Merge branch 'feature/i80_lcd_support_esp32s2' into 'master'

esp_lcd: lcd driver for esp32/esp32s2/esp32s3

Closes IDF-3144, IDF-3314, IDF-3315, and IDF-3316

See merge request espressif/esp-idf!13679
This commit is contained in:
morris
2021-08-18 07:55:06 +00:00
43 changed files with 2308 additions and 397 deletions

View File

@@ -37,6 +37,7 @@
#include "esp_pm.h"
#include "esp_efuse.h"
#include "esp_rom_gpio.h"
#include "esp_private/i2s_platform.h"
#include "sdkconfig.h"
@@ -107,9 +108,12 @@ typedef struct {
i2s_hal_config_t hal_cfg; /*!< I2S hal configurations*/
} i2s_obj_t;
static i2s_obj_t *p_i2s[I2S_NUM_MAX] = {0};
static i2s_obj_t *p_i2s[SOC_I2S_NUM];
static portMUX_TYPE i2s_platform_spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
static portMUX_TYPE i2s_spinlock[SOC_I2S_NUM] = {
[0 ... SOC_I2S_NUM - 1] = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED,
};
static portMUX_TYPE i2s_spinlock[I2S_NUM_MAX];
#if SOC_I2S_SUPPORTS_ADC_DAC
static int _i2s_adc_unit = -1;
static int _i2s_adc_channel = -1;
@@ -1174,97 +1178,86 @@ esp_err_t i2s_stop(i2s_port_t i2s_num)
esp_err_t i2s_driver_install(i2s_port_t i2s_num, const i2s_config_t *i2s_config, int queue_size, void *i2s_queue)
{
esp_err_t ret = ESP_FAIL;
i2s_obj_t *pre_alloc_i2s_obj = NULL;
ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
ESP_RETURN_ON_FALSE((i2s_config != NULL), ESP_ERR_INVALID_ARG, TAG, "I2S configuration must not NULL");
ESP_RETURN_ON_FALSE((i2s_config->dma_buf_count >= 2 && i2s_config->dma_buf_count <= 128), ESP_ERR_INVALID_ARG, TAG, "I2S buffer count less than 128 and more than 2");
ESP_RETURN_ON_FALSE((i2s_config->dma_buf_len >= 8 && i2s_config->dma_buf_len <= 1024), ESP_ERR_INVALID_ARG, TAG, "I2S buffer length at most 1024 and more than 8");
if (p_i2s[i2s_num] != NULL) {
ESP_LOGW(TAG, "I2S driver already installed");
return ESP_OK;
}
p_i2s[i2s_num] = (i2s_obj_t *) calloc(1, sizeof(i2s_obj_t));
if (p_i2s[i2s_num] == NULL) {
ESP_LOGE(TAG, "Malloc I2S driver error");
return ESP_ERR_NO_MEM;
// alloc driver object and register to platform
pre_alloc_i2s_obj = calloc(1, sizeof(i2s_obj_t));
ESP_RETURN_ON_FALSE(pre_alloc_i2s_obj, ESP_ERR_NO_MEM, TAG, "no mem for I2S driver");
ret = i2s_priv_register_object(pre_alloc_i2s_obj, i2s_num);
if (ret != ESP_OK) {
free(pre_alloc_i2s_obj);
ESP_LOGE(TAG, "register I2S object to platform failed");
return ret;
}
portMUX_TYPE i2s_spinlock_unlocked[1] = {portMUX_INITIALIZER_UNLOCKED};
for (int x = 0; x < I2S_NUM_MAX; x++) {
i2s_spinlock[x] = i2s_spinlock_unlocked[0];
}
//To make sure hardware is enabled before any hardware register operations.
periph_module_enable(i2s_periph_signal[i2s_num].module);
i2s_hal_init(&(p_i2s[i2s_num]->hal), i2s_num);
// initialize HAL layer
i2s_hal_init(&(pre_alloc_i2s_obj->hal), i2s_num);
// Set I2S HAL configurations
p_i2s[i2s_num]->hal_cfg.mode = i2s_config->mode;
p_i2s[i2s_num]->hal_cfg.sample_rate = i2s_config->sample_rate;
p_i2s[i2s_num]->hal_cfg.comm_fmt = i2s_config->communication_format;
p_i2s[i2s_num]->hal_cfg.chan_fmt = i2s_config->channel_format;
p_i2s[i2s_num]->hal_cfg.bits_cfg.sample_bits = i2s_config->bits_per_sample;
p_i2s[i2s_num]->hal_cfg.bits_cfg.chan_bits = i2s_config->bits_per_chan;
pre_alloc_i2s_obj->hal_cfg.mode = i2s_config->mode;
pre_alloc_i2s_obj->hal_cfg.sample_rate = i2s_config->sample_rate;
pre_alloc_i2s_obj->hal_cfg.comm_fmt = i2s_config->communication_format;
pre_alloc_i2s_obj->hal_cfg.chan_fmt = i2s_config->channel_format;
pre_alloc_i2s_obj->hal_cfg.bits_cfg.sample_bits = i2s_config->bits_per_sample;
pre_alloc_i2s_obj->hal_cfg.bits_cfg.chan_bits = i2s_config->bits_per_chan;
#if SOC_I2S_SUPPORTS_TDM
int active_chan = 0;
switch (i2s_config->channel_format) {
case I2S_CHANNEL_FMT_RIGHT_LEFT:
case I2S_CHANNEL_FMT_ALL_RIGHT:
case I2S_CHANNEL_FMT_ALL_LEFT:
p_i2s[i2s_num]->hal_cfg.chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1;
p_i2s[i2s_num]->hal_cfg.total_chan = 2;
pre_alloc_i2s_obj->hal_cfg.chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1;
pre_alloc_i2s_obj->hal_cfg.total_chan = 2;
active_chan = 2;
break;
case I2S_CHANNEL_FMT_ONLY_RIGHT:
p_i2s[i2s_num]->hal_cfg.chan_mask = i2s_config->left_align ? I2S_TDM_ACTIVE_CH1 : I2S_TDM_ACTIVE_CH0;
p_i2s[i2s_num]->hal_cfg.total_chan = 1;
pre_alloc_i2s_obj->hal_cfg.chan_mask = i2s_config->left_align ? I2S_TDM_ACTIVE_CH1 : I2S_TDM_ACTIVE_CH0;
pre_alloc_i2s_obj->hal_cfg.total_chan = 1;
active_chan = 1;
break;
case I2S_CHANNEL_FMT_ONLY_LEFT:
p_i2s[i2s_num]->hal_cfg.chan_mask = i2s_config->left_align ? I2S_TDM_ACTIVE_CH0 : I2S_TDM_ACTIVE_CH1;
p_i2s[i2s_num]->hal_cfg.total_chan = 1;
pre_alloc_i2s_obj->hal_cfg.chan_mask = i2s_config->left_align ? I2S_TDM_ACTIVE_CH0 : I2S_TDM_ACTIVE_CH1;
pre_alloc_i2s_obj->hal_cfg.total_chan = 1;
active_chan = 1;
break;
case I2S_CHANNEL_FMT_MULTIPLE:
ESP_RETURN_ON_FALSE((i2s_config->chan_mask != 0), ESP_ERR_INVALID_ARG, TAG, "i2s all channel are disabled");
p_i2s[i2s_num]->hal_cfg.chan_mask = i2s_config->chan_mask;
i2s_get_active_chan_num(&p_i2s[i2s_num]->hal_cfg);
ESP_GOTO_ON_FALSE(i2s_config->chan_mask != 0, ESP_ERR_INVALID_ARG, err, TAG, "i2s all channel are disabled");
pre_alloc_i2s_obj->hal_cfg.chan_mask = i2s_config->chan_mask;
i2s_get_active_chan_num(&pre_alloc_i2s_obj->hal_cfg);
break;
default:
ESP_LOGE(TAG, "wrong i2s channel format, uninstalled i2s.");
goto err;
ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "invalid I2S channel format:%d", i2s_config->channel_format);
}
p_i2s[i2s_num]->hal_cfg.left_align = i2s_config->left_align;
p_i2s[i2s_num]->hal_cfg.big_edin = i2s_config->big_edin;
p_i2s[i2s_num]->hal_cfg.bit_order_msb = i2s_config->bit_order_msb;
p_i2s[i2s_num]->hal_cfg.skip_msk = i2s_config->skip_msk;
pre_alloc_i2s_obj->hal_cfg.left_align = i2s_config->left_align;
pre_alloc_i2s_obj->hal_cfg.big_edin = i2s_config->big_edin;
pre_alloc_i2s_obj->hal_cfg.bit_order_msb = i2s_config->bit_order_msb;
pre_alloc_i2s_obj->hal_cfg.skip_msk = i2s_config->skip_msk;
#endif
// Set I2S driver configurations
p_i2s[i2s_num]->i2s_num = i2s_num;
p_i2s[i2s_num]->mode = i2s_config->mode;
p_i2s[i2s_num]->channel_num = i2s_get_active_chan_num(&p_i2s[i2s_num]->hal_cfg);
p_i2s[i2s_num]->i2s_queue = i2s_queue;
p_i2s[i2s_num]->bits_per_sample = 0;
p_i2s[i2s_num]->bytes_per_sample = 0; // Not initialized yet
p_i2s[i2s_num]->dma_buf_count = i2s_config->dma_buf_count;
p_i2s[i2s_num]->dma_buf_len = i2s_config->dma_buf_len;
p_i2s[i2s_num]->mclk_multiple = i2s_config->mclk_multiple;
pre_alloc_i2s_obj->i2s_num = i2s_num;
pre_alloc_i2s_obj->mode = i2s_config->mode;
pre_alloc_i2s_obj->channel_num = i2s_get_active_chan_num(&pre_alloc_i2s_obj->hal_cfg);
pre_alloc_i2s_obj->i2s_queue = i2s_queue;
pre_alloc_i2s_obj->bits_per_sample = 0;
pre_alloc_i2s_obj->bytes_per_sample = 0; // Not initialized yet
pre_alloc_i2s_obj->dma_buf_count = i2s_config->dma_buf_count;
pre_alloc_i2s_obj->dma_buf_len = i2s_config->dma_buf_len;
pre_alloc_i2s_obj->mclk_multiple = i2s_config->mclk_multiple;
#ifdef CONFIG_PM_ENABLE
#if SOC_I2S_SUPPORTS_APLL
if (i2s_config->use_apll) {
ret = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "i2s_driver", &p_i2s[i2s_num]->pm_lock);
ret = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "i2s_driver", &pre_alloc_i2s_obj->pm_lock);
} else
#endif // SOC_I2S_SUPPORTS_APLL
{
ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "i2s_driver", &p_i2s[i2s_num]->pm_lock);
}
if (ret != ESP_OK) {
free(p_i2s[i2s_num]);
p_i2s[i2s_num] = NULL;
ESP_LOGE(TAG, "I2S pm lock error");
return ret;
ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "i2s_driver", &pre_alloc_i2s_obj->pm_lock);
}
ESP_GOTO_ON_ERROR(ret, err, TAG, "create PM lock failed");
#endif //CONFIG_PM_ENABLE
#if SOC_GDMA_SUPPORTED
ret = ESP_OK;
@@ -1275,85 +1268,79 @@ esp_err_t i2s_driver_install(i2s_port_t i2s_num, const i2s_config_t *i2s_config,
trig.instance_id = SOC_GDMA_TRIG_PERIPH_I2S0;
#endif
gdma_channel_alloc_config_t dma_cfg = {.flags.reserve_sibling = 1};
if ( p_i2s[i2s_num]->mode & I2S_MODE_RX) {
if (pre_alloc_i2s_obj->mode & I2S_MODE_RX) {
dma_cfg.direction = GDMA_CHANNEL_DIRECTION_RX;
ESP_GOTO_ON_ERROR(gdma_new_channel(&dma_cfg, &p_i2s[i2s_num]->rx_dma_chan), err, TAG, "Register rx dma channel error");
ESP_GOTO_ON_ERROR(gdma_connect(p_i2s[i2s_num]->rx_dma_chan, trig), err, TAG, "Connect rx dma channel error");
ESP_GOTO_ON_ERROR(gdma_new_channel(&dma_cfg, &pre_alloc_i2s_obj->rx_dma_chan), err, TAG, "Register rx dma channel error");
ESP_GOTO_ON_ERROR(gdma_connect(pre_alloc_i2s_obj->rx_dma_chan, trig), err, TAG, "Connect rx dma channel error");
gdma_rx_event_callbacks_t cb = {.on_recv_eof = i2s_dma_rx_callback};
gdma_register_rx_event_callbacks(p_i2s[i2s_num]->rx_dma_chan, &cb, p_i2s[i2s_num]);
gdma_register_rx_event_callbacks(pre_alloc_i2s_obj->rx_dma_chan, &cb, pre_alloc_i2s_obj);
}
if ( p_i2s[i2s_num]->mode & I2S_MODE_TX) {
if (pre_alloc_i2s_obj->mode & I2S_MODE_TX) {
dma_cfg.direction = GDMA_CHANNEL_DIRECTION_TX;
ESP_GOTO_ON_ERROR(gdma_new_channel(&dma_cfg, &p_i2s[i2s_num]->tx_dma_chan), err, TAG, "Register tx dma channel error");
ESP_GOTO_ON_ERROR(gdma_connect(p_i2s[i2s_num]->tx_dma_chan, trig), err, TAG, "Connect tx dma channel error");
ESP_GOTO_ON_ERROR(gdma_new_channel(&dma_cfg, &pre_alloc_i2s_obj->tx_dma_chan), err, TAG, "Register tx dma channel error");
ESP_GOTO_ON_ERROR(gdma_connect(pre_alloc_i2s_obj->tx_dma_chan, trig), err, TAG, "Connect tx dma channel error");
gdma_tx_event_callbacks_t cb = {.on_trans_eof = i2s_dma_tx_callback};
gdma_register_tx_event_callbacks(p_i2s[i2s_num]->tx_dma_chan, &cb, p_i2s[i2s_num]);
gdma_register_tx_event_callbacks(pre_alloc_i2s_obj->tx_dma_chan, &cb, pre_alloc_i2s_obj);
}
#else
//initial interrupt
ret = esp_intr_alloc(i2s_periph_signal[i2s_num].irq, i2s_config->intr_alloc_flags, i2s_intr_handler_default, p_i2s[i2s_num], &p_i2s[i2s_num]->i2s_isr_handle);
ret = esp_intr_alloc(i2s_periph_signal[i2s_num].irq, i2s_config->intr_alloc_flags, i2s_intr_handler_default, pre_alloc_i2s_obj, &pre_alloc_i2s_obj->i2s_isr_handle);
ESP_GOTO_ON_ERROR(ret, err, TAG, "Register I2S Interrupt error");
#endif // SOC_GDMA_SUPPORTED
i2s_stop(i2s_num);
p_i2s[i2s_num]->use_apll = i2s_config->use_apll;
p_i2s[i2s_num]->fixed_mclk = i2s_config->fixed_mclk;
p_i2s[i2s_num]->tx_desc_auto_clear = i2s_config->tx_desc_auto_clear;
pre_alloc_i2s_obj->use_apll = i2s_config->use_apll;
pre_alloc_i2s_obj->fixed_mclk = i2s_config->fixed_mclk;
pre_alloc_i2s_obj->tx_desc_auto_clear = i2s_config->tx_desc_auto_clear;
ret = i2s_param_config(i2s_num);
ESP_GOTO_ON_ERROR(ret, err, TAG, "I2S param configure error");
if (i2s_queue) {
p_i2s[i2s_num]->i2s_queue = xQueueCreate(queue_size, sizeof(i2s_event_t));
ESP_GOTO_ON_ERROR((p_i2s[i2s_num]->i2s_queue != NULL), err, TAG, "I2S queue create failed");
*((QueueHandle_t *) i2s_queue) = p_i2s[i2s_num]->i2s_queue;
ESP_LOGI(TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_i2s[i2s_num]->i2s_queue));
pre_alloc_i2s_obj->i2s_queue = xQueueCreate(queue_size, sizeof(i2s_event_t));
ESP_GOTO_ON_ERROR((pre_alloc_i2s_obj->i2s_queue != NULL), err, TAG, "I2S queue create failed");
*((QueueHandle_t *) i2s_queue) = pre_alloc_i2s_obj->i2s_queue;
ESP_LOGI(TAG, "queue free spaces: %d", uxQueueSpacesAvailable(pre_alloc_i2s_obj->i2s_queue));
} else {
p_i2s[i2s_num]->i2s_queue = NULL;
pre_alloc_i2s_obj->i2s_queue = NULL;
}
//set clock and start
#if SOC_I2S_SUPPORTS_TDM
ret = i2s_set_clk(i2s_num, i2s_config->sample_rate,
p_i2s[i2s_num]->hal_cfg.bits_cfg.val,
pre_alloc_i2s_obj->hal_cfg.bits_cfg.val,
(i2s_channel_t)active_chan);
#else
ret = i2s_set_clk(i2s_num, i2s_config->sample_rate,
p_i2s[i2s_num]->hal_cfg.bits_cfg.val,
pre_alloc_i2s_obj->hal_cfg.bits_cfg.val,
I2S_CHANNEL_STEREO);
#endif
ESP_GOTO_ON_ERROR(ret, err, TAG, "I2S set clock failed");
return ret;
err:
#ifdef CONFIG_PM_ENABLE
if (p_i2s[i2s_num]->pm_lock) {
esp_pm_lock_delete(p_i2s[i2s_num]->pm_lock);
}
#endif
i2s_driver_uninstall(i2s_num);
return ret;
}
esp_err_t i2s_driver_uninstall(i2s_port_t i2s_num)
{
ESP_RETURN_ON_FALSE((i2s_num < I2S_NUM_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
if (p_i2s[i2s_num] == NULL) {
ESP_LOGI(TAG, "already uninstalled");
return ESP_OK;
}
ESP_RETURN_ON_FALSE(i2s_num < I2S_NUM_MAX, ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_ERR_INVALID_STATE, TAG, "I2S port %d has not installed", i2s_num);
i2s_obj_t *obj = p_i2s[i2s_num];
i2s_stop(i2s_num);
#if SOC_I2S_SUPPORTS_ADC_DAC
i2s_set_dac_mode(I2S_DAC_CHANNEL_DISABLE);
#endif
#if SOC_GDMA_SUPPORTED
if (p_i2s[i2s_num]->mode & I2S_MODE_TX) {
if (p_i2s[i2s_num]->tx_dma_chan) {
gdma_disconnect(p_i2s[i2s_num]->tx_dma_chan);
gdma_del_channel(p_i2s[i2s_num]->tx_dma_chan);
}
if (p_i2s[i2s_num]->mode & I2S_MODE_RX) {
if (p_i2s[i2s_num]->rx_dma_chan) {
gdma_disconnect(p_i2s[i2s_num]->rx_dma_chan);
gdma_del_channel(p_i2s[i2s_num]->rx_dma_chan);
}
#else
if (p_i2s[i2s_num]->i2s_isr_handle) {
esp_intr_free(p_i2s[i2s_num]->i2s_isr_handle);
}
#endif
if (p_i2s[i2s_num]->tx != NULL && p_i2s[i2s_num]->mode & I2S_MODE_TX) {
i2s_destroy_dma_queue(i2s_num, p_i2s[i2s_num]->tx);
@@ -1382,12 +1369,8 @@ esp_err_t i2s_driver_uninstall(i2s_port_t i2s_num)
esp_pm_lock_delete(p_i2s[i2s_num]->pm_lock);
}
#endif
free(p_i2s[i2s_num]);
p_i2s[i2s_num] = NULL;
#if !SOC_GDMA_SUPPORTED
periph_module_disable(i2s_periph_signal[i2s_num].module);
#endif
i2s_priv_deregister_object(i2s_num);
free(obj);
return ESP_OK;
}
@@ -1532,3 +1515,31 @@ esp_err_t i2s_read(i2s_port_t i2s_num, void *dest, size_t size, size_t *bytes_re
xSemaphoreGive(p_i2s[i2s_num]->rx->mux);
return ret;
}
esp_err_t i2s_priv_register_object(void *driver_obj, int port_id)
{
esp_err_t ret = ESP_ERR_NOT_FOUND;
ESP_RETURN_ON_FALSE(driver_obj && (port_id < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "invalid arguments");
portENTER_CRITICAL(&i2s_platform_spinlock);
if (!p_i2s[port_id]) {
ret = ESP_OK;
p_i2s[port_id] = driver_obj;
periph_module_enable(i2s_periph_signal[port_id].module);
}
portEXIT_CRITICAL(&i2s_platform_spinlock);
return ret;
}
esp_err_t i2s_priv_deregister_object(int port_id)
{
esp_err_t ret = ESP_ERR_INVALID_STATE;
ESP_RETURN_ON_FALSE(port_id < SOC_I2S_NUM, ESP_ERR_INVALID_ARG, TAG, "invalid arguments");
portENTER_CRITICAL(&i2s_platform_spinlock);
if (p_i2s[port_id]) {
ret = ESP_OK;
p_i2s[port_id] = NULL;
periph_module_disable(i2s_periph_signal[port_id].module);
}
portEXIT_CRITICAL(&i2s_platform_spinlock);
return ret;
}

