forked from espressif/esp-idf
flash_mmap: migrate to use esp_mmap driver
This commit is contained in:
@@ -9,7 +9,7 @@
|
||||
#include "esp_heap_caps.h"
|
||||
|
||||
// iterator to load partition tables in `test spi bus lock, with flash` will lead memory not free
|
||||
#define TEST_MEMORY_LEAK_THRESHOLD (250)
|
||||
#define TEST_MEMORY_LEAK_THRESHOLD (350)
|
||||
|
||||
static size_t before_free_8bit;
|
||||
static size_t before_free_32bit;
|
||||
|
@@ -45,7 +45,7 @@ esp_err_t esp_partition_read(const esp_partition_t *partition,
|
||||
|
||||
/* Encrypted partitions need to be read via a cache mapping */
|
||||
const void *buf;
|
||||
spi_flash_mmap_handle_t handle;
|
||||
esp_partition_mmap_handle_t handle;
|
||||
|
||||
esp_err_t err = esp_partition_mmap(partition, src_offset, size,
|
||||
SPI_FLASH_MMAP_DATA, &buf, &handle);
|
||||
|
@@ -45,7 +45,7 @@ else()
|
||||
"spi_flash_os_func_noos.c")
|
||||
|
||||
list(APPEND srcs ${cache_srcs})
|
||||
set(priv_requires bootloader_support app_update soc driver)
|
||||
set(priv_requires bootloader_support app_update soc driver esp_mm)
|
||||
endif()
|
||||
|
||||
idf_component_register(SRCS "${srcs}"
|
||||
|
@@ -8,30 +8,30 @@
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/task.h>
|
||||
#include <freertos/semphr.h>
|
||||
#include "soc/mmu.h"
|
||||
#include "sdkconfig.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_memory_utils.h"
|
||||
#include "spi_flash_mmap.h"
|
||||
#include "esp_flash_encrypt.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_private/cache_utils.h"
|
||||
#include "hal/mmu_ll.h"
|
||||
#include "esp_rom_spiflash.h"
|
||||
#include "soc/mmu.h"
|
||||
|
||||
#include "esp_private/esp_mmu_map_private.h"
|
||||
#include "esp_mmu_map.h"
|
||||
#if CONFIG_SPIRAM
|
||||
#include "esp_private/esp_psram_extram.h"
|
||||
#include "esp_private/mmu_psram_flash.h"
|
||||
#endif
|
||||
|
||||
#include "esp_private/cache_utils.h"
|
||||
#include "spi_flash_mmap.h"
|
||||
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
#include "soc/dport_reg.h"
|
||||
#include "esp32/rom/cache.h"
|
||||
#elif CONFIG_IDF_TARGET_ESP32S2
|
||||
#include "esp32s2/rom/cache.h"
|
||||
#include "soc/extmem_reg.h"
|
||||
#elif CONFIG_IDF_TARGET_ESP32S3
|
||||
#include "esp32s3/rom/cache.h"
|
||||
#include "soc/extmem_reg.h"
|
||||
#elif CONFIG_IDF_TARGET_ESP32C3
|
||||
#include "esp32c3/rom/cache.h"
|
||||
#elif CONFIG_IDF_TARGET_ESP32H4
|
||||
@@ -44,21 +44,6 @@
|
||||
#include "esp32h2/rom/cache.h"
|
||||
#endif
|
||||
|
||||
#if CONFIG_SPIRAM
|
||||
#include "esp_private/esp_psram_extram.h"
|
||||
#include "esp_private/mmu_psram_flash.h"
|
||||
#endif
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Enable built-in checks in queue.h in debug builds
|
||||
#define INVARIANTS
|
||||
#endif
|
||||
#include "sys/queue.h"
|
||||
|
||||
#define IROM0_PAGES_NUM (SOC_MMU_IROM0_PAGES_END - SOC_MMU_IROM0_PAGES_START)
|
||||
#define DROM0_PAGES_NUM (SOC_MMU_DROM0_PAGES_END - SOC_MMU_DROM0_PAGES_START)
|
||||
#define PAGES_LIMIT ((SOC_MMU_IROM0_PAGES_END > SOC_MMU_DROM0_PAGES_END) ? SOC_MMU_IROM0_PAGES_END:SOC_MMU_DROM0_PAGES_END)
|
||||
#define INVALID_PHY_PAGE(page_size) ((page_size) - 1)
|
||||
|
||||
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
||||
extern int _instruction_reserved_start;
|
||||
@@ -72,387 +57,292 @@ extern int _rodata_reserved_end;
|
||||
|
||||
#if !CONFIG_SPI_FLASH_ROM_IMPL
|
||||
|
||||
typedef struct mmap_entry_{
|
||||
uint32_t handle;
|
||||
int page;
|
||||
int count;
|
||||
LIST_ENTRY(mmap_entry_) entries;
|
||||
} mmap_entry_t;
|
||||
|
||||
typedef struct mmap_block_t {
|
||||
uint32_t *vaddr_list;
|
||||
int list_num;
|
||||
} mmap_block_t;
|
||||
|
||||
|
||||
static LIST_HEAD(mmap_entries_head, mmap_entry_) s_mmap_entries_head =
|
||||
LIST_HEAD_INITIALIZER(s_mmap_entries_head);
|
||||
static uint8_t s_mmap_page_refcnt[SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION] = {0};
|
||||
static uint32_t s_mmap_last_handle = 0;
|
||||
|
||||
|
||||
static void IRAM_ATTR spi_flash_mmap_init(void)
|
||||
{
|
||||
if (s_mmap_page_refcnt[SOC_MMU_DROM0_PAGES_START] != 0) {
|
||||
return; /* mmap data already initialised */
|
||||
}
|
||||
for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
|
||||
uint32_t entry_pro = mmu_ll_read_entry(MMU_TABLE_CORE0, i);
|
||||
#if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
|
||||
uint32_t entry_app = mmu_ll_read_entry(MMU_TABLE_CORE1, i);
|
||||
|
||||
if (entry_pro != entry_app) {
|
||||
// clean up entries used by boot loader
|
||||
mmu_ll_set_entry_invalid(MMU_TABLE_CORE0, i);
|
||||
}
|
||||
#endif
|
||||
