples and multiple ze by the resulting adjustment factor
 | |
|       float factor = indexupper - floatindex;
 | |
|       float k = klower * factor + kupper * (1.f - factor);
 | |
|       float x_adjust = sqrt(offset * offset + k * k) / k;
 | |
|       ze *= x_adjust;  // NOTE: This is basically dividing by a cosine (hidden behind
 | |
|                        // GXInitFogAdjTable): 1/cos = c/b = sqrt(a^2+b^2)/b
 | |
|     }
 | |
| 
 | |
|     ze -= bpmem.fog.c_proj_fsel.GetC();
 | |
| 
 | |
|     // clamp 0 to 1
 | |
|     float fog = (ze < 0.0f) ? 0.0f : ((ze > 1.0f) ? 1.0f : ze);
 | |
| 
 | |
|     switch (bpmem.fog.c_proj_fsel.fsel)
 | |
|     {
 | |
|     case 4:  // exp
 | |
|       fog = 1.0f - pow(2.0f, -8.0f * fog);
 | |
|       break;
 | |
|     case 5:  // exp2
 | |
|       fog = 1.0f - pow(2.0f, -8.0f * fog * fog);
 | |
|       break;
 | |
|     case 6:  // backward exp
 | |
|       fog = 1.0f - fog;
 | |
|       fog = pow(2.0f, -8.0f * fog);
 | |
|       break;
 | |
|     case 7:  // backward exp2
 | |
|       fog = 1.0f - fog;
 | |
|       fog = pow(2.0f, -8.0f * fog * fog);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // lerp from output to fog color
 | |
|     u32 fogInt = (u32)(fog * 256);
 | |
|     u32 invFog = 256 - fogInt;
 | |
| 
 | |
|     output[RED_C] = (output[RED_C] * invFog + fogInt * bpmem.fog.color.r) >> 8;
 | |
|     output[GRN_C] = (output[GRN_C] * invFog + fogInt * bpmem.fog.color.g) >> 8;
 | |
|     output[BLU_C] = (output[BLU_C] * invFog + fogInt * bpmem.fog.color.b) >> 8;
 | |
|   }
 | |
| 
 | |
|   bool late_ztest = !bpmem.zcontrol.early_ztest || !g_ActiveConfig.bZComploc;
 | |
|   if (late_ztest && bpmem.zmode.testenable)
 | |
|   {
 | |
|     // TODO: Check against hw if these values get incremented even if depth testing is disabled
 | |
|     EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT);
 | |
| 
 | |
|     if (!EfbInterface::ZCompare(Position[0], Position[1], Position[2]))
 | |
|       return;
 | |
| 
 | |
|     EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_OUTPUT);
 | |
|   }
 | |
| 
 | |
|   // branchless bounding box update
 | |
|   BoundingBox::coords[BoundingBox::LEFT] =
 | |
|       std::min((u16)Position[0], BoundingBox::coords[BoundingBox::LEFT]);
 | |
|   BoundingBox::coords[BoundingBox::RIGHT] =
 | |
|       std::max((u16)Position[0], BoundingBox::coords[BoundingBox::RIGHT]);
 | |
|   BoundingBox::coords[BoundingBox::TOP] =
 | |
|       std::min((u16)Position[1], BoundingBox::coords[BoundingBox::TOP]);
 | |
|   BoundingBox::coords[BoundingBox::BOTTOM] =
 | |
|       std::max((u16)Position[1], BoundingBox::coords[BoundingBox::BOTTOM]);
 | |
| 
 | |
| #if ALLOW_TEV_DUMPS
 | |
|   if (g_ActiveConfig.bDumpTevStages)
 | |
|   {
 | |
|     for (u32 i = 0; i < bpmem.genMode.numindstages; ++i)
 | |
|       DebugUtil::CopyTempBuffer(Position[0], Position[1], INDIRECT, i, "Indirect");
 | |
|     for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
 | |
|       DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT, i, "Stage");
 | |
|   }
 | |
| 
 | |
|   if (g_ActiveConfig.bDumpTevTextureFetches)
 | |
|   {
 | |
|     for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
 | |
|     {
 | |
|       TwoTevStageOrders& order = bpmem.tevorders[i >> 1];
 | |
|       if (order.getEnable(i & 1))
 | |
|         DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT_TFETCH, i, "TFetch");
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   INCSTAT(stats.thisFrame.tevPixelsOut);
 | |
|   EfbInterface::IncPerfCounterQuadCount(PQ_BLEND_INPUT);
 | |
| 
 | |
|   EfbInterface::BlendTev(Position[0], Position[1], output);
 | |
| }
 | |
| 
 | |
| void Tev::SetRegColor(int reg, int comp, s16 color)
 | |
| {
 | |
|   KonstantColors[reg][comp] = color;
 | |
| }
 |