View File

@@ -148,7 +148,7 @@ typedef struct {
* The I2S peripheral output signals can be connected to multiple GPIO pads.
* However, the I2S peripheral input signal can only be connected to one GPIO pad.
*
* @param i2s_num I2S_NUM_0 or I2S_NUM_1
* @param i2s_num I2S port number
*
* @param pin I2S Pin structure, or NULL to set 2-channel 8-bit internal DAC pin configuration (GPIO25 & GPIO26)
*
@@ -172,7 +172,7 @@ esp_err_t i2s_set_pin(i2s_port_t i2s_num, const i2s_pin_config_t *pin);
* In the first downsample process, the sampling number can be 16 or 8.
* In the second downsample process, the sampling number is fixed as 8.
* So the clock frequency in PDM RX mode would be (fpcm * 64) or (fpcm * 128) accordingly.
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
* @param downsample i2s RX down sample rate for PDM mode.
*
* @note After calling this function, it would call i2s_set_clk inside to update the clock frequency.
@@ -193,7 +193,7 @@ esp_err_t i2s_set_pdm_rx_down_sample(i2s_port_t i2s_num, i2s_pdm_dsr_t downsampl
* default PDM TX upsample parameters have already been set,
* no need to call this function again if you don't have to change the default configuration
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
* @param upsample_cfg Set I2S PDM up-sample rate configuration
*
* @return
@@ -207,7 +207,7 @@ esp_err_t i2s_set_pdm_tx_up_sample(i2s_port_t i2s_num, const i2s_pdm_tx_upsample
/**
* @brief Install and start I2S driver.
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
*
* @param i2s_config I2S configurations - see i2s_config_t struct
*
@@ -221,24 +221,26 @@ esp_err_t i2s_set_pdm_tx_up_sample(i2s_port_t i2s_num, const i2s_pdm_tx_upsample
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_ERR_NO_MEM Out of memory
* - ESP_ERR_NOT_FOUND I2S port is not found or has been installed by others (e.g. LCD i80)
*/
esp_err_t i2s_driver_install(i2s_port_t i2s_num, const i2s_config_t *i2s_config, int queue_size, void *i2s_queue);
/**
* @brief Uninstall I2S driver.
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_ERR_INVALID_STATE I2S port has been uninstalled by others (e.g. LCD i80)
*/
esp_err_t i2s_driver_uninstall(i2s_port_t i2s_num);
/**
* @brief Write data to I2S DMA transmit buffer.
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
*
* @param src Source address to write from
*
@@ -262,7 +264,7 @@ esp_err_t i2s_write(i2s_port_t i2s_num, const void *src, size_t size, size_t *by
/**
* @brief Write data to I2S DMA transmit buffer while expanding the number of bits per sample. For example, expanding 16-bit PCM to 32-bit PCM.
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
*
* @param src Source address to write from
*
@@ -293,7 +295,7 @@ esp_err_t i2s_write_expand(i2s_port_t i2s_num, const void *src, size_t size, siz
/**
* @brief Read data from I2S DMA receive buffer
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
*
* @param dest Destination address to read into
*
@@ -319,7 +321,7 @@ esp_err_t i2s_read(i2s_port_t i2s_num, void *dest, size_t size, size_t *bytes_re
*
* `bit_clock = rate * (number of channels) * bits_per_sample`
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
*
* @param rate I2S sample rate (ex: 8000, 44100...)
*
@@ -337,7 +339,7 @@ esp_err_t i2s_set_sample_rates(i2s_port_t i2s_num, uint32_t rate);
*
* Disables I2S TX/RX, until i2s_start() is called.
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
*
* @return
* - ESP_OK Success
@@ -351,7 +353,7 @@ esp_err_t i2s_stop(i2s_port_t i2s_num);
* It is not necessary to call this function after i2s_driver_install() (it is started automatically), however it is necessary to call it after i2s_stop().
*
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
*
* @return
* - ESP_OK Success
@@ -364,7 +366,7 @@ esp_err_t i2s_start(i2s_port_t i2s_num);
*
* Pushes zero-byte samples into the TX DMA buffer, until it is full.
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
*
* @return
* - ESP_OK Success
@@ -379,7 +381,7 @@ esp_err_t i2s_zero_dma_buffer(i2s_port_t i2s_num);
* @note This function should be called after i2s driver installed
* Only take effecttive when the i2s 'communication_format' is set to 'I2S_COMM_FORMAT_STAND_PCM_SHORT' or 'I2S_COMM_FORMAT_STAND_PCM_LONG'
*
* @param i2s_num I2S_NUM_0
* @param i2s_num I2S port number
*
* @param pcm_cfg including mode selection and a/u-law decompress or compress configuration paramater
*
@@ -400,7 +402,7 @@ esp_err_t i2s_pcm_config(i2s_port_t i2s_num, const i2s_pcm_cfg_t *pcm_cfg);
* 3. malloc dma buffer;
* 4. start i2s
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
*
* @param rate I2S sample rate (ex: 8000, 44100...)
*
@@ -421,7 +423,7 @@ esp_err_t i2s_set_clk(i2s_port_t i2s_num, uint32_t rate, uint32_t bits_cfg, i2s_
/**
* @brief get clock set on particular port number.
*
* @param i2s_num I2S_NUM_0, I2S_NUM_1
* @param i2s_num I2S port number
*
* @return
* - actual clock set by i2s driver

View File

@@ -0,0 +1,48 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// DO NOT USE THESE APIS IN YOUR APPLICATIONS
// The following APIs are for internal use, public to other IDF components, but not for users' applications.
#pragma once
#include "esp_err.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Register an I2S or I2S variant driver object to platform
*
* @note This private API is used to avoid applications from using the same I2S instance for different purpose.
* @note This function will help enable the peripheral APB clock as well.
*
* @param driver_obj Driver object
* @param port_id I2S port number
* @return
* - ESP_OK: The specific I2S port is free and register the new device object successfully
* - ESP_ERR_INVALID_ARG: Invalid argument, e.g. wrong port_id
* - ESP_ERR_NOT_FOUND: Specific I2S port is not available
*/
esp_err_t i2s_priv_register_object(void *driver_obj, int port_id);
/**
* @brief Deregister I2S or I2S variant driver object from platform
*
* @note This function will help disable the peripheral APB clock as well.
*
* @param port_id I2S port number
* @return
* - ESP_OK: Deregister I2S port successfully (i.e. that I2S port can used used by other users after this function returns)
* - ESP_ERR_INVALID_ARG: Invalid argument, e.g. wrong port_id
* - ESP_ERR_INVALID_STATE: Specific I2S port is free already
*/
esp_err_t i2s_priv_deregister_object(int port_id);
#ifdef __cplusplus
}
#endif

View File

@@ -165,7 +165,7 @@ TEST_CASE("I2S basic driver install, uninstall, set pin test", "[i2s]")
TEST_ASSERT(i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL) == ESP_ERR_INVALID_ARG);
i2s_config.dma_buf_count = 129;
TEST_ASSERT(i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL) == ESP_ERR_INVALID_ARG);
TEST_ESP_OK(i2s_driver_uninstall(I2S_NUM_0));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_STATE, i2s_driver_uninstall(I2S_NUM_0));
}
TEST_CASE("I2S Loopback test(master tx and rx)", "[i2s]")

View File

@@ -1,14 +1,17 @@
set(srcs "src/esp_lcd_common.c"
"src/esp_lcd_panel_io.c"
"src/esp_lcd_panel_io_i2c.c"
"src/esp_lcd_panel_io_i2s.c"
"src/esp_lcd_panel_io_spi.c"
"src/esp_lcd_panel_io_i80.c"
"src/esp_lcd_panel_nt35510.c"
"src/esp_lcd_panel_ssd1306.c"
"src/esp_lcd_panel_st7789.c"
"src/esp_lcd_panel_ops.c"
"src/esp_lcd_rgb_panel.c")
set(includes "include" "interface")
set(priv_requires "driver")
idf_component_register(SRCS ${srcs}
INCLUDE_DIRS ${includes}
PRIV_INCLUDE_DIRS ${priv_includes})
PRIV_REQUIRES ${priv_requires})

View File

@@ -1,9 +1,7 @@
menu "LCD and Touch Panel"
menu "LCD Peripheral Configuration"
depends on IDF_TARGET_ESP32S3
choice LCD_PERIPH_CLK_SRC
prompt "Select clock source for LCD peripheral"
default LCD_PERIPH_CLK_SRC_XTAL if PM_ENABLE
default LCD_PERIPH_CLK_SRC_PLL160M
help
The peripheral clock is where LCD bus clock derives from.
@@ -16,5 +14,12 @@ menu "LCD and Touch Panel"
config LCD_PERIPH_CLK_SRC_XTAL
bool "XTAL clock"
endchoice # LCD_PERIPH_CLK_SRC
config LCD_PANEL_IO_FORMAT_BUF_SIZE
int "LCD panel io format buffer size"
default 32
help
LCD driver allocates an internal buffer to transform the data into a proper format, because of
the endian order mismatch. This option is to set the size of the buffer, in bytes.
endmenu
endmenu

View File

@@ -28,14 +28,13 @@ typedef struct esp_lcd_i80_bus_t *esp_lcd_i80_bus_handle_t; /*!< Type of LCD i
*
* @param[in] io LCD panel IO handle, which is created by other factory API like `esp_lcd_new_panel_io_spi()`
* @param[in] lcd_cmd The specific LCD command
* @param[in] lcd_cmd_bits Length of LCD command, in bits (e.g. 8 bits or 16 bits)
* @param[in] param Buffer that holds the command specific parameters, set to NULL if no parameter is needed for the command
* @param[in] param_size Size of `param` in memory, in bytes, set to zero if no parameter is needed for the command
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_OK on success
*/
esp_err_t esp_lcd_panel_io_tx_param(esp_lcd_panel_io_handle_t io, int lcd_cmd, int lcd_cmd_bits, const void *param, size_t param_size);
esp_err_t esp_lcd_panel_io_tx_param(esp_lcd_panel_io_handle_t io, int lcd_cmd, const void *param, size_t param_size);
/**
* @brief Transmit LCD RGB data
@@ -47,14 +46,13 @@ esp_err_t esp_lcd_panel_io_tx_param(esp_lcd_panel_io_handle_t io, int lcd_cmd, i
*
* @param[in] io LCD panel IO handle, which is created by factory API like `esp_lcd_new_panel_io_spi()`
* @param[in] lcd_cmd The specific LCD command
* @param[in] lcd_cmd_bits Length of LCD command, in bits (e.g. 8 bits or 16 bits)
* @param[in] color Buffer that holds the RGB color data
* @param[in] color_size Size of `color` in memory, in bytes
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_OK on success
*/
esp_err_t esp_lcd_panel_io_tx_color(esp_lcd_panel_io_handle_t io, int lcd_cmd, int lcd_cmd_bits, const void *color, size_t color_size);
esp_err_t esp_lcd_panel_io_tx_color(esp_lcd_panel_io_handle_t io, int lcd_cmd, const void *color, size_t color_size);
/**
* @brief Destory LCD panel IO handle (deinitialize panel and free all corresponding resource)
@@ -77,6 +75,8 @@ typedef struct {
size_t trans_queue_depth; /*!< Size of internal transaction queue */
bool (*on_color_trans_done)(esp_lcd_panel_io_handle_t panel_io, void *user_data, void *event_data); /*!< Callback, invoked when color data transfer has finished */
void *user_data; /*!< User private data, passed directly to on_trans_frame_done's user_data */
int lcd_cmd_bits; /*!< Bit-width of LCD command */
int lcd_param_bits; /*!< Bit-width of LCD parameter */
struct {
unsigned int dc_as_cmd_phase: 1; /*!< D/C line value is encoded into SPI transaction command phase */
unsigned int dc_low_on_data: 1; /*!< If this flag is enabled, DC line = 0 means transfer data, DC line = 1 means transfer command; vice versa */
@@ -102,6 +102,8 @@ typedef struct {
void *user_data; /*!< User private data, passed directly to on_trans_frame_done's user_data */
size_t control_phase_bytes; /*!< I2C LCD panel will encode control information (e.g. D/C seclection) into control phase, in several bytes */
unsigned int dc_bit_offset; /*!< Offset of the D/C selection bit in control phase */
int lcd_cmd_bits; /*!< Bit-width of LCD command */
int lcd_param_bits; /*!< Bit-width of LCD parameter */
struct {
unsigned int dc_low_on_data: 1; /*!< If this flag is enabled, DC line = 0 means transfer data, DC line = 1 means transfer command; vice versa */
} flags;
@@ -128,7 +130,7 @@ typedef struct {
int dc_gpio_num; /*!< GPIO used for D/C line */
int wr_gpio_num; /*!< GPIO used for WR line */
int data_gpio_nums[SOC_LCD_I80_BUS_WIDTH]; /*!< GPIOs used for data lines */
size_t data_width; /*!< Number of data lines, 8 or 16 */
size_t bus_width; /*!< Number of data lines, 8 or 16 */
size_t max_transfer_bytes; /*!< Maximum transfer size, this determines the length of internal DMA link */
} esp_lcd_i80_bus_config_t;
@@ -165,6 +167,8 @@ typedef struct {
size_t trans_queue_depth; /*!< Transaction queue size, larger queue, higher throughput */
bool (*on_color_trans_done)(esp_lcd_panel_io_handle_t panel_io, void *user_data, void *event_data); /*!< Callback, invoked when color data was tranferred done */
void *user_data; /*!< User private data, passed directly to on_trans_done's user_data */
int lcd_cmd_bits; /*!< Bit-width of LCD command */
int lcd_param_bits; /*!< Bit-width of LCD parameter */
struct {
unsigned int dc_idle_level: 1; /*!< Level of DC line in IDLE phase */
unsigned int dc_cmd_level: 1; /*!< Level of DC line in CMD phase */
@@ -172,7 +176,7 @@ typedef struct {
unsigned int dc_data_level: 1; /*!< Level of DC line in DATA phase */
} dc_levels; /*!< Each i80 device might have its own D/C control logic */
struct {
unsigned int invert_cs: 1; /*!< Whether to invert the CS line */
unsigned int cs_active_high: 1; /*!< If set, a high level of CS line will select the device, otherwise, CS line is low level active */
unsigned int reverse_color_bits: 1; /*!< Reverse the data bits, D[N:0] -> D[0:N] */
unsigned int swap_color_bytes: 1; /*!< Swap adjacent two color bytes */
unsigned int pclk_active_neg: 1; /*!< The display will write data lines when there's a falling edge on WR signal (a.k.a the PCLK) */

View File

@@ -39,6 +39,19 @@ typedef struct {
*/
esp_err_t esp_lcd_new_panel_st7789(const esp_lcd_panel_io_handle_t io, const esp_lcd_panel_dev_config_t *panel_dev_config, esp_lcd_panel_handle_t *ret_panel);
/**
* @brief Create LCD panel for model NT35510
*
* @param[in] io LCD panel IO handle
* @param[in] panel_dev_config general panel device configuration
* @param[out] ret_panel Returned LCD panel handle
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_ERR_NO_MEM if out of memory
* - ESP_OK on success
*/
esp_err_t esp_lcd_new_panel_nt35510(const esp_lcd_panel_io_handle_t io, const esp_lcd_panel_dev_config_t *panel_dev_config, esp_lcd_panel_handle_t *ret_panel);
/**
* @brief Create LCD panel for model SSD1306
*