bool entry_pro_invalid = mmu_ll_get_entry_is_invalid(MMU_TABLE_CORE0, i);
|
||||
if (!entry_pro_invalid && (i == SOC_MMU_DROM0_PAGES_START || i == SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE || entry_pro != 0)) {
|
||||
s_mmap_page_refcnt[i] = 1;
|
||||
} else {
|
||||
mmu_ll_set_entry_invalid(MMU_TABLE_CORE0, i);
|
||||
#if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
|
||||
mmu_ll_set_entry_invalid(MMU_TABLE_CORE1, i);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void IRAM_ATTR get_mmu_region(spi_flash_mmap_memory_t memory, int* out_begin, int* out_size,uint32_t* region_addr)
|
||||
{
|
||||
if (memory == SPI_FLASH_MMAP_DATA) {
|
||||
// Vaddr0
|
||||
*out_begin = SOC_MMU_DROM0_PAGES_START;
|
||||
*out_size = DROM0_PAGES_NUM;
|
||||
*region_addr = SOC_MMU_VADDR0_START_ADDR;
|
||||
} else {
|
||||
// only part of VAddr1 is usable, so adjust for that
|
||||
*out_begin = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
|
||||
*out_size = SOC_MMU_IROM0_PAGES_END - *out_begin;
|
||||
*region_addr = SOC_MMU_VADDR1_FIRST_USABLE_ADDR;
|
||||
}
|
||||
}
|
||||
|
||||
esp_err_t IRAM_ATTR spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
|
||||
esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
|
||||
const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
|
||||
{
|
||||
esp_err_t ret;
|
||||
if (src_addr & INVALID_PHY_PAGE(CONFIG_MMU_PAGE_SIZE)) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
if ((src_addr + size) > g_rom_flashchip.chip_size) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
// region which should be mapped
|
||||
int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE;
|
||||
int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE;
|
||||
// prepare a linear pages array to feed into spi_flash_mmap_pages
|
||||
int *pages = heap_caps_malloc(sizeof(int)*page_count, MALLOC_CAP_INTERNAL);
|
||||
if (pages == NULL) {
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
for (int i = 0; i < page_count; i++) {
|
||||
pages[i] = (phys_page+i);
|
||||
}
|
||||
ret = spi_flash_mmap_pages(pages, page_count, memory, out_ptr, out_handle);
|
||||
free(pages);
|
||||
return ret;
|
||||
}
|
||||
esp_err_t ret = ESP_FAIL;
|
||||
mmu_mem_caps_t caps = 0;
|
||||
void *ptr = NULL;
|
||||
mmap_block_t *block = NULL;
|
||||
uint32_t *vaddr_list = NULL;
|
||||
|
||||
esp_err_t IRAM_ATTR spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
|
||||
const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
|
||||
{
|
||||
esp_err_t ret;
|
||||
const void* temp_ptr = *out_ptr = NULL;
|
||||
spi_flash_mmap_handle_t temp_handle = *out_handle = (spi_flash_mmap_handle_t)NULL;
|
||||
bool need_flush = false;
|
||||
if (!page_count) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
if (!esp_ptr_internal(pages)) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
for (int i = 0; i < page_count; i++) {
|
||||
if (pages[i] < 0 || pages[i]*SPI_FLASH_MMU_PAGE_SIZE >= g_rom_flashchip.chip_size) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
}
|
||||
mmap_entry_t* new_entry = (mmap_entry_t*) heap_caps_malloc(sizeof(mmap_entry_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
|
||||
if (new_entry == 0) {
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
|
||||
spi_flash_mmap_init();
|
||||
// figure out the memory region where we should look for pages
|
||||
int region_begin; // first page to check
|
||||
int region_size; // number of pages to check
|
||||
uint32_t region_addr; // base address of memory region
|
||||
get_mmu_region(memory,®ion_begin,®ion_size,®ion_addr);
|
||||
if (region_size < page_count) {
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
// The following part searches for a range of MMU entries which can be used.
|
||||
// Algorithm is essentially naïve strstr algorithm, except that unused MMU
|
||||
// entries are treated as wildcards.
|
||||
int start;
|
||||
// the " + 1" is a fix when loop the MMU table pages, because the last MMU page
|
||||
// is valid as well if it have not been used
|
||||
int end = region_begin + region_size - page_count + 1;
|
||||
for (start = region_begin; start < end; ++start) {
|
||||
int pageno = 0;
|
||||
int pos;
|
||||
for (pos = start; pos < start + page_count; ++pos, ++pageno) {
|
||||
int table_val = (int) mmu_ll_read_entry(MMU_TABLE_CORE0, pos);
|
||||
uint8_t refcnt = s_mmap_page_refcnt[pos];
|
||||
if (refcnt != 0 && table_val != SOC_MMU_PAGE_IN_FLASH(pages[pageno])) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// whole mapping range matched, bail out
|
||||
if (pos - start == page_count) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// checked all the region(s) and haven't found anything?
|
||||
if (start == end) {
|
||||
block = heap_caps_calloc(1, sizeof(mmap_block_t), MALLOC_CAP_INTERNAL);
|
||||
if (!block) {
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto err;
|
||||
}
|
||||
|
||||
vaddr_list = heap_caps_calloc(1, 1 * sizeof(uint32_t), MALLOC_CAP_INTERNAL);
|
||||
if (!vaddr_list) {
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto err;
|
||||
}
|
||||
|
||||
block->vaddr_list = vaddr_list;
|
||||
|
||||
if (memory == SPI_FLASH_MMAP_INST) {
|
||||
caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
|
||||
} else {
|
||||
// set up mapping using pages
|
||||
uint32_t pageno = 0;
|
||||
for (int i = start; i != start + page_count; ++i, ++pageno) {
|
||||
// sanity check: we won't reconfigure entries with non-zero reference count
|
||||
uint32_t entry_pro = mmu_ll_read_entry(MMU_TABLE_CORE0, i);
|
||||
#if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
|
||||
uint32_t entry_app = mmu_ll_read_entry(MMU_TABLE_CORE1, i);
|
||||
#endif
|
||||
assert(s_mmap_page_refcnt[i] == 0 ||
|
||||
(entry_pro == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
|
||||
#if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
|
||||
&& entry_app == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
|
||||
#endif
|
||||
));
|
||||
if (s_mmap_page_refcnt[i] == 0) {
|
||||
if (entry_pro != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
|
||||
#if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
|
||||
|| entry_app != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
|
||||
#endif
|
||||
) {
|
||||
mmu_ll_write_entry(MMU_TABLE_CORE0, i, pages[pageno], 0);
|
||||
#if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
|
||||
mmu_ll_write_entry(MMU_TABLE_CORE1, i, pages[pageno], 0);
|
||||
#endif
|
||||
caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
|
||||
}
|
||||
ret = esp_mmu_map(src_addr, size, caps, MMU_TARGET_FLASH0, &ptr);
|
||||
if (ret == ESP_OK) {
|
||||
vaddr_list[0] = (uint32_t)ptr;
|
||||
block->list_num = 1;
|
||||
|
||||
#if !CONFIG_IDF_TARGET_ESP32
|
||||
Cache_Invalidate_Addr(region_addr + (i - region_begin) * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMU_PAGE_SIZE);
|
||||
#endif
|
||||
need_flush = true;
|
||||
}
|
||||
}
|
||||
++s_mmap_page_refcnt[i];
|
||||
}
|
||||
LIST_INSERT_HEAD(&s_mmap_entries_head, new_entry, entries);
|
||||
new_entry->page = start;
|
||||
new_entry->count = page_count;
|
||||
new_entry->handle = ++s_mmap_last_handle;
|
||||
temp_handle = new_entry->handle;
|
||||
temp_ptr = (void*) (region_addr + (start - region_begin) * SPI_FLASH_MMU_PAGE_SIZE);
|
||||
ret = ESP_OK;
|
||||
} else if (ret == ESP_ERR_INVALID_STATE) {
|
||||
/**
|
||||
* paddr region is mapped already,
|
||||
* to keep `flash_mmap.c` original behaviour, we consider this as a valid behaviour.
|
||||
* Set `list_num` to 0 so we don't need to call `esp_mmu_unmap` to this one, as `esp_mmu_map`
|
||||
* doesn't really create a new handle.
|
||||
*/
|
||||
block->list_num = 0;
|
||||
} else {
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* This is a temporary fix for an issue where some
|
||||
cache reads may see stale data.
|
||||
*out_ptr = ptr;
|
||||
*out_handle = (uint32_t)block;
|
||||
|
||||
Working on a long term fix that doesn't require invalidating
|
||||
entire cache.
|
||||
*/
|
||||
if (need_flush) {
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
#if CONFIG_SPIRAM
|
||||
esp_psram_extram_writeback_cache();
|
||||
#endif // CONFIG_SPIRAM
|
||||
Cache_Flush(0);
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
Cache_Flush(1);
|
||||
#endif // !CONFIG_FREERTOS_UNICORE
|
||||
#endif // CONFIG_IDF_TARGET_ESP32
|
||||
}
|
||||
return ESP_OK;
|
||||
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
if (temp_ptr == NULL) {
|
||||
free(new_entry);
|
||||
err:
|
||||
if (vaddr_list) {
|
||||
free(vaddr_list);
|
||||
}
|
||||
if (block) {
|
||||
free(block);
|
||||
}
|
||||
*out_ptr = temp_ptr;
|
||||
*out_handle = temp_handle;
|
||||
return ret;
|
||||
}
|
||||
|
||||
void IRAM_ATTR spi_flash_munmap(spi_flash_mmap_handle_t handle)
|
||||
|
||||
static int s_find_non_contiguous_block_nums(const int *pages, int page_count)
|
||||
{
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
mmap_entry_t* it;
|
||||
// look for handle in linked list
|
||||
for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
|
||||
if (it->handle == handle) {
|
||||
// for each page, decrement reference counter
|
||||
// if reference count is zero, disable MMU table entry to
|
||||
// facilitate debugging of use-after-free conditions
|
||||
for (int i = it->page; i < it->page + it->count; ++i) {
|
||||
assert(s_mmap_page_refcnt[i] > 0);
|
||||