View File

@@ -25,14 +25,13 @@ struct esp_lcd_panel_io_t {
*
* @param[in] io LCD panel IO handle, which is created by other factory API like `esp_lcd_new_panel_io_spi()`
* @param[in] lcd_cmd The specific LCD command
* @param[in] lcd_cmd_bits Length of LCD command, in bits (e.g. 8 bits or 16 bits)
* @param[in] param Buffer that holds the command specific parameters, set to NULL if no parameter is needed for the command
* @param[in] param_size Size of `param` in memory, in bytes, set to zero if no parameter is needed for the command
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_OK on success
*/
esp_err_t (*tx_param)(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *param, size_t param_size);
esp_err_t (*tx_param)(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size);
/**
* @brief Transmit LCD RGB data
@@ -41,14 +40,13 @@ struct esp_lcd_panel_io_t {
*
* @param[in] io LCD panel IO handle, which is created by other factory API like `esp_lcd_new_panel_io_spi()`
* @param[in] lcd_cmd The specific LCD command
* @param[in] lcd_cmd_bits Length of LCD command, in bits (e.g. 8 bits or 16 bits)
* @param[in] color Buffer that holds the RGB color data
* @param[in] color_size Size of `color` in memory, in bytes
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_OK on success
*/
esp_err_t (*tx_color)(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *color, size_t color_size);
esp_err_t (*tx_color)(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size);
/**
* @brief Destory LCD panel IO handle (deinitialize all and free resource)

View File

@@ -7,8 +7,8 @@
#include "freertos/FreeRTOS.h"
#include "soc/rtc.h" // for querying XTAL clock
#include "soc/soc_caps.h"
#if SOC_LCDCAM_SUPPORTED
#include "esp_lcd_common.h"
#if SOC_LCDCAM_SUPPORTED
#include "hal/lcd_ll.h"
#include "hal/lcd_hal.h"
@@ -81,8 +81,8 @@ void lcd_com_remove_device(lcd_com_device_type_t device_type, int member_id)
unsigned long lcd_com_select_periph_clock(lcd_hal_context_t *hal)
{
unsigned long resolution_hz = 0;
int clock_source = -1;
unsigned long resolution_hz;
int clock_source;
#if CONFIG_LCD_PERIPH_CLK_SRC_PLL160M
resolution_hz = 160000000 / LCD_PERIPH_CLOCK_PRE_SCALE;
clock_source = LCD_LL_CLOCK_SRC_PLL160M;
@@ -97,6 +97,8 @@ unsigned long lcd_com_select_periph_clock(lcd_hal_context_t *hal)
return resolution_hz;
}
#endif // SOC_LCDCAM_SUPPORTED
void lcd_com_mount_dma_data(dma_descriptor_t *desc_head, const void *buffer, size_t len)
{
size_t prepared_length = 0;
@@ -122,5 +124,3 @@ void lcd_com_mount_dma_data(dma_descriptor_t *desc_head, const void *buffer, siz
prepared_length += len;
}
}
#endif // SOC_LCDCAM_SUPPORTED

View File

@@ -5,22 +5,21 @@
*/
#pragma once
#include <stddef.h>
#include "soc/soc_caps.h"
#include "hal/dma_types.h"
#if SOC_LCDCAM_SUPPORTED
#include "hal/lcd_hal.h"
#include "hal/dma_types.h"
#else
#error "lcd peripheral is not supported on this chip"
#endif
#ifdef __cplusplus
extern "C" {
#endif
#if SOC_LCDCAM_SUPPORTED
#define LCD_PERIPH_CLOCK_PRE_SCALE (2) // This is the minimum divider that can be applied to LCD peripheral
#if SOC_LCDCAM_SUPPORTED
typedef enum {
LCD_COM_DEVICE_TYPE_I80,
LCD_COM_DEVICE_TYPE_RGB
@@ -54,6 +53,8 @@ void lcd_com_remove_device(lcd_com_device_type_t device_type, int member_id);
*/
unsigned long lcd_com_select_periph_clock(lcd_hal_context_t *hal);
#endif // SOC_LCDCAM_SUPPORTED
/**
* @brief Mount data to DMA descriptors
*
@@ -63,7 +64,28 @@ unsigned long lcd_com_select_periph_clock(lcd_hal_context_t *hal);
*/
void lcd_com_mount_dma_data(dma_descriptor_t *desc_head, const void *buffer, size_t len);
#endif // SOC_LCDCAM_SUPPORTED
/**
* @brief Reverse the bytes in the buffer
*
* @note LCD is big-endian, e.g. to send command 0x1234, byte 0x12 should appear on the bus first
* However, the low level peripheral (like i80, i2s) will send 0x34 first.
* This helper function is used to reverse the bytes order
*
* @param buf buffer address
* @param start start index of the buffer
* @param end end index of the buffer
*/
static inline void lcd_com_reverse_buffer_bytes(uint8_t *buf, int start, int end)
{
uint8_t temp = 0;
while (start < end) {
temp = buf[start];
buf[start] = buf[end];
buf[end] = temp;
start++;
end--;
}
}
#ifdef __cplusplus
}

View File

@@ -45,7 +45,7 @@
#define LCD_CMD_VSCSAD 0x37 // Vertical scroll start address
#define LCD_CMD_IDMOFF 0x38 // Recover from IDLE mode
#define LCD_CMD_IDMON 0x39 // Fall into IDLE mode (8 color depth is displayed)
#define LCD_CMD_COLMOD 0x3A // Defines the format of RGB picture data, which is to be transferred via the MCU interface
#define LCD_CMD_COLMOD 0x3A // Defines the format of RGB picture data
#define LCD_CMD_RAMWRC 0x3C // Memory write continue
#define LCD_CMD_RAMRDC 0x3E // Memory read continue
#define LCD_CMD_STE 0x44 // Set tear scanline, tearing effect output signal when display module reaches line N

View File

@@ -10,16 +10,16 @@
static const char *TAG = "lcd_panel.io";
esp_err_t esp_lcd_panel_io_tx_param(esp_lcd_panel_io_handle_t io, int lcd_cmd, int lcd_cmd_bits, const void *param, size_t param_size)
esp_err_t esp_lcd_panel_io_tx_param(esp_lcd_panel_io_handle_t io, int lcd_cmd, const void *param, size_t param_size)
{
ESP_RETURN_ON_FALSE(io, ESP_ERR_INVALID_ARG, TAG, "invalid panel io handle");
return io->tx_param(io, lcd_cmd, lcd_cmd_bits, param, param_size);
return io->tx_param(io, lcd_cmd, param, param_size);
}
esp_err_t esp_lcd_panel_io_tx_color(esp_lcd_panel_io_handle_t io, int lcd_cmd, int lcd_cmd_bits, const void *color, size_t color_size)
esp_err_t esp_lcd_panel_io_tx_color(esp_lcd_panel_io_handle_t io, int lcd_cmd, const void *color, size_t color_size)
{
ESP_RETURN_ON_FALSE(io, ESP_ERR_INVALID_ARG, TAG, "invalid panel io handle");
return io->tx_color(io, lcd_cmd, lcd_cmd_bits, color, color_size);
return io->tx_color(io, lcd_cmd, color, color_size);
}
esp_err_t esp_lcd_panel_io_del(esp_lcd_panel_io_handle_t io)

View File

@@ -22,13 +22,15 @@ static const char *TAG = "lcd_panel.io.i2c";
#define BYTESHIFT(VAR, IDX) (((VAR) >> ((IDX) * 8)) & 0xFF)
static esp_err_t panel_io_i2c_del(esp_lcd_panel_io_t *io);
static esp_err_t panel_io_i2c_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *param, size_t param_size);
static esp_err_t panel_io_i2c_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *color, size_t color_size);
static esp_err_t panel_io_i2c_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size);
static esp_err_t panel_io_i2c_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size);
typedef struct {
esp_lcd_panel_io_t base; // Base class of generic lcd panel io
uint32_t i2c_bus_id; // I2C bus id, indicating which I2C port
uint32_t dev_addr; // Device address
int lcd_cmd_bits; // Bit width of LCD command
int lcd_param_bits; // Bit width of LCD parameter
uint32_t control_phase_cmd; // control byte when transferring command
uint32_t control_phase_data; // control byte when transferring data
bool (*on_color_trans_done)(esp_lcd_panel_io_handle_t panel_io, void *user_data, void *event_data); // User register's callback, invoked when color data trans done
@@ -46,6 +48,8 @@ esp_err_t esp_lcd_new_panel_io_i2c(esp_lcd_i2c_bus_handle_t bus, const esp_lcd_p
ESP_GOTO_ON_FALSE(i2c_panel_io, ESP_ERR_NO_MEM, err, TAG, "no mem for i2c panel io");
i2c_panel_io->i2c_bus_id = (uint32_t)bus;
i2c_panel_io->lcd_cmd_bits = io_config->lcd_cmd_bits;
i2c_panel_io->lcd_param_bits = io_config->lcd_param_bits;
i2c_panel_io->on_color_trans_done = io_config->on_color_trans_done;
i2c_panel_io->control_phase_data = (!io_config->flags.dc_low_on_data) << (io_config->dc_bit_offset);
i2c_panel_io->control_phase_cmd = (io_config->flags.dc_low_on_data) << (io_config->dc_bit_offset);
@@ -72,7 +76,7 @@ static esp_err_t panel_io_i2c_del(esp_lcd_panel_io_t *io)
return ret;
}
static esp_err_t panel_io_i2c_tx_buffer(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *buffer, size_t buffer_size, bool is_param)
static esp_err_t panel_io_i2c_tx_buffer(esp_lcd_panel_io_t *io, int lcd_cmd, const void *buffer, size_t buffer_size, bool is_param)
{
esp_err_t ret = ESP_OK;
lcd_panel_io_i2c_t *i2c_panel_io = __containerof(io, lcd_panel_io_i2c_t, base);
@@ -81,14 +85,12 @@ static esp_err_t panel_io_i2c_tx_buffer(esp_lcd_panel_io_t *io, int lcd_cmd, int
ESP_GOTO_ON_FALSE(cmd_link, ESP_ERR_NO_MEM, err, TAG, "no mem for i2c cmd link");
ESP_GOTO_ON_ERROR(i2c_master_start(cmd_link), err, TAG, "issue start failed"); // start phase
ESP_GOTO_ON_ERROR(i2c_master_write_byte(cmd_link, (i2c_panel_io->dev_addr << 1) | I2C_MASTER_WRITE, true), err, TAG, "write address failed"); // address phase
ESP_GOTO_ON_ERROR(
i2c_master_write_byte(cmd_link, is_param ? i2c_panel_io->control_phase_cmd : i2c_panel_io->control_phase_data, true),
ESP_GOTO_ON_ERROR(i2c_master_write_byte(cmd_link, is_param ? i2c_panel_io->control_phase_cmd : i2c_panel_io->control_phase_data, true),
err, TAG, "write control phase failed"); // control phase
uint8_t cmds[4] = {BYTESHIFT(lcd_cmd, 3), BYTESHIFT(lcd_cmd, 2), BYTESHIFT(lcd_cmd, 1), BYTESHIFT(lcd_cmd, 0)};
size_t cmds_size = lcd_cmd_bits / 8;
size_t cmds_size = i2c_panel_io->lcd_cmd_bits / 8;
if (cmds_size > 0 && cmds_size <= sizeof(cmds)) {
ESP_GOTO_ON_ERROR(i2c_master_write(cmd_link, cmds + (sizeof(cmds) - cmds_size), cmds_size, true), err, TAG,
"write LCD cmd failed");
ESP_GOTO_ON_ERROR(i2c_master_write(cmd_link, cmds + (sizeof(cmds) - cmds_size), cmds_size, true), err, TAG, "write LCD cmd failed");
}
if (buffer) {
@@ -114,12 +116,12 @@ err:
return ret;
}
static esp_err_t panel_io_i2c_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *param, size_t param_size)
static esp_err_t panel_io_i2c_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size)
{
return panel_io_i2c_tx_buffer(io, lcd_cmd, lcd_cmd_bits, param, param_size, true);
return panel_io_i2c_tx_buffer(io, lcd_cmd, param, param_size, true);
}
static esp_err_t panel_io_i2c_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *color, size_t color_size)
static esp_err_t panel_io_i2c_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size)
{
return panel_io_i2c_tx_buffer(io, lcd_cmd, lcd_cmd_bits, color, color_size, false);
return panel_io_i2c_tx_buffer(io, lcd_cmd, color, color_size, false);
}

View File

@@ -0,0 +1,692 @@
/*
* SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Although we're manipulating I2S peripheral (on esp32/s2 target), it has nothing to do with the AUDIO BUS.
// In fact, we're simulating the Intel 8080 bus with I2S peripheral, in a special parallel mode.
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include <stdlib.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/queue.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_attr.h"
#include "esp_check.h"
#include "esp_intr_alloc.h"
#include "esp_heap_caps.h"
#include "esp_lcd_panel_io_interface.h"
#include "esp_lcd_panel_io.h"
#include "esp_lcd_common.h"
#include "esp_rom_gpio.h"
#include "soc/soc_caps.h"
#include "hal/dma_types.h"
#include "hal/gpio_hal.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#if SOC_I2S_LCD_I80_VARIANT
#include "esp_private/i2s_platform.h"
#include "soc/lcd_periph.h"
#include "hal/i2s_hal.h"
#include "hal/i2s_ll.h"
#include "hal/i2s_types.h"
static const char *TAG = "lcd_panel.io.i80";
typedef struct esp_lcd_i80_bus_t esp_lcd_i80_bus_t;
typedef struct lcd_panel_io_i80_t lcd_panel_io_i80_t;
typedef struct lcd_i80_trans_descriptor_t lcd_i80_trans_descriptor_t;
static esp_err_t panel_io_i80_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size);
static esp_err_t panel_io_i80_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size);
static esp_err_t panel_io_i80_del(esp_lcd_panel_io_t *io);
static unsigned long i2s_lcd_select_periph_clock(i2s_hal_context_t *hal);
static esp_err_t i2s_lcd_init_dma_link(esp_lcd_i80_bus_handle_t bus);
static esp_err_t i2s_lcd_configure_gpio(esp_lcd_i80_bus_handle_t bus, const esp_lcd_i80_bus_config_t *bus_config);
static void i2s_lcd_trigger_quick_trans_done_event(esp_lcd_i80_bus_handle_t bus);
static void lcd_i80_switch_devices(lcd_panel_io_i80_t *cur_device, lcd_panel_io_i80_t *next_device);
static IRAM_ATTR void lcd_default_isr_handler(void *args);
struct esp_lcd_i80_bus_t {
int bus_id; // Bus ID, index from 0
portMUX_TYPE spinlock; // spinlock used to protect i80 bus members(hal, device_list, cur_trans)
i2s_hal_context_t hal; // Hal object
size_t bus_width; // Number of data lines
int dc_gpio_num; // GPIO used for DC line
int wr_gpio_num; // GPIO used for WR line
intr_handle_t intr; // LCD peripheral interrupt handle
size_t num_dma_nodes; // Number of DMA descriptors
uint8_t *format_buffer;// The driver allocates an internal buffer for DMA to do data format transformer
size_t resolution_hz; // LCD_CLK resolution, determined by selected clock source
lcd_i80_trans_descriptor_t *cur_trans; // Current transaction
lcd_panel_io_i80_t *cur_device; // Current working device
LIST_HEAD(i80_device_list, lcd_panel_io_i80_t) device_list; // Head of i80 device list
dma_descriptor_t dma_nodes[]; // DMA descriptor pool, the descriptors are shared by all i80 devices
};
struct lcd_i80_trans_descriptor_t {
lcd_panel_io_i80_t *i80_device; // i80 device issuing this transaction
const void *data; // Data buffer
uint32_t data_length; // Data buffer size
void *cb_user_data; // private data used by trans_done_cb
bool (*trans_done_cb)(esp_lcd_panel_io_handle_t panel_io, void *user_data, void *event_data); // transaction done callback
struct {
unsigned int dc_level: 1; // Level of DC line for this transaction
} flags;
};
struct lcd_panel_io_i80_t {
esp_lcd_panel_io_t base; // Base class of generic lcd panel io
esp_lcd_i80_bus_t *bus; // Which bus the device is attached to
int cs_gpio_num; // GPIO used for CS line
unsigned int pclk_hz; // PCLK clock frequency
size_t clock_prescale; // Prescaler coefficient, determined by user's configured PCLK frequency
QueueHandle_t trans_queue; // Transaction queue, transactions in this queue are pending for scheduler to dispatch
QueueHandle_t done_queue; // Transaction done queue, transactions in this queue are finished but not recycled by the caller
size_t queue_size; // Size of transaction queue
size_t num_trans_inflight; // Number of transactions that are undergoing (the descriptor not recycled yet)
int lcd_cmd_bits; // Bit width of LCD command
int lcd_param_bits; // Bit width of LCD parameter
void *cb_user_data; // private data used when transfer color data
bool (*on_color_trans_done)(esp_lcd_panel_io_handle_t panel_io, void *user_data, void *event_data); // color data trans done callback
LIST_ENTRY(lcd_panel_io_i80_t) device_list_entry; // Entry of i80 device list
struct {
unsigned int dc_cmd_level: 1; // Level of DC line in CMD phase
unsigned int dc_data_level: 1; // Level of DC line in DATA phase
} dc_levels;
struct {
unsigned int cs_active_high: 1; // Whether the CS line is active on high level
unsigned int swap_color_bytes: 1; // Swap adjacent two data bytes before sending out
unsigned int pclk_idle_low: 1; // The WR line keeps at low level in IDLE phase
} flags;
lcd_i80_trans_descriptor_t trans_pool[]; // Transaction pool
};
esp_err_t esp_lcd_new_i80_bus(const esp_lcd_i80_bus_config_t *bus_config, esp_lcd_i80_bus_handle_t *ret_bus)
{
esp_err_t ret = ESP_OK;
esp_lcd_i80_bus_t *bus = NULL;
ESP_GOTO_ON_FALSE(bus_config && ret_bus, ESP_ERR_INVALID_ARG, err_arg, TAG, "invalid argument");
// although I2S bus supports up to 24 parallel data lines, we restrict users to only use 8 or 16 bit width, due to limited GPIO numbers
ESP_GOTO_ON_FALSE(bus_config->bus_width == 8 || bus_config->bus_width == 16, ESP_ERR_INVALID_ARG, err_arg,
TAG, "invalid bus width:%d", bus_config->bus_width);
size_t max_transfer_bytes = (bus_config->max_transfer_bytes + 3) & ~0x03; // align up to 4 bytes
#if SOC_I2S_TRANS_SIZE_ALIGN_WORD
// double the size of the internal DMA buffer if bus_width is 8,
// because one I2S FIFO (4 bytes) will only contain two bytes of valid data
max_transfer_bytes = max_transfer_bytes * 16 / bus_config->bus_width + 4;
#endif
size_t num_dma_nodes = max_transfer_bytes / DMA_DESCRIPTOR_BUFFER_MAX_SIZE + 1;
// DMA descriptors must be placed in internal SRAM
bus = heap_caps_calloc(1, sizeof(esp_lcd_i80_bus_t) + num_dma_nodes * sizeof(dma_descriptor_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(bus, ESP_ERR_NO_MEM, no_mem_bus, TAG, "no mem for i80 bus");
bus->num_dma_nodes = num_dma_nodes;
#if SOC_I2S_TRANS_SIZE_ALIGN_WORD
// transform format for LCD commands, parameters and color data, so we need a big buffer
bus->format_buffer = heap_caps_calloc(1, max_transfer_bytes, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
#else
// only transform format for LCD parameters, buffer size depends on specific LCD, set at compile time
bus->format_buffer = heap_caps_calloc(1, CONFIG_LCD_PANEL_IO_FORMAT_BUF_SIZE, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
#endif
ESP_GOTO_ON_FALSE(bus->format_buffer, ESP_ERR_NO_MEM, no_mem_format, TAG, "no mem for format buffer");
// I2S0 has the LCD mode, but the LCD mode can't work with other modes at the same time, we need to register the driver object to the I2S platform
ESP_GOTO_ON_ERROR(i2s_priv_register_object(bus, 0), no_slot, TAG, "register to I2S platform failed");
bus->bus_id = 0;
// initialize HAL layer
i2s_hal_init(&bus->hal, bus->bus_id);
// set peripheral clock resolution
bus->resolution_hz = i2s_lcd_select_periph_clock(&bus->hal);
// reset peripheral, DMA channel and FIFO
i2s_ll_tx_reset(bus->hal.dev);
i2s_ll_tx_reset_dma(bus->hal.dev);
i2s_ll_tx_reset_fifo(bus->hal.dev);
// install interrupt service, (I2S LCD mode only uses the "TX Unit", which leaves "RX Unit" for other purpose)
// So the interrupt should also be able to share with other functionality
int isr_flags = ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_SHARED;
ret = esp_intr_alloc_intrstatus(lcd_periph_signals.buses[bus->bus_id].irq_id, isr_flags,
(uint32_t)i2s_ll_get_intr_status_reg(bus->hal.dev),
I2S_LL_EVENT_TX_EOF, lcd_default_isr_handler, bus, &bus->intr);
ESP_GOTO_ON_ERROR(ret, no_int, TAG, "install interrupt failed");
i2s_ll_enable_intr(bus->hal.dev, I2S_LL_EVENT_TX_EOF, false); // disable interrupt temporarily
i2s_ll_clear_intr_status(bus->hal.dev, I2S_LL_EVENT_TX_EOF); // clear pending interrupt
// initialize DMA link
i2s_lcd_init_dma_link(bus);
// enable I2S LCD master mode (refer to I2S TRM)
i2s_ll_enable_lcd(bus->hal.dev, true);
i2s_ll_tx_stop_on_fifo_empty(bus->hal.dev, true);
i2s_ll_tx_bypass_pcm(bus->hal.dev, true);
i2s_ll_tx_set_slave_mod(bus->hal.dev, false);
i2s_ll_tx_set_bits_mod(bus->hal.dev, bus_config->bus_width);
i2s_ll_tx_set_chan_mod(bus->hal.dev, 1); // mono
bus->bus_width = bus_config->bus_width;
i2s_ll_tx_enable_right_first(bus->hal.dev, true);
#if SOC_I2S_SUPPORTS_DMA_EQUAL
i2s_ll_tx_enable_dma_equal(bus->hal.dev, true);
#endif
// enable trans done interrupt
i2s_ll_enable_intr(bus->hal.dev, I2S_LL_EVENT_TX_EOF, true);
// trigger a quick "trans done" event, and wait for the interrupt line goes active
// this could ensure we go into ISR handler next time we call `esp_intr_enable`
i2s_lcd_trigger_quick_trans_done_event(bus);
// configure GPIO
ret = i2s_lcd_configure_gpio(bus, bus_config);
ESP_GOTO_ON_ERROR(ret, invalid_gpio, TAG, "configure GPIO failed");
// fill other i80 bus runtime parameters
LIST_INIT(&bus->device_list); // initialize device list head
bus->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
bus->dc_gpio_num = bus_config->dc_gpio_num;
bus->wr_gpio_num = bus_config->wr_gpio_num;
*ret_bus = bus;
ESP_LOGD(TAG, "new i80 bus(%d) @%p, %zu dma nodes, resolution %zuHz", bus->bus_id, bus, bus->num_dma_nodes, bus->resolution_hz);
return ESP_OK;
invalid_gpio:
esp_intr_free(bus->intr);
no_int:
i2s_priv_deregister_object(bus->bus_id);
no_slot:
free(bus->format_buffer);
no_mem_format:
free(bus);
no_mem_bus:
err_arg:
return ret;
}
esp_err_t esp_lcd_del_i80_bus(esp_lcd_i80_bus_handle_t bus)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(bus, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
ESP_GOTO_ON_FALSE(LIST_EMPTY(&bus->device_list), ESP_ERR_INVALID_STATE, err, TAG, "device list not empty");
int bus_id = bus->bus_id;
esp_intr_free(bus->intr);
i2s_priv_deregister_object(bus_id);
free(bus->format_buffer);
free(bus);
ESP_LOGD(TAG, "del i80 bus(%d)", bus_id);
err:
return ret;
}
esp_err_t esp_lcd_new_panel_io_i80(esp_lcd_i80_bus_handle_t bus, const esp_lcd_panel_io_i80_config_t *io_config, esp_lcd_panel_io_handle_t *ret_io)
{
esp_err_t ret = ESP_OK;
lcd_panel_io_i80_t *i80_device = NULL;
ESP_GOTO_ON_FALSE(bus && io_config && ret_io, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
// because we set the I2S's left channel data same to right channel, so f_pclk = f_i2s/pclk_div/2
uint32_t pclk_prescale = bus->resolution_hz / 2 / io_config->pclk_hz;
ESP_GOTO_ON_FALSE(pclk_prescale > 0 && pclk_prescale <= I2S_LL_BCK_MAX_PRESCALE, ESP_ERR_NOT_SUPPORTED, err, TAG,
"prescaler can't satisfy PCLK clock %u", io_config->pclk_hz);
i80_device = calloc(1, sizeof(lcd_panel_io_i80_t) + io_config->trans_queue_depth * sizeof(lcd_i80_trans_descriptor_t));
ESP_GOTO_ON_FALSE(i80_device, ESP_ERR_NO_MEM, err, TAG, "no mem for i80 panel io");
// create two queues for i80 device
i80_device->trans_queue = xQueueCreate(io_config->trans_queue_depth, sizeof(lcd_i80_trans_descriptor_t *));
ESP_GOTO_ON_FALSE(i80_device->trans_queue, ESP_ERR_NO_MEM, err, TAG, "create trans queue failed");
i80_device->done_queue = xQueueCreate(io_config->trans_queue_depth, sizeof(lcd_i80_trans_descriptor_t *));
ESP_GOTO_ON_FALSE(i80_device->done_queue, ESP_ERR_NO_MEM, err, TAG, "create done queue failed");
// adding device to list
portENTER_CRITICAL(&bus->spinlock);
LIST_INSERT_HEAD(&bus->device_list, i80_device, device_list_entry);
portEXIT_CRITICAL(&bus->spinlock);
// we don't initialize the i80 bus at the memont, but initialize the bus when start a transaction for a new device
// so save these as i80 device runtime parameters
i80_device->bus = bus;
i80_device->queue_size = io_config->trans_queue_depth;
i80_device->clock_prescale = pclk_prescale;
i80_device->lcd_cmd_bits = io_config->lcd_cmd_bits;
i80_device->lcd_param_bits = io_config->lcd_param_bits;
i80_device->pclk_hz = bus->resolution_hz / pclk_prescale / 2;
i80_device->dc_levels.dc_cmd_level = io_config->dc_levels.dc_cmd_level;
i80_device->dc_levels.dc_data_level = io_config->dc_levels.dc_data_level;
i80_device->cs_gpio_num = io_config->cs_gpio_num;
i80_device->on_color_trans_done = io_config->on_color_trans_done;
i80_device->cb_user_data = io_config->user_data;
i80_device->flags.cs_active_high = io_config->flags.cs_active_high;
i80_device->flags.swap_color_bytes = io_config->flags.swap_color_bytes;
i80_device->flags.pclk_idle_low = io_config->flags.pclk_idle_low;
// fill panel io function table
i80_device->base.del = panel_io_i80_del;
i80_device->base.tx_param = panel_io_i80_tx_param;
i80_device->base.tx_color = panel_io_i80_tx_color;
// CS signal is controlled by software
gpio_set_level(io_config->cs_gpio_num, !io_config->flags.cs_active_high); // de-assert by default
gpio_set_direction(io_config->cs_gpio_num, GPIO_MODE_OUTPUT);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[io_config->cs_gpio_num], PIN_FUNC_GPIO);
*ret_io = &(i80_device->base);
ESP_LOGD(TAG, "new i80 lcd panel io @%p on bus(%d), pclk=%uHz", i80_device, bus->bus_id, i80_device->pclk_hz);
return ESP_OK;
err:
if (i80_device) {
if (i80_device->trans_queue) {
vQueueDelete(i80_device->trans_queue);
}
if (i80_device->done_queue) {
vQueueDelete(i80_device->done_queue);
}
free(i80_device);
}
return ret;
}
static esp_err_t panel_io_i80_del(esp_lcd_panel_io_t *io)
{
lcd_panel_io_i80_t *i80_device = __containerof(io, lcd_panel_io_i80_t, base);
esp_lcd_i80_bus_t *bus = i80_device->bus;
lcd_i80_trans_descriptor_t *trans_desc = NULL;
// wait all pending transaction to finish
for (size_t i = 0; i < i80_device->num_trans_inflight; i++) {
xQueueReceive(i80_device->done_queue, &trans_desc, portMAX_DELAY);
}
// remove from device list
portENTER_CRITICAL(&bus->spinlock);
LIST_REMOVE(i80_device, device_list_entry);
portEXIT_CRITICAL(&bus->spinlock);
ESP_LOGD(TAG, "del i80 lcd panel io @%p", i80_device);
vQueueDelete(i80_device->trans_queue);
vQueueDelete(i80_device->done_queue);
free(i80_device);
return ESP_OK;
}
static void i2s_lcd_prepare_cmd_buffer(lcd_i80_trans_descriptor_t *trans_desc, const void *cmd)
{
lcd_panel_io_i80_t *i80_device = trans_desc->i80_device;
esp_lcd_i80_bus_t *bus = i80_device->bus;
uint8_t *from = (uint8_t *)cmd;
// LCD is big-endian, e.g. to send command 0x1234, byte 0x12 should appear on the data bus first
// However, the I2S peripheral will send 0x34 first, so we reversed the order below
if (bus->bus_width < i80_device->lcd_cmd_bits) {
int start = 0;
int end = i80_device->lcd_cmd_bits / 8 - 1;
lcd_com_reverse_buffer_bytes(from, start, end);
}
#if SOC_I2S_TRANS_SIZE_ALIGN_WORD
uint8_t *to = bus->format_buffer;
int cmd_cycle = i80_device->lcd_cmd_bits / bus->bus_width;
if (cmd_cycle * bus->bus_width < i80_device->lcd_cmd_bits) {
cmd_cycle++;
}
int bytes_to_copy = MIN(bus->bus_width, i80_device->lcd_cmd_bits) / 8;