if (--s_mmap_page_refcnt[i] == 0) {
|
||||
mmu_ll_set_entry_invalid(MMU_TABLE_CORE0, i);
|
||||
#if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
|
||||
mmu_ll_set_entry_invalid(MMU_TABLE_CORE1, i);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
LIST_REMOVE(it, entries);
|
||||
break;
|
||||
int nums = 1;
|
||||
int last_end = pages[0] + 1;
|
||||
|
||||
for (int i = 1; i < page_count; i++) {
|
||||
if (pages[i] != last_end) {
|
||||
nums++;
|
||||
}
|
||||
last_end = pages[i] + 1;
|
||||
}
|
||||
return nums;
|
||||
}
|
||||
|
||||
static void s_merge_contiguous_pages(const int *pages, uint32_t page_count, int block_nums, int (*out_blocks)[2])
|
||||
{
|
||||
uint32_t last_end = pages[0] + 1;
|
||||
int new_array_id = 0;
|
||||
out_blocks[new_array_id][0] = pages[0];
|
||||
out_blocks[new_array_id][1] = 1;
|
||||
|
||||
for (int i = 1; i < page_count; i++) {
|
||||
|
||||
if (pages[i] != last_end) {
|
||||
new_array_id += 1;
|
||||
assert(new_array_id < block_nums);
|
||||
out_blocks[new_array_id][0] = pages[i];
|
||||
out_blocks[new_array_id][1] = 1;
|
||||
} else {
|
||||
out_blocks[new_array_id][1] += 1;
|
||||
}
|
||||
|
||||
last_end = pages[i] + 1;
|
||||
}
|
||||
}
|
||||
|
||||
static void s_pages_to_bytes(int (*blocks)[2], int block_nums)
|
||||
{
|
||||
for (int i = 0; i < block_nums; i++) {
|
||||
blocks[i][0] = blocks[i][0] * CONFIG_MMU_PAGE_SIZE;
|
||||
blocks[i][1] = blocks[i][1] * CONFIG_MMU_PAGE_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
esp_err_t spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
|
||||
const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
|
||||
{
|
||||
esp_err_t ret = ESP_FAIL;
|
||||
mmu_mem_caps_t caps = 0;
|
||||
mmap_block_t *block = NULL;
|
||||
uint32_t *vaddr_list = NULL;
|
||||
int successful_cnt = 0;
|
||||
|
||||
int block_num = s_find_non_contiguous_block_nums(pages, page_count);
|
||||
int paddr_blocks[block_num][2];
|
||||
s_merge_contiguous_pages(pages, page_count, block_num, paddr_blocks);
|
||||
s_pages_to_bytes(paddr_blocks, block_num);
|
||||
|
||||
block = heap_caps_calloc(1, sizeof(mmap_block_t), MALLOC_CAP_INTERNAL);
|
||||
if (!block) {
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto err;
|
||||
}
|
||||
|
||||
vaddr_list = heap_caps_calloc(1, block_num * sizeof(uint32_t), MALLOC_CAP_INTERNAL);
|
||||
if (!vaddr_list) {
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (memory == SPI_FLASH_MMAP_INST) {
|
||||
caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
|
||||
} else {
|
||||
caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
|
||||
}
|
||||
for (int i = 0; i < block_num; i++) {
|
||||
void *ptr = NULL;
|
||||
ret = esp_mmu_map(paddr_blocks[i][0], paddr_blocks[i][1], caps, MMU_TARGET_FLASH0, &ptr);
|
||||
if (ret == ESP_OK) {
|
||||
vaddr_list[i] = (uint32_t)ptr;
|
||||
successful_cnt++;
|
||||
} else {
|
||||
/**
|
||||
* A note for `ret == ESP_ERR_INVALID_STATE`:
|
||||
* If one of the `*pages` are mapped already, this means we can't find a
|
||||
* consecutive vaddr block for these `*pages`
|
||||
*/
|
||||
goto err;
|
||||
}
|
||||
vaddr_list[i] = (uint32_t)ptr;
|
||||
}
|
||||
|
||||
block->vaddr_list = vaddr_list;
|
||||
block->list_num = successful_cnt;
|
||||
|
||||
/**
|
||||
* We get a contiguous vaddr block, but may contain multiple esp_mmu handles.
|
||||
* The first handle vaddr is the start address of this contiguous vaddr block.
|
||||
*/
|
||||
*out_ptr = (void *)vaddr_list[0];
|
||||
*out_handle = (uint32_t)block;
|
||||
|
||||
return ESP_OK;
|
||||
|
||||
err:
|
||||
for (int i = 0; i < successful_cnt; i++) {
|
||||
esp_mmu_unmap((void *)vaddr_list[i]);
|
||||
}
|
||||
if (vaddr_list) {
|
||||
free(vaddr_list);
|
||||
}
|
||||
if (block) {
|
||||
free(block);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
void spi_flash_munmap(spi_flash_mmap_handle_t handle)
|
||||
{
|
||||
esp_err_t ret = ESP_FAIL;
|
||||
mmap_block_t *block = (void *)handle;
|
||||
|
||||
for (int i = 0; i < block->list_num; i++) {
|
||||
ret = esp_mmu_unmap((void *)block->vaddr_list[i]);
|
||||
if (ret == ESP_ERR_NOT_FOUND) {
|
||||
assert(0 && "invalid handle, or handle already unmapped");
|
||||
}
|
||||
}
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
if (it == NULL) {
|
||||
assert(0 && "invalid handle, or handle already unmapped");
|
||||
}
|
||||
free(it);
|
||||
|
||||
free(block->vaddr_list);
|
||||
free(block);
|
||||
}
|
||||
|
||||
static void IRAM_ATTR NOINLINE_ATTR spi_flash_protected_mmap_init(void)
|
||||
{
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_mmap_init();
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
}
|
||||
|
||||
static uint32_t IRAM_ATTR NOINLINE_ATTR spi_flash_protected_read_mmu_entry(int index)