int cnt_from = 0;
// format command buffer
for (int i = 0; i < cmd_cycle; i++) {
for (int j = 0; j < bytes_to_copy; j++) {
to[2 + j] = from[cnt_from++];
}
to += 4;
}
trans_desc->data = bus->format_buffer;
trans_desc->data_length = cmd_cycle * 4;
#else
trans_desc->data = cmd;
trans_desc->data_length = MAX(i80_device->lcd_cmd_bits, bus->bus_width) / 8;
#endif
}
static void i2s_lcd_prepare_param_buffer(lcd_i80_trans_descriptor_t *trans_desc, const void *param, size_t param_num)
{
lcd_panel_io_i80_t *i80_device = trans_desc->i80_device;
esp_lcd_i80_bus_t *bus = i80_device->bus;
uint8_t *from = (uint8_t *)param;
int param_size = i80_device->lcd_param_bits / 8;
// LCD is big-endian, e.g. to send param 0x1234, byte 0x12 should appear on the data bus first
// However, the I2S peripheral will send 0x34 first, so we reversed the order below
if (bus->bus_width < i80_device->lcd_param_bits) {
for (size_t i = 0; i < param_num; i++) {
int start = i * param_size;
int end = start + param_size - 1;
lcd_com_reverse_buffer_bytes(from, start, end);
}
}
#if SOC_I2S_TRANS_SIZE_ALIGN_WORD
uint8_t *to = bus->format_buffer;
int param_cycle = i80_device->lcd_param_bits / bus->bus_width;
if (param_cycle * bus->bus_width < i80_device->lcd_param_bits) {
param_cycle++;
}
int ele_cycles = param_cycle * param_num;
int bytes_to_copy = MIN(bus->bus_width, i80_device->lcd_param_bits) / 8;
int cnt_from = 0;
// format parameter buffer
for (int i = 0; i < ele_cycles; i++) {
for (int j = 0; j < bytes_to_copy; j++) {
to[2 + j] = from[cnt_from++];
}
to += 4;
}
trans_desc->data = bus->format_buffer;
trans_desc->data_length = ele_cycles * 4;
#else
uint8_t *to = bus->format_buffer;
uint8_t step = bus->bus_width / 8;
int param_cycle = i80_device->lcd_param_bits / bus->bus_width;
if (param_cycle * bus->bus_width < i80_device->lcd_param_bits) {
param_cycle++;
}
int ele_cycles = param_cycle * param_num;
int bytes_to_copy = MIN(bus->bus_width, i80_device->lcd_param_bits) / 8;
int cnt_from = 0;
// format parameter buffer
for (int i = 0; i < ele_cycles; i++) {
for (int j = 0; j < bytes_to_copy; j++) {
to[j] = from[cnt_from++];
}
to += step;
}
trans_desc->data = bus->format_buffer;
trans_desc->data_length = to - bus->format_buffer;
#endif
}
static void i2s_lcd_prepare_color_buffer(lcd_i80_trans_descriptor_t *trans_desc, const void *color, size_t color_size)
{
#if SOC_I2S_TRANS_SIZE_ALIGN_WORD
lcd_panel_io_i80_t *i80_device = trans_desc->i80_device;
esp_lcd_i80_bus_t *bus = i80_device->bus;
uint8_t *from = (uint8_t *)color;
uint8_t *to = bus->format_buffer;
int bytes_to_copy = bus->bus_width / 8;
int cnt_from = 0;
int first_half = i80_device->flags.swap_color_bytes ? 0 : 2;
int second_half = i80_device->flags.swap_color_bytes ? 2 : 0;
// format color buffer
while (cnt_from < color_size) {
for (int i = 0; i < bytes_to_copy; i++) {
to[first_half + i] = from[cnt_from++];
}
for (int i = 0; i < bytes_to_copy; i++) {
to[second_half + i] = from[cnt_from++];
}
to += 4;
}
trans_desc->data = bus->format_buffer;
trans_desc->data_length = to - bus->format_buffer;
#else
trans_desc->data = color;
trans_desc->data_length = color_size;
#endif
}
static esp_err_t panel_io_i80_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size)
{
lcd_panel_io_i80_t *next_device = __containerof(io, lcd_panel_io_i80_t, base);
esp_lcd_i80_bus_t *bus = next_device->bus;
lcd_panel_io_i80_t *cur_device = bus->cur_device;
lcd_i80_trans_descriptor_t *trans_desc = NULL;
assert(param_size <= (bus->num_dma_nodes * DMA_DESCRIPTOR_BUFFER_MAX_SIZE) && "parameter bytes too long, enlarge max_transfer_bytes");
assert(param_size <= CONFIG_LCD_PANEL_IO_FORMAT_BUF_SIZE && "format buffer too small, increase CONFIG_LCD_PANEL_IO_FORMAT_BUF_SIZE");
// before issue a polling transaction, need to wait queued transactions finished
for (size_t i = 0; i < next_device->num_trans_inflight; i++) {
xQueueReceive(next_device->done_queue, &trans_desc, portMAX_DELAY);
}
next_device->num_trans_inflight = 0;
i2s_ll_clear_intr_status(bus->hal.dev, I2S_LL_EVENT_TX_EOF);
// switch devices if necessary
lcd_i80_switch_devices(cur_device, next_device);
trans_desc = &next_device->trans_pool[0];
trans_desc->i80_device = next_device;
trans_desc->trans_done_cb = NULL; // no callback for command transfer
bus->cur_trans = trans_desc;
#if SOC_I2S_TRANS_SIZE_ALIGN_WORD
// switch to I2S 32bits mode, one WS cycle <=> one I2S FIFO
i2s_ll_tx_set_bits_mod(bus->hal.dev, 32);
#endif
i2s_lcd_prepare_cmd_buffer(trans_desc, &lcd_cmd);
lcd_com_mount_dma_data(bus->dma_nodes, trans_desc->data, trans_desc->data_length);
gpio_set_level(bus->dc_gpio_num, next_device->dc_levels.dc_cmd_level);
i2s_ll_tx_stop(bus->hal.dev);
i2s_ll_tx_reset(bus->hal.dev); // reset TX engine first
i2s_ll_start_out_link(bus->hal.dev);
// delay a while, wait for DMA data beeing feed to I2S FIFO
// in fact, this is only needed when LCD pixel clock is set too high
esp_rom_delay_us(1);
i2s_ll_tx_start(bus->hal.dev);
// polling the trans done event
while (!(i2s_ll_get_intr_status(bus->hal.dev) & I2S_LL_EVENT_TX_EOF)) {}
// parameter is usually short, using polling mode
if (param && param_size) {
i2s_ll_clear_intr_status(bus->hal.dev, I2S_LL_EVENT_TX_EOF);
i2s_lcd_prepare_param_buffer(trans_desc, param, param_size * 8 / next_device->lcd_param_bits);
lcd_com_mount_dma_data(bus->dma_nodes, trans_desc->data, trans_desc->data_length);
gpio_set_level(bus->dc_gpio_num, next_device->dc_levels.dc_data_level);
i2s_ll_tx_stop(bus->hal.dev);
i2s_ll_tx_reset(bus->hal.dev); // reset TX engine first
i2s_ll_start_out_link(bus->hal.dev);
esp_rom_delay_us(1);
i2s_ll_tx_start(bus->hal.dev);
// polling the trans done event, but don't clear the event status
while (!(i2s_ll_get_intr_status(bus->hal.dev) & I2S_LL_EVENT_TX_EOF)) {}
}
bus->cur_trans = NULL;
return ESP_OK;
}
static esp_err_t panel_io_i80_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size)
{
lcd_panel_io_i80_t *next_device = __containerof(io, lcd_panel_io_i80_t, base);
esp_lcd_i80_bus_t *bus = next_device->bus;
lcd_panel_io_i80_t *cur_device = bus->cur_device;
lcd_i80_trans_descriptor_t *trans_desc = NULL;
assert(color_size <= (bus->num_dma_nodes * DMA_DESCRIPTOR_BUFFER_MAX_SIZE) && "color bytes too long, enlarge max_transfer_bytes");
// before issue a polling transaction, need to wait queued transactions finished
for (size_t i = 0; i < next_device->num_trans_inflight; i++) {
xQueueReceive(next_device->done_queue, &trans_desc, portMAX_DELAY);
}
next_device->num_trans_inflight = 0;
i2s_ll_clear_intr_status(bus->hal.dev, I2S_LL_EVENT_TX_EOF);
// switch devices if necessary
lcd_i80_switch_devices(cur_device, next_device);
trans_desc = &next_device->trans_pool[0];
trans_desc->i80_device = next_device;
trans_desc->trans_done_cb = NULL; // no callback for command transfer
bus->cur_trans = trans_desc;
#if SOC_I2S_TRANS_SIZE_ALIGN_WORD
// switch to I2S 32bits mode, one WS cycle <=> one I2S FIFO
i2s_ll_tx_set_bits_mod(bus->hal.dev, 32);
#endif
i2s_lcd_prepare_cmd_buffer(trans_desc, &lcd_cmd);
lcd_com_mount_dma_data(bus->dma_nodes, trans_desc->data, trans_desc->data_length);
gpio_set_level(bus->dc_gpio_num, next_device->dc_levels.dc_cmd_level);
i2s_ll_tx_stop(bus->hal.dev);
i2s_ll_tx_reset(bus->hal.dev); // reset TX engine first
i2s_ll_start_out_link(bus->hal.dev);
esp_rom_delay_us(1);
i2s_ll_tx_start(bus->hal.dev);
// polling the trans done event
while (!(i2s_ll_get_intr_status(bus->hal.dev) & I2S_LL_EVENT_TX_EOF)) {}
bus->cur_trans = NULL;
// sending LCD color data to queue
trans_desc->trans_done_cb = next_device->on_color_trans_done;
trans_desc->cb_user_data = next_device->cb_user_data;
trans_desc->flags.dc_level = next_device->dc_levels.dc_data_level; // DC level for data transaction
i2s_lcd_prepare_color_buffer(trans_desc, color, color_size);
// send transaction to trans_queue
xQueueSend(next_device->trans_queue, &trans_desc, portMAX_DELAY);
next_device->num_trans_inflight++;
// enable interrupt and go into isr handler, where we fetch the transactions from trans_queue and start it
// we will go into `lcd_default_isr_handler` almost at once, because the "trans done" event is active at the moment
esp_intr_enable(bus->intr);
return ESP_OK;
}
static unsigned long i2s_lcd_select_periph_clock(i2s_hal_context_t *hal)
{
unsigned long resolution_hz = 0;
i2s_clock_src_t clock_source;
#if CONFIG_LCD_PERIPH_CLK_SRC_PLL160M
resolution_hz = 160000000 / LCD_PERIPH_CLOCK_PRE_SCALE;
clock_source = I2S_CLK_D2CLK;
#else
#error "invalid LCD peripheral clock source"
#endif
i2s_ll_tx_clk_set_src(hal->dev, clock_source);
i2s_ll_clk_cal_t clk_cal_config = {
.mclk_div = LCD_PERIPH_CLOCK_PRE_SCALE,
.a = 1,
.b = 0,
};
i2s_ll_tx_set_clk(hal->dev, &clk_cal_config);
return resolution_hz;
}
static esp_err_t i2s_lcd_init_dma_link(esp_lcd_i80_bus_handle_t bus)
{
for (int i = 0; i < bus->num_dma_nodes; i++) {
bus->dma_nodes[i].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_CPU;
bus->dma_nodes[i].next = &bus->dma_nodes[i + 1];
}
bus->dma_nodes[bus->num_dma_nodes - 1].next = NULL; // one-off DMA chain
i2s_ll_dma_enable_eof_on_fifo_empty(bus->hal.dev, true);
i2s_ll_dma_enable_owner_check(bus->hal.dev, true);
i2s_ll_dma_enable_auto_write_back(bus->hal.dev, true);
i2s_ll_set_out_link_addr(bus->hal.dev, (uint32_t)bus->dma_nodes);
i2s_ll_enable_dma(bus->hal.dev, true);
return ESP_OK;
}
static esp_err_t i2s_lcd_configure_gpio(esp_lcd_i80_bus_handle_t bus, const esp_lcd_i80_bus_config_t *bus_config)
{
int bus_id = bus->bus_id;
// check validation of GPIO number
bool valid_gpio = (bus_config->wr_gpio_num >= 0) && (bus_config->dc_gpio_num >= 0);
for (size_t i = 0; i < bus_config->bus_width; i++) {
valid_gpio = valid_gpio && (bus_config->data_gpio_nums[i] >= 0);
}
if (!valid_gpio) {
return ESP_ERR_INVALID_ARG;
}
// connect peripheral signals via GPIO matrix
// data line
for (size_t i = 0; i < bus_config->bus_width; i++) {
gpio_set_direction(bus_config->data_gpio_nums[i], GPIO_MODE_OUTPUT);
#if SOC_I2S_TRANS_SIZE_ALIGN_WORD
esp_rom_gpio_connect_out_signal(bus_config->data_gpio_nums[i], lcd_periph_signals.buses[bus_id].data_sigs[i + 8], false, false);
#else
esp_rom_gpio_connect_out_signal(bus_config->data_gpio_nums[i], lcd_periph_signals.buses[bus_id].data_sigs[i + SOC_LCD_I80_BUS_WIDTH - bus_config->bus_width], false, false);
#endif
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->data_gpio_nums[i]], PIN_FUNC_GPIO);
}
// WR signal (pclk)
gpio_set_direction(bus_config->wr_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->wr_gpio_num, lcd_periph_signals.buses[bus_id].wr_sig, true, false);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->wr_gpio_num], PIN_FUNC_GPIO);
// DC signal is controlled by software, set as general purpose IO
gpio_set_direction(bus_config->dc_gpio_num, GPIO_MODE_OUTPUT);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->dc_gpio_num], PIN_FUNC_GPIO);
return ESP_OK;
}
static void i2s_lcd_trigger_quick_trans_done_event(esp_lcd_i80_bus_handle_t bus)
{
// trigger a quick interrupt event by a dummy transaction, wait the LCD interrupt line goes active
// next time when esp_intr_enable is invoked, we can go into interrupt handler immediately
// where we dispatch transactions for i80 devices
static uint32_t fake_trigger = 0;
lcd_com_mount_dma_data(bus->dma_nodes, &fake_trigger, 4);
i2s_ll_start_out_link(bus->hal.dev);
i2s_ll_tx_start(bus->hal.dev);
while (!(i2s_ll_get_intr_status(bus->hal.dev) & I2S_LL_EVENT_TX_EOF)) {}
}
static void lcd_i80_switch_devices(lcd_panel_io_i80_t *cur_device, lcd_panel_io_i80_t *next_device)
{
// the caller should make sure the next_device and cur_device are attached to the same bus
esp_lcd_i80_bus_t *bus = next_device->bus;
if (next_device != cur_device) {
// reconfigure PCLK for the new device
i2s_ll_tx_set_bck_div_num(bus->hal.dev, next_device->clock_prescale);
if (cur_device) { // de-assert current device
gpio_set_level(cur_device->cs_gpio_num, !cur_device->flags.cs_active_high);
}
gpio_set_level(next_device->cs_gpio_num, next_device->flags.cs_active_high); // select the next device
// the WR signal (a.k.a the PCLK) generated by I2S is low level in idle stage
// but most of 8080 LCDs require the WR line to be in high level during idle stage
esp_rom_gpio_connect_out_signal(bus->wr_gpio_num, lcd_periph_signals.buses[bus->bus_id].wr_sig, !next_device->flags.pclk_idle_low, false);
}
bus->cur_device = next_device;
}
static IRAM_ATTR void lcd_default_isr_handler(void *args)
{
esp_lcd_i80_bus_t *bus = (esp_lcd_i80_bus_t *)args;
lcd_i80_trans_descriptor_t *trans_desc = NULL;
lcd_panel_io_i80_t *cur_device = NULL;
lcd_panel_io_i80_t *next_device = NULL;
BaseType_t high_task_woken = pdFALSE;
bool need_yield = false;
uint32_t intr_status = i2s_ll_get_intr_status(bus->hal.dev);
if (intr_status & I2S_LL_EVENT_TX_EOF) { // trans done event
// disable interrupt temporarily, only re-enable when there be remained transaction in the queue
esp_intr_disable(bus->intr);
trans_desc = bus->cur_trans; // the finished transaction
cur_device = bus->cur_device;// the working device
// process finished transaction
if (trans_desc) {
assert(trans_desc->i80_device == cur_device && "transaction device mismatch");
// device callback
if (trans_desc->trans_done_cb) {
if (trans_desc->trans_done_cb(&cur_device->base, trans_desc->cb_user_data, NULL)) {
need_yield = true;
}
}
// move transaction to done_queue
high_task_woken = pdFALSE;
xQueueSendFromISR(cur_device->done_queue, &trans_desc, &high_task_woken);
if (high_task_woken == pdTRUE) {
need_yield = true;
}
bus->cur_trans = NULL;
}
// fetch transactions from devices' trans_queue
// Note: the first registered device will have the highest priority to be scheduled
LIST_FOREACH(next_device, &bus->device_list, device_list_entry) {
high_task_woken = pdFALSE;
if (xQueueReceiveFromISR(next_device->trans_queue, &trans_desc, &high_task_woken) == pdTRUE) {
if (high_task_woken == pdTRUE) {
need_yield = true;
}
// only clear the interrupt status when we're sure there still remains transaction to handle
i2s_ll_clear_intr_status(bus->hal.dev, I2S_LL_EVENT_TX_EOF);
// switch devices if necessary
lcd_i80_switch_devices(cur_device, next_device);
bus->cur_trans = trans_desc;
gpio_set_level(bus->dc_gpio_num, trans_desc->flags.dc_level);
// mount data to DMA links
lcd_com_mount_dma_data(bus->dma_nodes, trans_desc->data, trans_desc->data_length);
#if SOC_I2S_TRANS_SIZE_ALIGN_WORD
// switch to I2S 16bits mode, two WS cycle <=> one I2S FIFO
i2s_ll_tx_set_bits_mod(bus->hal.dev, 16);
#endif
// enable interrupt again, because the new transaction can trigger new trans done event
esp_intr_enable(bus->intr);
i2s_ll_tx_stop(bus->hal.dev);
i2s_ll_tx_reset(bus->hal.dev); // reset TX engine first
i2s_ll_start_out_link(bus->hal.dev);
esp_rom_delay_us(1);
i2s_ll_tx_start(bus->hal.dev);
break; // exit for-each loop
}
}
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}
#endif // SOC_I2S_LCD_I80_VARIANT

View File

@@ -9,6 +9,7 @@
#include <stdlib.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/queue.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
@@ -38,10 +39,10 @@ typedef struct esp_lcd_i80_bus_t esp_lcd_i80_bus_t;
typedef struct lcd_panel_io_i80_t lcd_panel_io_i80_t;
typedef struct lcd_i80_trans_descriptor_t lcd_i80_trans_descriptor_t;
static esp_err_t panel_io_i80_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *param, size_t param_size);
static esp_err_t panel_io_i80_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *color, size_t color_size);
static esp_err_t panel_io_i80_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size);
static esp_err_t panel_io_i80_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size);
static esp_err_t panel_io_i80_del(esp_lcd_panel_io_t *io);
static esp_err_t lcd_i80_bus_create_trans_link(esp_lcd_i80_bus_handle_t bus);
static esp_err_t lcd_i80_init_dma_link(esp_lcd_i80_bus_handle_t bus);
static void lcd_periph_trigger_quick_trans_done_event(esp_lcd_i80_bus_handle_t bus);
static esp_err_t lcd_i80_bus_configure_gpio(esp_lcd_i80_bus_handle_t bus, const esp_lcd_i80_bus_config_t *bus_config);
static void lcd_i80_switch_devices(lcd_panel_io_i80_t *cur_device, lcd_panel_io_i80_t *next_device);
@@ -52,15 +53,16 @@ struct esp_lcd_i80_bus_t {
int bus_id; // Bus ID, index from 0
portMUX_TYPE spinlock; // spinlock used to protect i80 bus members(hal, device_list, cur_trans)
lcd_hal_context_t hal; // Hal object
size_t data_width; // Number of data lines
size_t bus_width; // Number of data lines
intr_handle_t intr; // LCD peripheral interrupt handle
size_t num_dma_nodes; // Number of DMA descriptors
uint8_t *format_buffer; // The driver allocates an internal buffer for DMA to do data format transformer
size_t resolution_hz; // LCD_CLK resolution, determined by selected clock source
gdma_channel_handle_t dma_chan; // DMA channel handle
lcd_i80_trans_descriptor_t *cur_trans; // Current transaction
lcd_panel_io_i80_t *cur_device; // Current working device
LIST_HEAD(i80_device_list, lcd_panel_io_i80_t) device_list; // Head of i80 device list
dma_descriptor_t dma_nodes[0]; // DMA descriptor pool, the descriptors are shared by all i80 devices
dma_descriptor_t dma_nodes[]; // DMA descriptor pool, the descriptors are shared by all i80 devices
};
struct lcd_i80_trans_descriptor_t {
@@ -82,24 +84,26 @@ struct lcd_panel_io_i80_t {
QueueHandle_t trans_queue; // Transaction queue, transactions in this queue are pending for scheduler to dispatch
QueueHandle_t done_queue; // Transaction done queue, transactions in this queue are finished but not recycled by the caller
size_t queue_size; // Size of transaction queue
size_t num_trans_working; // Number of transactions that are undergoing (the descriptor not recycled yet)
size_t num_trans_inflight; // Number of transactions that are undergoing (the descriptor not recycled yet)
int lcd_cmd_bits; // Bit width of LCD command
int lcd_param_bits; // Bit width of LCD parameter
void *cb_user_data; // private data used when transfer color data
bool (*on_color_trans_done)(esp_lcd_panel_io_handle_t panel_io, void *user_data, void *event_data); // color data trans done callback
LIST_ENTRY(lcd_panel_io_i80_t) device_list_entry; // Entry of i80 device list
struct {
int dc_idle_level: 1; // Level of DC line in IDLE phase
int dc_cmd_level: 1; // Level of DC line in CMD phase
int dc_dummy_level: 1; // Level of DC line in DUMMY phase
int dc_data_level: 1; // Level of DC line in DATA phase
unsigned int dc_idle_level: 1; // Level of DC line in IDLE phase
unsigned int dc_cmd_level: 1; // Level of DC line in CMD phase
unsigned int dc_dummy_level: 1; // Level of DC line in DUMMY phase
unsigned int dc_data_level: 1; // Level of DC line in DATA phase
} dc_levels;
struct {
int invert_cs: 1; // Whether to invert the CS line
int reverse_color_bits: 1; // Reverse the data bits, D[N:0] -> D[0:N]
int swap_color_bytes: 1; // Swap adjacent two data bytes before sending out
int pclk_active_neg: 1; // The display will write data lines when there's a falling edge on WR line
int pclk_idle_low: 1; // The WR line keeps at low level in IDLE phase
unsigned int cs_active_high: 1; // Whether the CS line is active on high level
unsigned int reverse_color_bits: 1; // Reverse the data bits, D[N:0] -> D[0:N]
unsigned int swap_color_bytes: 1; // Swap adjacent two data bytes before sending out
unsigned int pclk_active_neg: 1; // The display will write data lines when there's a falling edge on WR line
unsigned int pclk_idle_low: 1; // The WR line keeps at low level in IDLE phase
} flags;
lcd_i80_trans_descriptor_t trans_pool[0]; // Transaction pool
lcd_i80_trans_descriptor_t trans_pool[]; // Transaction pool
};
esp_err_t esp_lcd_new_i80_bus(const esp_lcd_i80_bus_config_t *bus_config, esp_lcd_i80_bus_handle_t *ret_bus)
@@ -112,6 +116,8 @@ esp_err_t esp_lcd_new_i80_bus(const esp_lcd_i80_bus_config_t *bus_config, esp_lc
bus = heap_caps_calloc(1, sizeof(esp_lcd_i80_bus_t) + num_dma_nodes * sizeof(dma_descriptor_t), MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(bus, ESP_ERR_NO_MEM, no_mem_bus, TAG, "no mem for i80 bus");
bus->num_dma_nodes = num_dma_nodes;
bus->format_buffer = heap_caps_calloc(1, CONFIG_LCD_PANEL_IO_FORMAT_BUF_SIZE, MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(bus->format_buffer, ESP_ERR_NO_MEM, no_mem_format, TAG, "no mem for format buffer");
// register to platform
int bus_id = lcd_com_register_device(LCD_COM_DEVICE_TYPE_I80, bus);
ESP_GOTO_ON_FALSE(bus_id >= 0, ESP_ERR_NOT_FOUND, no_slot, TAG, "no free i80 bus slot");
@@ -126,7 +132,7 @@ esp_err_t esp_lcd_new_i80_bus(const esp_lcd_i80_bus_config_t *bus_config, esp_lc
lcd_ll_enable_clock(bus->hal.dev, true);
// install interrupt service, (LCD peripheral shares the same interrupt source with Camera peripheral with different mask)
// interrupt is disabled by default
int isr_flags = ESP_INTR_FLAG_INTRDISABLED;
int isr_flags = ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_SHARED;
ret = esp_intr_alloc_intrstatus(lcd_periph_signals.buses[bus_id].irq_id, isr_flags,
(uint32_t)lcd_ll_get_interrupt_status_reg(bus->hal.dev),
LCD_LL_EVENT_TRANS_DONE, lcd_default_isr_handler, bus, &bus->intr);
@@ -134,13 +140,14 @@ esp_err_t esp_lcd_new_i80_bus(const esp_lcd_i80_bus_config_t *bus_config, esp_lc
lcd_ll_enable_interrupt(bus->hal.dev, LCD_LL_EVENT_TRANS_DONE, false); // disable all interrupts
lcd_ll_clear_interrupt_status(bus->hal.dev, UINT32_MAX); // clear pending interrupt
// install DMA service
ret = lcd_i80_bus_create_trans_link(bus);
ret = lcd_i80_init_dma_link(bus);
ESP_GOTO_ON_ERROR(ret, no_dma, TAG, "install DMA failed");
// set peripheral clock resolution
bus->resolution_hz = lcd_com_select_periph_clock(&bus->hal);
// enable 8080 mode and set data width
// enable 8080 mode and set bus width
lcd_ll_enable_rgb_mode(bus->hal.dev, false);
lcd_ll_set_data_width(bus->hal.dev, bus_config->data_width);
lcd_ll_set_data_width(bus->hal.dev, bus_config->bus_width);
bus->bus_width = lcd_ll_get_data_width(bus->hal.dev);
// number of data cycles is controlled by DMA buffer size
lcd_ll_enable_output_always_on(bus->hal.dev, true);
// enable trans done interrupt
@@ -154,7 +161,6 @@ esp_err_t esp_lcd_new_i80_bus(const esp_lcd_i80_bus_config_t *bus_config, esp_lc
// fill other i80 bus runtime parameters
LIST_INIT(&bus->device_list); // initialize device list head
bus->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
bus->data_width = lcd_ll_get_data_width(bus->hal.dev);
*ret_bus = bus;
ESP_LOGD(TAG, "new i80 bus(%d) @%p, %zu dma nodes", bus_id, bus, bus->num_dma_nodes);
return ESP_OK;
@@ -168,6 +174,8 @@ no_int:
periph_module_disable(lcd_periph_signals.buses[bus_id].module);
lcd_com_remove_device(LCD_COM_DEVICE_TYPE_I80, bus->bus_id);
no_slot:
free(bus->format_buffer);
no_mem_format:
free(bus);
no_mem_bus:
err_arg:
@@ -185,6 +193,7 @@ esp_err_t esp_lcd_del_i80_bus(esp_lcd_i80_bus_handle_t bus)
esp_intr_free(bus->intr);
periph_module_disable(lcd_periph_signals.buses[bus_id].module);
lcd_com_remove_device(LCD_COM_DEVICE_TYPE_I80, bus_id);
free(bus->format_buffer);
free(bus);
ESP_LOGD(TAG, "del i80 bus(%d)", bus_id);
err:
@@ -198,7 +207,7 @@ esp_err_t esp_lcd_new_panel_io_i80(esp_lcd_i80_bus_handle_t bus, const esp_lcd_p
ESP_GOTO_ON_FALSE(bus && io_config && ret_io, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
// check if pixel clock setting is valid
uint32_t pclk_prescale = bus->resolution_hz / io_config->pclk_hz;
ESP_GOTO_ON_FALSE(pclk_prescale <= LCD_LL_CLOCK_PRESCALE_MAX, ESP_ERR_NOT_SUPPORTED, err, TAG,
ESP_GOTO_ON_FALSE(pclk_prescale > 0 && pclk_prescale <= LCD_LL_CLOCK_PRESCALE_MAX, ESP_ERR_NOT_SUPPORTED, err, TAG,
"prescaler can't satisfy PCLK clock %u", io_config->pclk_hz);
i80_device = calloc(1, sizeof(lcd_panel_io_i80_t) + io_config->trans_queue_depth * sizeof(lcd_i80_trans_descriptor_t));
ESP_GOTO_ON_FALSE(i80_device, ESP_ERR_NO_MEM, err, TAG, "no mem for i80 panel io");
@@ -214,6 +223,8 @@ esp_err_t esp_lcd_new_panel_io_i80(esp_lcd_i80_bus_handle_t bus, const esp_lcd_p
// we don't initialize the i80 bus at the memont, but initialize the bus when start a transaction for a new device
// so save these as i80 device runtime parameters
i80_device->bus = bus;
i80_device->lcd_cmd_bits = io_config->lcd_cmd_bits;
i80_device->lcd_param_bits = io_config->lcd_param_bits;
i80_device->queue_size = io_config->trans_queue_depth;
i80_device->clock_prescale = pclk_prescale;
i80_device->pclk_hz = bus->resolution_hz / pclk_prescale;
@@ -224,7 +235,7 @@ esp_err_t esp_lcd_new_panel_io_i80(esp_lcd_i80_bus_handle_t bus, const esp_lcd_p
i80_device->cs_gpio_num = io_config->cs_gpio_num;
i80_device->flags.reverse_color_bits = io_config->flags.reverse_color_bits;
i80_device->flags.swap_color_bytes = io_config->flags.swap_color_bytes;
i80_device->flags.invert_cs = io_config->flags.invert_cs;
i80_device->flags.cs_active_high = io_config->flags.cs_active_high;
i80_device->flags.pclk_idle_low = io_config->flags.pclk_idle_low;
i80_device->flags.pclk_active_neg = io_config->flags.pclk_active_neg;
i80_device->on_color_trans_done = io_config->on_color_trans_done;
@@ -235,7 +246,7 @@ esp_err_t esp_lcd_new_panel_io_i80(esp_lcd_i80_bus_handle_t bus, const esp_lcd_p
i80_device->base.tx_color = panel_io_i80_tx_color;
// we only configure the CS GPIO as output, don't connect to the peripheral signal at the moment
// we will connect the CS GPIO to peripheral signal when switching devices in lcd_i80_switch_devices()
gpio_set_level(io_config->cs_gpio_num, !io_config->flags.invert_cs);
gpio_set_level(io_config->cs_gpio_num, !io_config->flags.cs_active_high);
gpio_set_direction(io_config->cs_gpio_num, GPIO_MODE_OUTPUT);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[io_config->cs_gpio_num], PIN_FUNC_GPIO);
*ret_io = &(i80_device->base);
@@ -261,7 +272,7 @@ static esp_err_t panel_io_i80_del(esp_lcd_panel_io_t *io)
esp_lcd_i80_bus_t *bus = i80_device->bus;
lcd_i80_trans_descriptor_t *trans_desc = NULL;
// wait all pending transaction to finish
for (size_t i = 0; i < i80_device->num_trans_working; i++) {
for (size_t i = 0; i < i80_device->num_trans_inflight; i++) {
xQueueReceive(i80_device->done_queue, &trans_desc, portMAX_DELAY);
}
// remove from device list
@@ -276,31 +287,72 @@ static esp_err_t panel_io_i80_del(esp_lcd_panel_io_t *io)
return ESP_OK;
}
static esp_err_t panel_io_i80_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *param, size_t param_size)
static void i80_lcd_prepare_cmd_buffer(esp_lcd_i80_bus_t *bus, lcd_panel_io_i80_t *i80_device, void *lcd_cmd)
{
uint8_t *from = (uint8_t *)lcd_cmd;
if (bus->bus_width < i80_device->lcd_cmd_bits) {
// LCD is big-endian, e.g. to send command 0x1234, byte 0x12 should appear on the bus first
// However, the i80 peripheral will send 0x34 first, so we reversed the order below
int start = 0;
int end = i80_device->lcd_cmd_bits / 8 - 1;
lcd_com_reverse_buffer_bytes(from, start, end);
}
}
static uint32_t i80_lcd_prepare_param_buffer(esp_lcd_i80_bus_t *bus, lcd_panel_io_i80_t *i80_device, const void *lcd_param, size_t param_size)
{
int param_per_size = i80_device->lcd_param_bits / 8;
int param_num = param_size / param_per_size;
const uint8_t *from = (const uint8_t *)lcd_param;
uint8_t *to = bus->format_buffer;
uint8_t step = bus->bus_width / 8;
int param_cycle = i80_device->lcd_param_bits / bus->bus_width;
// in case bus_width=16 and param_bits=8, we still need 1 param_cycle
if (param_cycle * bus->bus_width < i80_device->lcd_param_bits) {
param_cycle++;
}
int ele_cycles = param_cycle * param_num;
int bytes_to_copy = MIN(bus->bus_width, i80_device->lcd_param_bits) / 8;
int cnt_from = 0;
// expand the width of parameters when necessary
for (int i = 0; i < ele_cycles; i++) {
for (int j = 0; j < bytes_to_copy; j++) {
to[j] = from[cnt_from++];
}
to += step;
}
return to - bus->format_buffer;
}
static esp_err_t panel_io_i80_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size)
{
lcd_panel_io_i80_t *next_device = __containerof(io, lcd_panel_io_i80_t, base);
esp_lcd_i80_bus_t *bus = next_device->bus;
lcd_panel_io_i80_t *cur_device = bus->cur_device;
lcd_i80_trans_descriptor_t *trans_desc = NULL;
assert(param_size <= (bus->num_dma_nodes * DMA_DESCRIPTOR_BUFFER_MAX_SIZE) && "parameter bytes too long, enlarge max_transfer_bytes");
uint32_t cmd_cycles = lcd_cmd_bits / bus->data_width;
// in case data_width=16 and cmd_bits=8, we still need 1 cmd_cycle
if (cmd_cycles * bus->data_width < lcd_cmd_bits) {
assert(param_size <= CONFIG_LCD_PANEL_IO_FORMAT_BUF_SIZE && "format buffer too small, increase CONFIG_LCD_PANEL_IO_FORMAT_BUF_SIZE");
uint32_t cmd_cycles = next_device->lcd_cmd_bits / bus->bus_width;
// in case bus_width=16 and cmd_bits=8, we still need 1 cmd_cycle
if (cmd_cycles * bus->bus_width < next_device->lcd_cmd_bits) {
cmd_cycles++;
}
i80_lcd_prepare_cmd_buffer(bus, next_device, &lcd_cmd);
uint32_t param_len = i80_lcd_prepare_param_buffer(bus, next_device, param, param_size);
// wait all pending transaction in the queue to finish
for (size_t i = 0; i < next_device->num_trans_working; i++) {
for (size_t i = 0; i < next_device->num_trans_inflight; i++) {
xQueueReceive(next_device->done_queue, &trans_desc, portMAX_DELAY);
}
next_device->num_trans_working = 0;
next_device->num_trans_inflight = 0;
uint32_t intr_status = lcd_ll_get_interrupt_status(bus->hal.dev);
lcd_ll_clear_interrupt_status(bus->hal.dev, intr_status);
// switch devices if necessary
lcd_i80_switch_devices(cur_device, next_device);
// don't reverse bit/bytes for parameters
// set data format
lcd_ll_reverse_data_byte_order(bus->hal.dev, false);
lcd_ll_reverse_data_bit_order(bus->hal.dev, false);
lcd_ll_reverse_data_byte_order(bus->hal.dev, bus->data_width, false);
lcd_ll_reverse_data_8bits_order(bus->hal.dev, next_device->lcd_param_bits > bus->bus_width);
bus->cur_trans = NULL;
bus->cur_device = next_device;
// package a transaction
@@ -308,34 +360,35 @@ static esp_err_t panel_io_i80_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, int
trans_desc->i80_device = next_device;
trans_desc->cmd_cycles = cmd_cycles;
trans_desc->cmd_value = lcd_cmd;
trans_desc->data = param;
trans_desc->data_length = param_size;
trans_desc->data = param ? bus->format_buffer : NULL;
trans_desc->data_length = param ? param_len : 0;
trans_desc->trans_done_cb = NULL; // no callback for parameter transaction
// mount data to DMA links
lcd_com_mount_dma_data(bus->dma_nodes, trans_desc->data, trans_desc->data_length);
lcd_start_transaction(bus, trans_desc);
// polling the trans done event, but don't clear the event status
while (!(lcd_ll_get_interrupt_status(bus->hal.dev) & LCD_LL_EVENT_TRANS_DONE));
while (!(lcd_ll_get_interrupt_status(bus->hal.dev) & LCD_LL_EVENT_TRANS_DONE)) {}
return ESP_OK;
}
static esp_err_t panel_io_i80_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *color, size_t color_size)
static esp_err_t panel_io_i80_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size)
{
lcd_panel_io_i80_t *i80_device = __containerof(io, lcd_panel_io_i80_t, base);
esp_lcd_i80_bus_t *bus = i80_device->bus;
lcd_i80_trans_descriptor_t *trans_desc = NULL;
assert(color_size <= (bus->num_dma_nodes * DMA_DESCRIPTOR_BUFFER_MAX_SIZE) && "color bytes too long, enlarge max_transfer_bytes");
// in case data_width=16 and cmd_bits=8, we still need 1 cmd_cycle
uint32_t cmd_cycles = lcd_cmd_bits / bus->data_width;
if (cmd_cycles * bus->data_width < lcd_cmd_bits) {
// in case bus_width=16 and cmd_bits=8, we still need 1 cmd_cycle
uint32_t cmd_cycles = i80_device->lcd_cmd_bits / bus->bus_width;
if (cmd_cycles * bus->bus_width < i80_device->lcd_cmd_bits) {
cmd_cycles++;
}
if (i80_device->num_trans_working < i80_device->queue_size) {
trans_desc = &i80_device->trans_pool[i80_device->num_trans_working];
i80_lcd_prepare_cmd_buffer(bus, i80_device, &lcd_cmd);
if (i80_device->num_trans_inflight < i80_device->queue_size) {
trans_desc = &i80_device->trans_pool[i80_device->num_trans_inflight];
} else {
// transaction pool has used up, recycle one from done_queue
xQueueReceive(i80_device->done_queue, &trans_desc, portMAX_DELAY);
i80_device->num_trans_working--;
i80_device->num_trans_inflight--;
}
trans_desc->i80_device = i80_device;
trans_desc->cmd_cycles = cmd_cycles;
@@ -346,14 +399,14 @@ static esp_err_t panel_io_i80_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, int
trans_desc->cb_user_data = i80_device->cb_user_data;
// send transaction to trans_queue
xQueueSend(i80_device->trans_queue, &trans_desc, portMAX_DELAY);
i80_device->num_trans_working++;
i80_device->num_trans_inflight++;
// enable interrupt and go into isr handler, where we fetch the transactions from trans_queue and start it
// we will go into `lcd_default_isr_handler` almost at once, because the "trans done" event is active at the moment
esp_intr_enable(bus->intr);
return ESP_OK;
}
static esp_err_t lcd_i80_bus_create_trans_link(esp_lcd_i80_bus_handle_t bus)
static esp_err_t lcd_i80_init_dma_link(esp_lcd_i80_bus_handle_t bus)
{
esp_err_t ret = ESP_OK;
// chain DMA descriptors
@@ -387,24 +440,24 @@ static esp_err_t lcd_i80_bus_configure_gpio(esp_lcd_i80_bus_handle_t bus, const
int bus_id = bus->bus_id;
// check validation of GPIO number
bool valid_gpio = (bus_config->wr_gpio_num >= 0) && (bus_config->dc_gpio_num >= 0);
for (size_t i = 0; i < bus_config->data_width; i++) {
for (size_t i = 0; i < bus_config->bus_width; i++) {
valid_gpio = valid_gpio && (bus_config->data_gpio_nums[i] >= 0);
}
if (!valid_gpio) {
return ESP_ERR_INVALID_ARG;
}
// connect peripheral signals via GPIO matrix
for (size_t i = 0; i < bus_config->data_width; i++) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->data_gpio_nums[i]], PIN_FUNC_GPIO);
for (size_t i = 0; i < bus_config->bus_width; i++) {
gpio_set_direction(bus_config->data_gpio_nums[i], GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->data_gpio_nums[i], lcd_periph_signals.buses[bus_id].data_sigs[i], false, false);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->data_gpio_nums[i]], PIN_FUNC_GPIO);
}
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->dc_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->dc_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->dc_gpio_num, lcd_periph_signals.buses[bus_id].dc_sig, false, false);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->wr_gpio_num], PIN_FUNC_GPIO);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->dc_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->wr_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->wr_gpio_num, lcd_periph_signals.buses[bus_id].wr_sig, false, false);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->wr_gpio_num], PIN_FUNC_GPIO);
return ESP_OK;
}
@@ -415,7 +468,7 @@ static void lcd_periph_trigger_quick_trans_done_event(esp_lcd_i80_bus_handle_t b
// where we dispatch transactions for i80 devices
lcd_ll_set_phase_cycles(bus->hal.dev, 0, 1, 0);
lcd_ll_start(bus->hal.dev);
while (!(lcd_ll_get_interrupt_status(bus->hal.dev) & LCD_LL_EVENT_TRANS_DONE));
while (!(lcd_ll_get_interrupt_status(bus->hal.dev) & LCD_LL_EVENT_TRANS_DONE)) {}
}
static void lcd_start_transaction(esp_lcd_i80_bus_t *bus, lcd_i80_trans_descriptor_t *trans_desc)
@@ -423,7 +476,7 @@ static void lcd_start_transaction(esp_lcd_i80_bus_t *bus, lcd_i80_trans_descript
// by default, the dummy phase is disabled because it's not common for most LCDs
// Number of data phase cycles are controlled by DMA buffer length, we only need to enable/disable the phase here
lcd_ll_set_phase_cycles(bus->hal.dev, trans_desc->cmd_cycles, 0, trans_desc->data ? 1 : 0);
lcd_ll_set_command(bus->hal.dev, bus->data_width, trans_desc->cmd_value);
lcd_ll_set_command(bus->hal.dev, bus->bus_width, trans_desc->cmd_value);
if (trans_desc->data) { // some specific LCD commands can have no parameters
gdma_start(bus->dma_chan, (intptr_t)(bus->dma_nodes));
}
@@ -448,7 +501,7 @@ static void lcd_i80_switch_devices(lcd_panel_io_i80_t *cur_device, lcd_panel_io_
}
// connect CS signal to the new device
esp_rom_gpio_connect_out_signal(next_device->cs_gpio_num, lcd_periph_signals.buses[bus->bus_id].cs_sig,
next_device->flags.invert_cs, false);
next_device->flags.cs_active_high, false);
}
}
@@ -498,7 +551,8 @@ IRAM_ATTR static void lcd_default_isr_handler(void *args)
lcd_i80_switch_devices(cur_device, next_device);
// only reverse data bit/bytes for color data
lcd_ll_reverse_data_bit_order(bus->hal.dev, next_device->flags.reverse_color_bits);
lcd_ll_reverse_data_byte_order(bus->hal.dev, bus->data_width, next_device->flags.swap_color_bytes);
lcd_ll_reverse_data_byte_order(bus->hal.dev, next_device->flags.swap_color_bytes);
lcd_ll_reverse_data_8bits_order(bus->hal.dev, false);
bus->cur_trans = trans_desc;
bus->cur_device = next_device;
// mount data to DMA links