|
||||
{
|
||||
uint32_t value;
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
value = mmu_ll_read_entry(MMU_TABLE_CORE0, index);
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
return value;
|
||||
}
|
||||
|
||||
void spi_flash_mmap_dump(void)
|
||||
{
|
||||
spi_flash_protected_mmap_init();
|
||||
|
||||
mmap_entry_t* it;
|
||||
for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
|
||||
printf("handle=%d page=%d count=%d\n", it->handle, it->page, it->count);
|
||||
}
|
||||
for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
|
||||
if (s_mmap_page_refcnt[i] != 0) {
|
||||
uint32_t paddr = spi_flash_protected_read_mmu_entry(i);
|
||||
printf("page %d: refcnt=%d paddr=%d\n", i, (int) s_mmap_page_refcnt[i], paddr);
|
||||
}
|
||||
}
|
||||
esp_mmu_map_dump_mapped_blocks(stdout);
|
||||
}
|
||||
|
||||
uint32_t IRAM_ATTR spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
|
||||
|
||||
uint32_t spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
|
||||
{
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_mmap_init();
|
||||
int count = 0;
|
||||
int region_begin; // first page to check
|
||||
int region_size; // number of pages to check
|
||||
uint32_t region_addr; // base address of memory region
|
||||
get_mmu_region(memory,®ion_begin,®ion_size,®ion_addr);
|
||||
for (int i = region_begin; i < region_begin + region_size; ++i) {
|
||||
bool entry_is_invalid = mmu_ll_get_entry_is_invalid(MMU_TABLE_CORE0, i);
|
||||
if (s_mmap_page_refcnt[i] == 0 && entry_is_invalid) {
|
||||
count++;
|
||||
}
|
||||
mmu_mem_caps_t caps = 0;
|
||||
if (memory == SPI_FLASH_MMAP_INST) {
|
||||
caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
|
||||
} else {
|
||||
caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
|
||||
}
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
return count;
|
||||
|
||||
size_t len = 0;
|
||||
esp_mmu_map_get_max_consecutive_free_block_size(caps, MMU_TARGET_FLASH0, &len);
|
||||
return len / CONFIG_MMU_PAGE_SIZE;
|
||||
}
|
||||
|
||||
|
||||
size_t spi_flash_cache2phys(const void *cached)
|
||||
{
|
||||
intptr_t c = (intptr_t)cached;
|
||||
size_t cache_page;
|
||||
if (cached == NULL) {
|
||||
return SPI_FLASH_CACHE2PHYS_FAIL;
|
||||
}
|
||||
|
||||
esp_err_t ret = ESP_FAIL;
|
||||
uint32_t paddr = 0;
|
||||
mmu_target_t target = 0;
|
||||
|
||||
ret = esp_mmu_vaddr_to_paddr((void *)cached, &paddr, &target);
|
||||
if (ret != ESP_OK) {
|
||||
return SPI_FLASH_CACHE2PHYS_FAIL;
|
||||
}
|
||||
|
||||
int offset = 0;
|
||||
if (c >= SOC_MMU_VADDR1_START_ADDR && c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
|
||||
/* IRAM address, doesn't map to flash */
|
||||
return SPI_FLASH_CACHE2PHYS_FAIL;
|
||||
}
|
||||
if (c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
|
||||
/* expect cache is in DROM */
|
||||
cache_page = (c - SOC_MMU_VADDR0_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_DROM0_PAGES_START;
|
||||
#if CONFIG_SPIRAM_RODATA
|
||||
if (c >= (uint32_t)&_rodata_reserved_start && c <= (uint32_t)&_rodata_reserved_end) {
|
||||
offset = rodata_flash2spiram_offset();
|
||||
}
|
||||
if ((uint32_t)cached >= (uint32_t)&_rodata_reserved_start && (uint32_t)cached <= (uint32_t)&_rodata_reserved_end) {
|
||||
offset = rodata_flash2spiram_offset();
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
/* expect cache is in IROM */
|
||||
cache_page = (c - SOC_MMU_VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_IROM0_PAGES_START;
|
||||
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
||||
if (c >= (uint32_t)&_instruction_reserved_start && c <= (uint32_t)&_instruction_reserved_end) {
|
||||
offset = instruction_flash2spiram_offset();
|
||||
}
|
||||
if ((uint32_t)cached >= (uint32_t)&_instruction_reserved_start && (uint32_t)cached <= (uint32_t)&_instruction_reserved_end) {
|
||||
offset = instruction_flash2spiram_offset();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if (cache_page >= PAGES_LIMIT) {
|
||||
/* cached address was not in IROM or DROM */
|
||||
return SPI_FLASH_CACHE2PHYS_FAIL;
|
||||
}
|
||||
uint32_t phys_page = spi_flash_protected_read_mmu_entry(cache_page);
|
||||
bool entry_is_invalid = mmu_ll_get_entry_is_invalid(MMU_TABLE_CORE0, cache_page);
|
||||
if (entry_is_invalid) {
|
||||
/* page is not mapped */
|
||||
return SPI_FLASH_CACHE2PHYS_FAIL;
|
||||
}
|
||||
uint32_t phys_offs = ((phys_page & SOC_MMU_ADDR_MASK) + offset) * SPI_FLASH_MMU_PAGE_SIZE;
|
||||
return phys_offs | (c & (SPI_FLASH_MMU_PAGE_SIZE-1));
|
||||
return paddr + offset * CONFIG_MMU_PAGE_SIZE;
|
||||
}
|
||||
|
||||
const void *IRAM_ATTR spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory)