View File

@@ -18,8 +18,8 @@
static const char *TAG = "lcd_panel.io.spi";
static esp_err_t panel_io_spi_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *param, size_t param_size);
static esp_err_t panel_io_spi_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *color, size_t color_size);
static esp_err_t panel_io_spi_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size);
static esp_err_t panel_io_spi_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size);
static esp_err_t panel_io_spi_del(esp_lcd_panel_io_t *io);
static void lcd_spi_pre_trans_cb(spi_transaction_t *trans);
static void lcd_spi_post_trans_color_cb(spi_transaction_t *trans);
@@ -39,12 +39,14 @@ typedef struct {
bool (*on_color_trans_done)(esp_lcd_panel_io_handle_t panel_io, void *user_data, void *event_data); // User register's callback, invoked when color data trans done
void *user_data; // User's private data, passed directly to callback on_color_trans_done
size_t queue_size; // Size of transaction queue
size_t num_trans_working; // Number of transactions that are undergoing (the descriptor not recycled yet)
size_t num_trans_inflight; // Number of transactions that are undergoing (the descriptor not recycled yet)
int lcd_cmd_bits; // Bit width of LCD command
int lcd_param_bits; // Bit width of LCD parameter
struct {
int dc_as_cmd_phase: 1; // D/C line value is encoded into SPI transaction command phase
int dc_data_level: 1; // Indicates the level of DC line when tranfering data
unsigned int dc_as_cmd_phase: 1; // D/C line value is encoded into SPI transaction command phase
unsigned int dc_data_level: 1; // Indicates the level of DC line when tranfering data
} flags;
lcd_spi_trans_descriptor_t trans_pool[0]; // Transaction pool
lcd_spi_trans_descriptor_t trans_pool[]; // Transaction pool
} esp_lcd_panel_io_spi_t;
esp_err_t esp_lcd_new_panel_io_spi(esp_lcd_spi_bus_handle_t bus, const esp_lcd_panel_io_spi_config_t *io_config, esp_lcd_panel_io_handle_t *ret_io)
@@ -81,6 +83,8 @@ esp_err_t esp_lcd_new_panel_io_spi(esp_lcd_spi_bus_handle_t bus, const esp_lcd_p
spi_panel_io->flags.dc_as_cmd_phase = io_config->flags.dc_as_cmd_phase;
spi_panel_io->flags.dc_data_level = !io_config->flags.dc_low_on_data;
spi_panel_io->on_color_trans_done = io_config->on_color_trans_done;
spi_panel_io->lcd_cmd_bits = io_config->lcd_cmd_bits;
spi_panel_io->lcd_param_bits = io_config->lcd_param_bits;
spi_panel_io->user_data = io_config->user_data;
spi_panel_io->dc_gpio_num = io_config->dc_gpio_num;
spi_panel_io->queue_size = io_config->trans_queue_depth;
@@ -109,7 +113,7 @@ static esp_err_t panel_io_spi_del(esp_lcd_panel_io_t *io)
esp_lcd_panel_io_spi_t *spi_panel_io = __containerof(io, esp_lcd_panel_io_spi_t, base);
// wait all pending transaction to finish
for (size_t i = 0; i < spi_panel_io->num_trans_working; i++) {
for (size_t i = 0; i < spi_panel_io->num_trans_inflight; i++) {
ret = spi_device_get_trans_result(spi_panel_io->spi_dev, &spi_trans, portMAX_DELAY);
ESP_GOTO_ON_ERROR(ret, err, TAG, "recycle spi transactions failed");
}
@@ -124,7 +128,7 @@ err:
return ret;
}
static esp_err_t panel_io_spi_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *param, size_t param_size)
static esp_err_t panel_io_spi_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size)
{
esp_err_t ret = ESP_OK;
spi_transaction_t *spi_trans = NULL;
@@ -132,16 +136,16 @@ static esp_err_t panel_io_spi_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, int
esp_lcd_panel_io_spi_t *spi_panel_io = __containerof(io, esp_lcd_panel_io_spi_t, base);
// before issue a polling transaction, need to wait queued transactions finished
for (size_t i = 0; i < spi_panel_io->num_trans_working; i++) {
for (size_t i = 0; i < spi_panel_io->num_trans_inflight; i++) {
ret = spi_device_get_trans_result(spi_panel_io->spi_dev, &spi_trans, portMAX_DELAY);
ESP_GOTO_ON_ERROR(ret, err, TAG, "recycle spi transactions failed");
}
spi_panel_io->num_trans_working = 0;
spi_panel_io->num_trans_inflight = 0;
lcd_trans = &spi_panel_io->trans_pool[0];
memset(lcd_trans, 0, sizeof(lcd_spi_trans_descriptor_t));
lcd_trans->base.user = spi_panel_io;
lcd_trans->flags.dc_gpio_level = !spi_panel_io->flags.dc_data_level; // set D/C line to command mode
lcd_trans->base.length = lcd_cmd_bits;
lcd_trans->base.length = spi_panel_io->lcd_cmd_bits;
lcd_trans->base.tx_buffer = &lcd_cmd;
if (spi_panel_io->flags.dc_as_cmd_phase) { // encoding DC value to SPI command phase when necessary
lcd_trans->base.cmd = !spi_panel_io->flags.dc_data_level;
@@ -166,7 +170,7 @@ err:
return ret;
}
static esp_err_t panel_io_spi_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, int lcd_cmd_bits, const void *color, size_t color_size)
static esp_err_t panel_io_spi_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size)
{
esp_err_t ret = ESP_OK;
spi_transaction_t *spi_trans = NULL;
@@ -174,16 +178,16 @@ static esp_err_t panel_io_spi_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, int
esp_lcd_panel_io_spi_t *spi_panel_io = __containerof(io, esp_lcd_panel_io_spi_t, base);
// before issue a polling transaction, need to wait queued transactions finished
for (size_t i = 0; i < spi_panel_io->num_trans_working; i++) {
for (size_t i = 0; i < spi_panel_io->num_trans_inflight; i++) {
ret = spi_device_get_trans_result(spi_panel_io->spi_dev, &spi_trans, portMAX_DELAY);
ESP_GOTO_ON_ERROR(ret, err, TAG, "recycle spi transactions failed");
}
spi_panel_io->num_trans_working = 0;
spi_panel_io->num_trans_inflight = 0;
lcd_trans = &spi_panel_io->trans_pool[0];
memset(lcd_trans, 0, sizeof(lcd_spi_trans_descriptor_t));
lcd_trans->base.user = spi_panel_io;
lcd_trans->flags.dc_gpio_level = !spi_panel_io->flags.dc_data_level; // set D/C line to command mode
lcd_trans->base.length = lcd_cmd_bits;
lcd_trans->base.length = spi_panel_io->lcd_cmd_bits;
lcd_trans->base.tx_buffer = &lcd_cmd;
if (spi_panel_io->flags.dc_as_cmd_phase) { // encoding DC value to SPI command phase when necessary
lcd_trans->base.cmd = !spi_panel_io->flags.dc_data_level;
@@ -203,7 +207,7 @@ static esp_err_t panel_io_spi_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, int
// color data is usually large, using queue+blocking mode
ret = spi_device_queue_trans(spi_panel_io->spi_dev, &lcd_trans->base, portMAX_DELAY);
ESP_GOTO_ON_ERROR(ret, err, TAG, "spi transmit (queue) color failed");
spi_panel_io->num_trans_working++;
spi_panel_io->num_trans_inflight++;
err:
return ret;

View File

@@ -0,0 +1,280 @@
/*
* SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#include <stdlib.h>
#include <sys/cdefs.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_lcd_panel_interface.h"
#include "esp_lcd_panel_io.h"
#include "esp_lcd_panel_vendor.h"
#include "esp_lcd_panel_ops.h"
#include "esp_lcd_panel_commands.h"
#include "driver/gpio.h"
#include "esp_log.h"
#include "esp_check.h"
static const char *TAG = "lcd_panel.nt35510";
static esp_err_t panel_nt35510_del(esp_lcd_panel_t *panel);
static esp_err_t panel_nt35510_reset(esp_lcd_panel_t *panel);
static esp_err_t panel_nt35510_init(esp_lcd_panel_t *panel);
static esp_err_t panel_nt35510_draw_bitmap(esp_lcd_panel_t *panel, int x_start, int y_start, int x_end, int y_end, const void *color_data);
static esp_err_t panel_nt35510_invert_color(esp_lcd_panel_t *panel, bool invert_color_data);
static esp_err_t panel_nt35510_mirror(esp_lcd_panel_t *panel, bool mirror_x, bool mirror_y);
static esp_err_t panel_nt35510_swap_xy(esp_lcd_panel_t *panel, bool swap_axes);
static esp_err_t panel_nt35510_set_gap(esp_lcd_panel_t *panel, int x_gap, int y_gap);
static esp_err_t panel_nt35510_disp_off(esp_lcd_panel_t *panel, bool off);
typedef struct {
esp_lcd_panel_t base;
esp_lcd_panel_io_handle_t io;
int reset_gpio_num;
bool reset_level;
int x_gap;
int y_gap;
unsigned int bits_per_pixel;
uint8_t madctl_val; // save current value of LCD_CMD_MADCTL register
uint8_t colmod_cal; // save surrent value of LCD_CMD_COLMOD register
} nt35510_panel_t;
esp_err_t esp_lcd_new_panel_nt35510(const esp_lcd_panel_io_handle_t io, const esp_lcd_panel_dev_config_t *panel_dev_config, esp_lcd_panel_handle_t *ret_panel)
{
esp_err_t ret = ESP_OK;
nt35510_panel_t *nt35510 = NULL;
ESP_GOTO_ON_FALSE(io && panel_dev_config && ret_panel, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
nt35510 = calloc(1, sizeof(nt35510_panel_t));
ESP_GOTO_ON_FALSE(nt35510, ESP_ERR_NO_MEM, err, TAG, "no mem for nt35510 panel");
if (panel_dev_config->reset_gpio_num >= 0) {
gpio_config_t io_conf = {
.mode = GPIO_MODE_OUTPUT,
.pin_bit_mask = 1ULL << panel_dev_config->reset_gpio_num,
};
ESP_GOTO_ON_ERROR(gpio_config(&io_conf), err, TAG, "configure GPIO for RST line failed");
}
switch (panel_dev_config->color_space) {
case ESP_LCD_COLOR_SPACE_RGB:
nt35510->madctl_val = 0;
break;
case ESP_LCD_COLOR_SPACE_BGR:
nt35510->madctl_val |= LCD_CMD_BGR_BIT;
break;
default:
ESP_GOTO_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, err, TAG, "unsupported color space");
break;
}
switch (panel_dev_config->bits_per_pixel) {
case 16:
nt35510->colmod_cal = 0x55;
break;
case 18:
nt35510->colmod_cal = 0x66;
break;
case 24:
nt35510->colmod_cal = 0x77;
break;
default:
ESP_GOTO_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, err, TAG, "unsupported pixel width");
break;
}
nt35510->io = io;
nt35510->bits_per_pixel = panel_dev_config->bits_per_pixel;
nt35510->reset_gpio_num = panel_dev_config->reset_gpio_num;
nt35510->reset_level = panel_dev_config->flags.reset_active_high;
nt35510->base.del = panel_nt35510_del;
nt35510->base.reset = panel_nt35510_reset;
nt35510->base.init = panel_nt35510_init;
nt35510->base.draw_bitmap = panel_nt35510_draw_bitmap;
nt35510->base.invert_color = panel_nt35510_invert_color;
nt35510->base.set_gap = panel_nt35510_set_gap;
nt35510->base.mirror = panel_nt35510_mirror;
nt35510->base.swap_xy = panel_nt35510_swap_xy;
nt35510->base.disp_off = panel_nt35510_disp_off;
*ret_panel = &(nt35510->base);
ESP_LOGD(TAG, "new nt35510 panel @%p", nt35510);
return ESP_OK;
err:
if (nt35510) {
if (panel_dev_config->reset_gpio_num >= 0) {
gpio_reset_pin(panel_dev_config->reset_gpio_num);
}
free(nt35510);
}
return ret;
}
static esp_err_t panel_nt35510_del(esp_lcd_panel_t *panel)
{
nt35510_panel_t *nt35510 = __containerof(panel, nt35510_panel_t, base);
if (nt35510->reset_gpio_num >= 0) {
gpio_reset_pin(nt35510->reset_gpio_num);
}
ESP_LOGD(TAG, "del nt35510 panel @%p", nt35510);
free(nt35510);
return ESP_OK;
}
static esp_err_t panel_nt35510_reset(esp_lcd_panel_t *panel)
{
nt35510_panel_t *nt35510 = __containerof(panel, nt35510_panel_t, base);
esp_lcd_panel_io_handle_t io = nt35510->io;
// perform hardware reset
if (nt35510->reset_gpio_num >= 0) {
gpio_set_level(nt35510->reset_gpio_num, nt35510->reset_level);
vTaskDelay(pdMS_TO_TICKS(10));
gpio_set_level(nt35510->reset_gpio_num, !nt35510->reset_level);
vTaskDelay(pdMS_TO_TICKS(10));
} else {
// perform software reset
esp_lcd_panel_io_tx_param(io, LCD_CMD_SWRESET << 8, NULL, 0);
vTaskDelay(pdMS_TO_TICKS(20)); // spec, wait at least 5m before sending new command
}
return ESP_OK;
}
static esp_err_t panel_nt35510_init(esp_lcd_panel_t *panel)
{
nt35510_panel_t *nt35510 = __containerof(panel, nt35510_panel_t, base);
esp_lcd_panel_io_handle_t io = nt35510->io;
// LCD goes into sleep mode and display will be turned off after power on reset, exit sleep mode first
esp_lcd_panel_io_tx_param(io, LCD_CMD_SLPOUT << 8, NULL, 0);
vTaskDelay(pdMS_TO_TICKS(100));
esp_lcd_panel_io_tx_param(io, LCD_CMD_MADCTL << 8, (uint16_t[]) {
0
}, 2);
esp_lcd_panel_io_tx_param(io, LCD_CMD_COLMOD << 8, (uint16_t[]) {
nt35510->colmod_cal,
}, 2);
// turn on display
esp_lcd_panel_io_tx_param(io, LCD_CMD_DISPON << 8, NULL, 0);
return ESP_OK;
}
static esp_err_t panel_nt35510_draw_bitmap(esp_lcd_panel_t *panel, int x_start, int y_start, int x_end, int y_end, const void *color_data)
{
nt35510_panel_t *nt35510 = __containerof(panel, nt35510_panel_t, base);
assert((x_start < x_end) && (y_start < y_end) && "start position must be smaller than end position");
esp_lcd_panel_io_handle_t io = nt35510->io;
x_start += nt35510->x_gap;
x_end += nt35510->x_gap;
y_start += nt35510->y_gap;
y_end += nt35510->y_gap;
// define an area of frame memory where MCU can access
esp_lcd_panel_io_tx_param(io, (LCD_CMD_CASET << 8) + 0, (uint16_t[]) {
(x_start >> 8) & 0xFF,
}, 2);
esp_lcd_panel_io_tx_param(io, (LCD_CMD_CASET << 8) + 1, (uint16_t[]) {
x_start & 0xFF,
}, 2);
esp_lcd_panel_io_tx_param(io, (LCD_CMD_CASET << 8) + 2, (uint16_t[]) {
((x_end - 1) >> 8) & 0xFF,
}, 2);
esp_lcd_panel_io_tx_param(io, (LCD_CMD_CASET << 8) + 3, (uint16_t[]) {
(x_end - 1) & 0xFF,
}, 2);
esp_lcd_panel_io_tx_param(io, (LCD_CMD_RASET << 8) + 0, (uint16_t[]) {
(y_start >> 8) & 0xFF,
}, 2);
esp_lcd_panel_io_tx_param(io, (LCD_CMD_RASET << 8) + 1, (uint16_t[]) {
y_start & 0xFF,
}, 2);
esp_lcd_panel_io_tx_param(io, (LCD_CMD_RASET << 8) + 2, (uint16_t[]) {
((y_end - 1) >> 8) & 0xFF,
}, 2);
esp_lcd_panel_io_tx_param(io, (LCD_CMD_RASET << 8) + 3, (uint16_t[]) {
(y_end - 1) & 0xFF,
}, 2);
// transfer frame buffer
size_t len = (x_end - x_start) * (y_end - y_start) * nt35510->bits_per_pixel / 8;
esp_lcd_panel_io_tx_color(io, LCD_CMD_RAMWR << 8, color_data, len);
return ESP_OK;
}
static esp_err_t panel_nt35510_invert_color(esp_lcd_panel_t *panel, bool invert_color_data)
{
nt35510_panel_t *nt35510 = __containerof(panel, nt35510_panel_t, base);
esp_lcd_panel_io_handle_t io = nt35510->io;
int command = 0;
if (invert_color_data) {
command = LCD_CMD_INVON;
} else {
command = LCD_CMD_INVOFF;
}
esp_lcd_panel_io_tx_param(io, command << 8, NULL, 0);
return ESP_OK;
}
static esp_err_t panel_nt35510_mirror(esp_lcd_panel_t *panel, bool mirror_x, bool mirror_y)
{
nt35510_panel_t *nt35510 = __containerof(panel, nt35510_panel_t, base);
esp_lcd_panel_io_handle_t io = nt35510->io;
if (mirror_x) {
nt35510->madctl_val |= LCD_CMD_MX_BIT;
} else {
nt35510->madctl_val &= ~LCD_CMD_MX_BIT;
}
if (mirror_y) {
nt35510->madctl_val |= LCD_CMD_MY_BIT;
} else {
nt35510->madctl_val &= ~LCD_CMD_MY_BIT;
}
esp_lcd_panel_io_tx_param(io, LCD_CMD_MADCTL << 8, (uint16_t[]) {
nt35510->madctl_val
}, 2);
return ESP_OK;
}
static esp_err_t panel_nt35510_swap_xy(esp_lcd_panel_t *panel, bool swap_axes)
{
nt35510_panel_t *nt35510 = __containerof(panel, nt35510_panel_t, base);
esp_lcd_panel_io_handle_t io = nt35510->io;
if (swap_axes) {
nt35510->madctl_val |= LCD_CMD_MV_BIT;
} else {
nt35510->madctl_val &= ~LCD_CMD_MV_BIT;
}
esp_lcd_panel_io_tx_param(io, LCD_CMD_MADCTL << 8, (uint16_t[]) {
nt35510->madctl_val
}, 2);
return ESP_OK;
}
static esp_err_t panel_nt35510_set_gap(esp_lcd_panel_t *panel, int x_gap, int y_gap)
{
nt35510_panel_t *nt35510 = __containerof(panel, nt35510_panel_t, base);
nt35510->x_gap = x_gap;
nt35510->y_gap = y_gap;
return ESP_OK;
}
static esp_err_t panel_nt35510_disp_off(esp_lcd_panel_t *panel, bool off)
{
nt35510_panel_t *nt35510 = __containerof(panel, nt35510_panel_t, base);
esp_lcd_panel_io_handle_t io = nt35510->io;
int command = 0;
if (off) {
command = LCD_CMD_DISPOFF;
} else {
command = LCD_CMD_DISPON;
}
esp_lcd_panel_io_tx_param(io, command << 8, NULL, 0);
return ESP_OK;
}