|
||||
|
||||
const void * spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory)
|
||||
{
|
||||
uint32_t phys_page = phys_offs / SPI_FLASH_MMU_PAGE_SIZE;
|
||||
int start, end, page_delta;
|
||||
intptr_t base;
|
||||
esp_err_t ret = ESP_FAIL;
|
||||
void *ptr = NULL;
|
||||
mmu_target_t target = MMU_TARGET_FLASH0;
|
||||
|
||||
if (memory == SPI_FLASH_MMAP_DATA) {
|
||||
start = SOC_MMU_DROM0_PAGES_START;
|
||||
end = SOC_MMU_DROM0_PAGES_END;
|
||||
base = SOC_MMU_VADDR0_START_ADDR;
|
||||
page_delta = SOC_MMU_DROM0_PAGES_START;
|
||||
} else {
|
||||
start = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
|
||||
end = SOC_MMU_IROM0_PAGES_END;
|
||||
base = SOC_MMU_VADDR1_START_ADDR;
|
||||
page_delta = SOC_MMU_IROM0_PAGES_START;
|
||||
}
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
for (int i = start; i < end; i++) {
|
||||
uint32_t mmu_value = mmu_ll_read_entry(MMU_TABLE_CORE0, i);
|
||||
__attribute__((unused)) uint32_t phys_page = phys_offs / CONFIG_MMU_PAGE_SIZE;
|
||||
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
||||
if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) {
|
||||
if (mmu_value & MMU_ACCESS_SPIRAM) {
|
||||
mmu_value += instruction_flash2spiram_offset();
|
||||
mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#if CONFIG_SPIRAM_RODATA
|
||||
if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) {
|
||||
if (mmu_value & MMU_ACCESS_SPIRAM) {
|
||||
mmu_value += rodata_flash2spiram_offset();
|
||||
mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (mmu_value == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
|
||||
i -= page_delta;
|
||||
intptr_t cache_page = base + (SPI_FLASH_MMU_PAGE_SIZE * i);
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
return (const void *) (cache_page | (phys_offs & (SPI_FLASH_MMU_PAGE_SIZE-1)));
|
||||
}
|
||||
if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) {
|
||||
target = MMU_TARGET_PSRAM0;
|
||||
phys_offs -= instruction_flash2spiram_offset() * CONFIG_MMU_PAGE_SIZE;
|
||||
}
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
return NULL;
|
||||
#endif
|
||||
|
||||
#if CONFIG_SPIRAM_RODATA
|
||||
if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) {
|
||||
target = MMU_TARGET_PSRAM0;
|
||||
phys_offs -= rodata_flash2spiram_offset() * CONFIG_MMU_PAGE_SIZE;
|
||||
}
|
||||
#endif
|
||||
|
||||
mmu_vaddr_t type = (memory == SPI_FLASH_MMAP_DATA) ? MMU_VADDR_DATA : MMU_VADDR_INSTRUCTION;
|
||||
ret = esp_mmu_paddr_to_vaddr(phys_offs, target, type, &ptr);
|
||||
if (ret == ESP_ERR_NOT_FOUND) {
|
||||
return NULL;
|
||||
}
|
||||
assert(ret == ESP_OK);
|
||||
return (const void *)ptr;
|
||||
}
|
||||
|
||||
|
||||
static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr)
|
||||
{
|
||||
int start[2], end[2];
|
||||
|
@@ -34,8 +34,8 @@ extern "C" {
|
||||
* @brief Enumeration which specifies memory space requested in an mmap call
|
||||
*/
|
||||
typedef enum {
|
||||
SPI_FLASH_MMAP_DATA, /**< map to data memory (Vaddr0), allows byte-aligned access, 4 MB total */
|
||||
SPI_FLASH_MMAP_INST, /**< map to instruction memory (Vaddr1-3), allows only 4-byte-aligned access, 11 MB total */
|
||||
SPI_FLASH_MMAP_DATA, /**< map to data memory, allows byte-aligned access*/
|
||||
SPI_FLASH_MMAP_INST, /**< map to instruction memory, allows only 4-byte-aligned access*/
|
||||
} spi_flash_mmap_memory_t;
|
||||
|
||||
/**
|
||||
|
@@ -9,7 +9,7 @@
|
||||
#include "esp_heap_caps.h"
|
||||
|
||||
// Some resources are lazy allocated in flash encryption, the threadhold is left for that case
|
||||
#define TEST_MEMORY_LEAK_THRESHOLD (-300)
|
||||
#define TEST_MEMORY_LEAK_THRESHOLD (400)
|
||||
|
||||
static size_t before_free_8bit;
|
||||
static size_t before_free_32bit;
|
||||
|
@@ -9,7 +9,7 @@
|
||||
#include "esp_heap_caps.h"
|
||||
|
||||
// Some resources are lazy allocated in flash encryption, the threadhold is left for that case
|
||||
#define TEST_MEMORY_LEAK_THRESHOLD (-300)
|
||||
#define TEST_MEMORY_LEAK_THRESHOLD (-400)
|
||||
|
||||
static size_t before_free_8bit;
|
||||
static size_t before_free_32bit;
|
||||
@@ -37,21 +37,18 @@ void tearDown(void)
|
||||
|
||||
void app_main(void)
|
||||
{
|
||||
// ####### #######
|
||||
// # # ## #### # # # #### # # ##### # # ##### ##### # #### # #
|
||||
// # # # # # # # # # # ## # # # # # # # # # # # ## #
|
||||
// ##### # # # #### ###### ##### # # # # # # # # # # # # # # # #
|
||||
// # # ###### # # # # # # # # ##### # ##### # # # # # # #
|
||||
// # # # # # # # # # # # # ## # # # # # # # # # ##
|
||||
// # ###### # # #### # # ####### #### # # # # # # # # #### # #
|
||||
|
||||
printf(" ####### ####### \n");
|
||||
printf("# # ## #### # # # #### # # ##### # # ##### ##### # #### # #\n");
|
||||
printf("# # # # # # # # # # ## # # # # # # # # # # # ## #\n");
|
||||
printf("##### # # # #### ###### ##### # # # # # # # # # # # # # # # #\n");
|
||||
printf("# # ###### # # # # # # # # ##### # ##### # # # # # # #\n");
|
||||
printf("# # # # # # # # # # # # ## # # # # # # # # # ##\n");
|
||||
printf("# ###### # # #### # # ####### #### # # # # # # # # #### # #\n");
|
||||
// ________ ___ _____ __ __ _______ ______________ ______ ______________ _ __
|
||||
// / ____/ / / | / ___// / / / / ____/ | / / ____/ __ \ \/ / __ \/_ __/ _/ __ \/ | / /
|
||||
// / /_ / / / /| | \__ \/ /_/ / / __/ / |/ / / / /_/ /\ / /_/ / / / / // / / / |/ /
|
||||
// / __/ / /___/ ___ |___/ / __ / / /___/ /| / /___/ _, _/ / / ____/ / / _/ // /_/ / /| /
|
||||
// /_/ /_____/_/ |_/____/_/ /_/ /_____/_/ |_/\____/_/ |_| /_/_/ /_/ /___/\____/_/ |_/
|
||||
|
||||
printf(" ________ ___ _____ __ __ _______ ______________ ______ ______________ _ __ \n");
|
||||
printf(" / ____/ / / | / ___// / / / / ____/ | / / ____/ __ \\ \\/ / __ \\/_ __/ _/ __ \\/ | / / \n");
|
||||
printf(" / /_ / / / /| | \\__ \\/ /_/ / / __/ / |/ / / / /_/ /\\ / /_/ / / / / // / / / |/ / \n");
|
||||
printf(" / __/ / /___/ ___ |___/ / __ / / /___/ /| / /___/ _, _/ / / ____/ / / _/ // /_/ / /| / \n");
|
||||
printf("/_/ /_____/_/ |_/____/_/ /_/ /_____/_/ |_/\\____/_/ |_| /_/_/ /_/ /___/\\____/_/ |_/ \n");
|
||||
|
||||
unity_run_menu();
|
||||
}
|
||||
|
@@ -4,4 +4,4 @@ cmake_minimum_required(VERSION 3.16)
|
||||
set(EXTRA_COMPONENT_DIRS "$ENV{IDF_PATH}/tools/unit-test-app/components")
|
||||
|
||||
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
|
||||
project(test_mmap)
|
||||
project(test_flash_mmap)
|
||||
|
@@ -1,5 +1,5 @@
|
||||
set(srcs "test_app_main.c"
|
||||
"test_mmap.c")
|
||||
"test_flash_mmap.c")
|
||||
|
||||
# In order for the cases defined by `TEST_CASE` to be linked into the final elf,
|
||||
# the component can be registered as WHOLE_ARCHIVE
|
||||
|
@@ -9,7 +9,7 @@
|
||||
#include "esp_heap_caps.h"
|
||||
|
||||
// Some resources are lazy allocated, the threadhold is left for that case
|
||||
#define TEST_MEMORY_LEAK_THRESHOLD (-600)
|
||||
#define TEST_MEMORY_LEAK_THRESHOLD (600)
|
||||
|
||||
static size_t before_free_8bit;
|
||||
static size_t before_free_32bit;
|
||||
|
@@ -101,6 +101,7 @@ static void setup_mmap_tests(void)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("Can mmap into data address space", "[spi_flash][mmap]")
|
||||
{
|
||||
esp_err_t ret = ESP_FAIL;
|
||||
@@ -111,8 +112,6 @@ TEST_CASE("Can mmap into data address space", "[spi_flash][mmap]")
|
||||
TEST_ESP_OK( spi_flash_mmap(start, end - start, SPI_FLASH_MMAP_DATA, &ptr1, &handle1) );
|
||||
printf("mmap_res: handle=%"PRIx32" ptr=%p\n", (uint32_t)handle1, ptr1);
|
||||
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
srand(0);
|
||||
const uint32_t *data = (const uint32_t *) ptr1;
|
||||
for (int block = 0; block < (end - start) / 0x10000; ++block) {
|
||||
@@ -130,9 +129,8 @@ TEST_CASE("Can mmap into data address space", "[spi_flash][mmap]")
|
||||
printf("mmap_res: handle=%"PRIx32" ptr=%p\n", (uint32_t)handle2, ptr2);
|
||||
|
||||
TEST_ASSERT_EQUAL_HEX32(start - 0x10000, spi_flash_cache2phys(ptr2));
|
||||
TEST_ASSERT_EQUAL_PTR(ptr2, spi_flash_phys2cache(start - 0x10000, SPI_FLASH_MMAP_DATA));
|
||||
|
||||
spi_flash_mmap_dump();
|
||||
TEST_ASSERT_EQUAL_PTR(ptr2, spi_flash_phys2cache(start - 0x10000, SPI_FLASH_MMAP_DATA));
|
||||
|
||||
printf("Mapping %"PRIx32" (+%x)\n", start, 0x10000);
|
||||
const void *ptr3;
|
||||
@@ -145,17 +143,13 @@ TEST_CASE("Can mmap into data address space", "[spi_flash][mmap]")
|
||||
TEST_ASSERT_EQUAL_PTR(ptr3, spi_flash_phys2cache(start, SPI_FLASH_MMAP_DATA));
|
||||
TEST_ASSERT_EQUAL_PTR((intptr_t)ptr3 + 0x4444, spi_flash_phys2cache(start + 0x4444, SPI_FLASH_MMAP_DATA));
|
||||
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
printf("Unmapping handle1\n");
|
||||
spi_flash_munmap(handle1);
|
||||
handle1 = 0;
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
printf("Unmapping handle2\n");
|
||||
spi_flash_munmap(handle2);
|
||||
handle2 = 0;
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
printf("Unmapping handle3\n");
|
||||
spi_flash_munmap(handle3);
|
||||
@@ -165,11 +159,6 @@ TEST_CASE("Can mmap into data address space", "[spi_flash][mmap]")
|
||||
TEST_ASSERT_EQUAL_PTR(NULL, spi_flash_phys2cache(start, SPI_FLASH_MMAP_DATA));
|
||||
}
|
||||
|
||||
#if !(CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C2 || CONFIG_IDF_TARGET_ESP32C6)
|
||||
/* On S3/C3/C2 the cache is programmatically split between Icache and dcache and with the default setup we dont leave a lot pages
|
||||
available for additional mmaps into instruction space. Disabling this test for now since any hypothetical use case for this
|
||||
is no longer supported "out of the box"
|
||||
*/
|
||||
TEST_CASE("Can mmap into instruction address space", "[spi_flash][mmap]")
|
||||
{
|
||||
setup_mmap_tests();
|
||||
@@ -180,8 +169,6 @@ TEST_CASE("Can mmap into instruction address space", "[spi_flash][mmap]")
|
||||
TEST_ESP_OK( spi_flash_mmap(start, end - start, SPI_FLASH_MMAP_INST, &ptr1, &handle1) );
|
||||
printf("mmap_res: handle=%"PRIx32" ptr=%p\n", (uint32_t)handle1, ptr1);
|
||||
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
srand(0);
|
||||
const uint32_t *data = (const uint32_t *) ptr1;
|
||||
for (int block = 0; block < (end - start) / 0x10000; ++block) {
|
||||
@@ -200,8 +187,6 @@ TEST_CASE("Can mmap into instruction address space", "[spi_flash][mmap]")
|
||||
TEST_ASSERT_EQUAL_HEX32(start - 0x10000, spi_flash_cache2phys(ptr2));
|
||||
TEST_ASSERT_EQUAL_PTR(ptr2, spi_flash_phys2cache(start - 0x10000, SPI_FLASH_MMAP_INST));
|
||||
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
printf("Mapping %"PRIx32" (+%x)\n", start, 0x10000);
|
||||
spi_flash_mmap_handle_t handle3;
|
||||
const void *ptr3;
|
||||
@@ -211,20 +196,15 @@ TEST_CASE("Can mmap into instruction address space", "[spi_flash][mmap]")
|
||||
TEST_ASSERT_EQUAL_HEX32(start, spi_flash_cache2phys(ptr3));
|
||||
TEST_ASSERT_EQUAL_PTR(ptr3, spi_flash_phys2cache(start, SPI_FLASH_MMAP_INST));
|
||||
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
printf("Unmapping handle1\n");
|
||||
spi_flash_munmap(handle1);
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
printf("Unmapping handle2\n");
|
||||
spi_flash_munmap(handle2);
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
printf("Unmapping handle3\n");
|
||||
spi_flash_munmap(handle3);
|
||||
}
|
||||
#endif // #if !CONFIG_IDF_TARGET_ESP32C2
|
||||
|
||||
TEST_CASE("Can mmap unordered pages into contiguous memory", "[spi_flash][mmap]")
|
||||
{
|
||||
@@ -251,7 +231,6 @@ TEST_CASE("Can mmap unordered pages into contiguous memory", "[spi_flash][mmap]"
|
||||
TEST_ESP_OK( spi_flash_mmap_pages(pages, nopages, SPI_FLASH_MMAP_DATA, &ptr1, &handle1) );
|
||||
printf("mmap_res: handle=%"PRIx32" ptr=%p\n", (uint32_t)handle1, ptr1);
|
||||
|
||||
spi_flash_mmap_dump();
|
||||
#if (CONFIG_MMU_PAGE_SIZE == 0x10000)
|
||||
uint32_t words_per_sector = 1024;
|
||||
#elif (CONFIG_MMU_PAGE_SIZE == 0x8000)
|
||||
@@ -335,8 +314,6 @@ TEST_CASE("flash_mmap can mmap after get enough free MMU pages", "[spi_flash][mm
|
||||
TEST_ESP_OK( spi_flash_mmap(start, end - start, SPI_FLASH_MMAP_DATA, &ptr1, &handle1) );
|
||||
printf("mmap_res: handle=%"PRIx32" ptr=%p\n", (uint32_t)handle1, ptr1);
|
||||
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
srand(0);
|
||||
const uint32_t *data = (const uint32_t *) ptr1;
|
||||
for (int block = 0; block < (end - start) / 0x10000; ++block) {
|
||||
@@ -359,18 +336,13 @@ TEST_CASE("flash_mmap can mmap after get enough free MMU pages", "[spi_flash][mm
|
||||
TEST_ESP_OK( spi_flash_mmap(0, free_pages * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMAP_DATA, &ptr2, &handle2) );
|
||||
printf("mmap_res: handle=%"PRIx32" ptr=%p\n", (uint32_t)handle2, ptr2);
|
||||
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
|
||||
printf("Unmapping handle1\n");
|
||||
spi_flash_munmap(handle1);
|
||||
handle1 = 0;
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
printf("Unmapping handle2\n");
|
||||
spi_flash_munmap(handle2);
|
||||
handle2 = 0;
|
||||
spi_flash_mmap_dump();
|
||||
|
||||
TEST_ASSERT_EQUAL_PTR(NULL, spi_flash_phys2cache(start, SPI_FLASH_MMAP_DATA));
|
||||
}
|
||||
@@ -394,11 +366,6 @@ TEST_CASE("phys2cache/cache2phys basic checks", "[spi_flash][mmap]")
|
||||
spi_flash_read_maybe_encrypted(phys, buf, sizeof(buf));
|
||||
TEST_ASSERT_EQUAL_HEX32_ARRAY((void *)esp_partition_find, buf, sizeof(buf) / sizeof(uint32_t));
|
||||
|
||||
/* spi_flash_mmap is in IRAM */
|
||||
printf("%p\n", spi_flash_mmap);
|
||||
TEST_ASSERT_EQUAL_HEX32(SPI_FLASH_CACHE2PHYS_FAIL,
|
||||
spi_flash_cache2phys(spi_flash_mmap));
|
||||
|
||||
/* 'constant_data' should be in DROM */
|
||||
phys = spi_flash_cache2phys(&constant_data);
|
||||
TEST_ASSERT_NOT_EQUAL(SPI_FLASH_CACHE2PHYS_FAIL, phys);
|
@@ -2,5 +2,5 @@
|
||||
# Note: if you have increased the bootloader size, make sure to update the offsets to avoid overlap
|
||||
nvs, data, nvs, 0x9000, 0x6000,
|
||||
phy_init, data, phy, 0xf000, 0x1000,
|
||||
factory, app, factory, 0x10000, 1500K,
|
||||
factory, app, factory, 0x10000, 1600K,
|
||||
ot_storage, data, 0x3a, , 0x2000,
|
||||
|
|
Reference in New Issue
Block a user