View File

@@ -130,14 +130,14 @@ static esp_err_t panel_ssd1306_init(esp_lcd_panel_t *panel)
{
ssd1306_panel_t *ssd1306 = __containerof(panel, ssd1306_panel_t, base);
esp_lcd_panel_io_handle_t io = ssd1306->io;
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_DISP_OFF, 8, NULL, 0);
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_SET_MEMORY_ADDR_MODE, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_DISP_OFF, NULL, 0);
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_SET_MEMORY_ADDR_MODE, (uint8_t[]) {
0x00 // horizontal addressing mode
}, 1);
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_SET_CHARGE_PUMP, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_SET_CHARGE_PUMP, (uint8_t[]) {
0x14 // enable charge pump
}, 1);
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_DISP_ON, 8, NULL, 0);
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_DISP_ON, NULL, 0);
// SEG/COM will be ON after 100ms after sending DISP_ON command
vTaskDelay(pdMS_TO_TICKS(100));
return ESP_OK;
@@ -157,17 +157,17 @@ static esp_err_t panel_ssd1306_draw_bitmap(esp_lcd_panel_t *panel, int x_start,
uint8_t page_start = y_start / 8;
uint8_t page_end = (y_end - 1) / 8;
// define an area of frame memory where MCU can access
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_SET_COLUMN_RANGE, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_SET_COLUMN_RANGE, (uint8_t[]) {
(x_start & 0x7F),
((x_end - 1) & 0x7F),
}, 2);
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_SET_PAGE_RANGE, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io, SSD1306_CMD_SET_PAGE_RANGE, (uint8_t[]) {
(page_start & 0x07),
(page_end & 0x07),
}, 2);
// transfer frame buffer
size_t len = (y_end - y_start) * (x_end - x_start) * ssd1306->bits_per_pixel / 8;
esp_lcd_panel_io_tx_color(io, 0, 0, color_data, len);
esp_lcd_panel_io_tx_color(io, 0, color_data, len);
return ESP_OK;
}
@@ -182,7 +182,7 @@ static esp_err_t panel_ssd1306_invert_color(esp_lcd_panel_t *panel, bool invert_
} else {
command = SSD1306_CMD_INVERT_OFF;
}
esp_lcd_panel_io_tx_param(io, command, 8, NULL, 0);
esp_lcd_panel_io_tx_param(io, command, NULL, 0);
return ESP_OK;
}
@@ -197,13 +197,13 @@ static esp_err_t panel_ssd1306_mirror(esp_lcd_panel_t *panel, bool mirror_x, boo
} else {
command = SSD1306_CMD_MIRROR_X_OFF;
}
esp_lcd_panel_io_tx_param(io, command, 8, NULL, 0);
esp_lcd_panel_io_tx_param(io, command, NULL, 0);
if (mirror_y) {
command = SSD1306_CMD_MIRROR_Y_ON;
} else {
command = SSD1306_CMD_MIRROR_X_OFF;
}
esp_lcd_panel_io_tx_param(io, command, 8, NULL, 0);
esp_lcd_panel_io_tx_param(io, command, NULL, 0);
return ESP_OK;
}
@@ -230,6 +230,6 @@ static esp_err_t panel_ssd1306_disp_off(esp_lcd_panel_t *panel, bool off)
} else {
command = SSD1306_CMD_DISP_ON;
}
esp_lcd_panel_io_tx_param(io, command, 8, NULL, 0);
esp_lcd_panel_io_tx_param(io, command, NULL, 0);
return ESP_OK;
}

View File

@@ -82,6 +82,7 @@ esp_err_t esp_lcd_new_panel_st7789(const esp_lcd_panel_io_handle_t io, const esp
ESP_GOTO_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, err, TAG, "unsupported pixel width");
break;
}
st7789->io = io;
st7789->bits_per_pixel = panel_dev_config->bits_per_pixel;
st7789->reset_gpio_num = panel_dev_config->reset_gpio_num;
@@ -134,8 +135,8 @@ static esp_err_t panel_st7789_reset(esp_lcd_panel_t *panel)
gpio_set_level(st7789->reset_gpio_num, !st7789->reset_level);
vTaskDelay(pdMS_TO_TICKS(10));
} else { // perform software reset
esp_lcd_panel_io_tx_param(io, LCD_CMD_SWRESET, 8, NULL, 0);
vTaskDelay(pdMS_TO_TICKS(10)); // spec, wait at least 5m before sending new command
esp_lcd_panel_io_tx_param(io, LCD_CMD_SWRESET, NULL, 0);
vTaskDelay(pdMS_TO_TICKS(20)); // spec, wait at least 5m before sending new command
}
return ESP_OK;
@@ -146,16 +147,16 @@ static esp_err_t panel_st7789_init(esp_lcd_panel_t *panel)
st7789_panel_t *st7789 = __containerof(panel, st7789_panel_t, base);
esp_lcd_panel_io_handle_t io = st7789->io;
// LCD goes into sleep mode and display will be turned off after power on reset, exit sleep mode first
esp_lcd_panel_io_tx_param(io, LCD_CMD_SLPOUT, 8, NULL, 0);
esp_lcd_panel_io_tx_param(io, LCD_CMD_SLPOUT, NULL, 0);
vTaskDelay(pdMS_TO_TICKS(100));
esp_lcd_panel_io_tx_param(io, LCD_CMD_MADCTL, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io, LCD_CMD_MADCTL, (uint8_t[]) {
0
}, 1);
esp_lcd_panel_io_tx_param(io, LCD_CMD_COLMOD, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io, LCD_CMD_COLMOD, (uint8_t[]) {
st7789->colmod_cal,
}, 1);
// turn on display
esp_lcd_panel_io_tx_param(io, LCD_CMD_DISPON, 8, NULL, 0);
esp_lcd_panel_io_tx_param(io, LCD_CMD_DISPON, NULL, 0);
return ESP_OK;
}
@@ -172,13 +173,13 @@ static esp_err_t panel_st7789_draw_bitmap(esp_lcd_panel_t *panel, int x_start, i
y_end += st7789->y_gap;
// define an area of frame memory where MCU can access
esp_lcd_panel_io_tx_param(io, LCD_CMD_CASET, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io, LCD_CMD_CASET, (uint8_t[]) {
(x_start >> 8) & 0xFF,
x_start & 0xFF,
((x_end - 1) >> 8) & 0xFF,
(x_end - 1) & 0xFF,
}, 4);
esp_lcd_panel_io_tx_param(io, LCD_CMD_RASET, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io, LCD_CMD_RASET, (uint8_t[]) {
(y_start >> 8) & 0xFF,
y_start & 0xFF,
((y_end - 1) >> 8) & 0xFF,
@@ -186,7 +187,7 @@ static esp_err_t panel_st7789_draw_bitmap(esp_lcd_panel_t *panel, int x_start, i
}, 4);
// transfer frame buffer
size_t len = (x_end - x_start) * (y_end - y_start) * st7789->bits_per_pixel / 8;
esp_lcd_panel_io_tx_color(io, LCD_CMD_RAMWR, 8, color_data, len);
esp_lcd_panel_io_tx_color(io, LCD_CMD_RAMWR, color_data, len);
return ESP_OK;
}
@@ -201,7 +202,7 @@ static esp_err_t panel_st7789_invert_color(esp_lcd_panel_t *panel, bool invert_c
} else {
command = LCD_CMD_INVOFF;
}
esp_lcd_panel_io_tx_param(io, command, 8, NULL, 0);
esp_lcd_panel_io_tx_param(io, command, NULL, 0);
return ESP_OK;
}
@@ -219,7 +220,7 @@ static esp_err_t panel_st7789_mirror(esp_lcd_panel_t *panel, bool mirror_x, bool
} else {
st7789->madctl_val &= ~LCD_CMD_MY_BIT;
}
esp_lcd_panel_io_tx_param(io, LCD_CMD_MADCTL, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io, LCD_CMD_MADCTL, (uint8_t[]) {
st7789->madctl_val
}, 1);
return ESP_OK;
@@ -234,7 +235,7 @@ static esp_err_t panel_st7789_swap_xy(esp_lcd_panel_t *panel, bool swap_axes)
} else {
st7789->madctl_val &= ~LCD_CMD_MV_BIT;
}
esp_lcd_panel_io_tx_param(io, LCD_CMD_MADCTL, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io, LCD_CMD_MADCTL, (uint8_t[]) {
st7789->madctl_val
}, 1);
return ESP_OK;
@@ -258,6 +259,6 @@ static esp_err_t panel_st7789_disp_off(esp_lcd_panel_t *panel, bool off)
} else {
command = LCD_CMD_DISPON;
}
esp_lcd_panel_io_tx_param(io, command, 8, NULL, 0);
esp_lcd_panel_io_tx_param(io, command, NULL, 0);
return ESP_OK;
}

View File

@@ -117,7 +117,7 @@ esp_err_t esp_lcd_new_rgb_panel(const esp_lcd_rgb_panel_config_t *rgb_panel_conf
if (alloc_from_psram) {
rgb_panel->fb = heap_caps_calloc(1, fb_size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
} else {
rgb_panel->fb = heap_caps_calloc(1, fb_size, MALLOC_CAP_INTERNAL);
rgb_panel->fb = heap_caps_calloc(1, fb_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
}
ESP_GOTO_ON_FALSE(rgb_panel->fb, ESP_ERR_NO_MEM, no_mem_fb, TAG, "no mem for frame buffer");
rgb_panel->fb_size = fb_size;

View File

@@ -46,6 +46,8 @@ TEST_CASE("lcd panel with i2c interface (ssd1306)", "[lcd]")
.dev_addr = TEST_I2C_DEV_ADDR,
.control_phase_bytes = 1, // According to SSD1306 datasheet
.dc_bit_offset = 6, // According to SSD1306 datasheet
.lcd_cmd_bits = 8, // According to SSD1306 datasheet
.lcd_param_bits = 8, // According to SSD1306 datasheet
};
TEST_ESP_OK(esp_lcd_new_panel_io_i2c((esp_lcd_i2c_bus_handle_t)TEST_I2C_HOST_ID, &io_config, &io_handle));
@@ -104,6 +106,8 @@ TEST_CASE("lvgl gui with i2c interface (ssd1306)", "[lcd][lvgl][ignore]")
.dev_addr = TEST_I2C_DEV_ADDR,
.control_phase_bytes = 1, // According to SSD1306 datasheet
.dc_bit_offset = 6, // According to SSD1306 datasheet
.lcd_cmd_bits = 8, // According to SSD1306 datasheet
.lcd_param_bits = 8, // According to SSD1306 datasheet
.on_color_trans_done = notify_lvgl_ready_to_flush,
.user_data = &disp,
};

View File

@@ -0,0 +1,72 @@
#include "sdkconfig.h"
#define TEST_LCD_H_RES (240)
#define TEST_LCD_V_RES (280)
#if CONFIG_IDF_TARGET_ESP32S3
#define TEST_LCD_BK_LIGHT_GPIO (1)
#define TEST_LCD_RST_GPIO (2)
#define TEST_LCD_CS_GPIO (3)
#define TEST_LCD_DC_GPIO (4)
#define TEST_LCD_PCLK_GPIO (5)
#define TEST_LCD_DATA0_GPIO (6)
#define TEST_LCD_DATA1_GPIO (7)
#define TEST_LCD_DATA2_GPIO (8)
#define TEST_LCD_DATA3_GPIO (9)
#define TEST_LCD_DATA4_GPIO (10)
#define TEST_LCD_DATA5_GPIO (11)
#define TEST_LCD_DATA6_GPIO (12)
#define TEST_LCD_DATA7_GPIO (13)
#define TEST_LCD_DATA8_GPIO (14)
#define TEST_LCD_DATA9_GPIO (15)
#define TEST_LCD_DATA10_GPIO (16)
#define TEST_LCD_DATA11_GPIO (17)
#define TEST_LCD_DATA12_GPIO (18)
#define TEST_LCD_DATA13_GPIO (19)
#define TEST_LCD_DATA14_GPIO (20)
#define TEST_LCD_DATA15_GPIO (21)
#elif CONFIG_IDF_TARGET_ESP32S2
#define TEST_LCD_BK_LIGHT_GPIO (0)
#define TEST_LCD_RST_GPIO (18)
#define TEST_LCD_CS_GPIO (19)
#define TEST_LCD_DC_GPIO (38)
#define TEST_LCD_PCLK_GPIO (33)
#define TEST_LCD_DATA0_GPIO (1)
#define TEST_LCD_DATA1_GPIO (10)
#define TEST_LCD_DATA2_GPIO (2)
#define TEST_LCD_DATA3_GPIO (11)
#define TEST_LCD_DATA4_GPIO (3)
#define TEST_LCD_DATA5_GPIO (12)
#define TEST_LCD_DATA6_GPIO (4)
#define TEST_LCD_DATA7_GPIO (13)
#define TEST_LCD_DATA8_GPIO (5)
#define TEST_LCD_DATA9_GPIO (14)
#define TEST_LCD_DATA10_GPIO (6)
#define TEST_LCD_DATA11_GPIO (15)
#define TEST_LCD_DATA12_GPIO (7)
#define TEST_LCD_DATA13_GPIO (16)
#define TEST_LCD_DATA14_GPIO (8)
#define TEST_LCD_DATA15_GPIO (17)
#elif CONFIG_IDF_TARGET_ESP32
#define TEST_LCD_BK_LIGHT_GPIO (2)
#define TEST_LCD_RST_GPIO (-1)
#define TEST_LCD_CS_GPIO (4)
#define TEST_LCD_DC_GPIO (5)
#define TEST_LCD_PCLK_GPIO (18)
#define TEST_LCD_DATA0_GPIO (19)
#define TEST_LCD_DATA1_GPIO (21)
#define TEST_LCD_DATA2_GPIO (0)
#define TEST_LCD_DATA3_GPIO (22)
#define TEST_LCD_DATA4_GPIO (23)
#define TEST_LCD_DATA5_GPIO (33)
#define TEST_LCD_DATA6_GPIO (32)
#define TEST_LCD_DATA7_GPIO (27)
#define TEST_LCD_DATA8_GPIO (12)
#define TEST_LCD_DATA9_GPIO (13)
#define TEST_LCD_DATA10_GPIO (14)
#define TEST_LCD_DATA11_GPIO (15)
#define TEST_LCD_DATA12_GPIO (26)
#define TEST_LCD_DATA13_GPIO (25)
#define TEST_LCD_DATA14_GPIO (16)
#define TEST_LCD_DATA15_GPIO (17)
#endif

View File

@@ -7,74 +7,9 @@
#include "esp_lcd_panel_ops.h"
#include "soc/soc_caps.h"
#include "driver/gpio.h"
#include "test_i80_board.h"
#define TEST_LCD_H_RES (240)
#define TEST_LCD_V_RES (280)
#define TEST_LCD_BK_LIGHT_GPIO (1)
#define TEST_LCD_RST_GPIO (2)
#define TEST_LCD_CS_GPIO (4)
#define TEST_LCD_DC_GPIO (5)
#define TEST_LCD_PCLK_GPIO (6)
#define TEST_LCD_DATA0_GPIO (33)
#define TEST_LCD_DATA1_GPIO (34)
#define TEST_LCD_DATA2_GPIO (35)
#define TEST_LCD_DATA3_GPIO (36)
#define TEST_LCD_DATA4_GPIO (37)
#define TEST_LCD_DATA5_GPIO (38)
#define TEST_LCD_DATA6_GPIO (39)
#define TEST_LCD_DATA7_GPIO (40)
#define TEST_LCD_DATA8_GPIO (41)
#define TEST_LCD_DATA9_GPIO (42)
#define TEST_LCD_DATA10_GPIO (15)
#define TEST_LCD_DATA11_GPIO (16)
#define TEST_LCD_DATA12_GPIO (17)
#define TEST_LCD_DATA13_GPIO (18)
#define TEST_LCD_DATA14_GPIO (19)
#define TEST_LCD_DATA15_GPIO (20)
#if SOC_LCD_I80_SUPPORTED
TEST_CASE("lcd i80 bus and device allocation", "[lcd]")
{
esp_lcd_i80_bus_handle_t i80_buses[SOC_LCD_I80_BUSES] = {};
esp_lcd_i80_bus_config_t bus_config = {
.dc_gpio_num = TEST_LCD_DC_GPIO,
.wr_gpio_num = TEST_LCD_PCLK_GPIO,
.data_gpio_nums = {
TEST_LCD_DATA0_GPIO,
TEST_LCD_DATA1_GPIO,
TEST_LCD_DATA2_GPIO,
TEST_LCD_DATA3_GPIO,
TEST_LCD_DATA4_GPIO,
TEST_LCD_DATA5_GPIO,
TEST_LCD_DATA6_GPIO,
TEST_LCD_DATA7_GPIO,
},
.data_width = 8,
.max_transfer_bytes = TEST_LCD_H_RES * 40 * sizeof(uint16_t)
};
for (int i = 0; i < SOC_LCD_I80_BUSES; i++) {
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_buses[i]));
}
TEST_ASSERT_EQUAL(ESP_ERR_NOT_FOUND, esp_lcd_new_i80_bus(&bus_config, &i80_buses[0]));
esp_lcd_panel_io_handle_t io_handles[10] = {};
esp_lcd_panel_io_i80_config_t io_config = {
.cs_gpio_num = TEST_LCD_CS_GPIO,
.pclk_hz = 5000000,
.trans_queue_depth = 4,
};
for (int i = 0; i < 10; i++) {
TEST_ESP_OK(esp_lcd_new_panel_io_i80(i80_buses[0], &io_config, &io_handles[i]));
}
// can't delete bus handle before we delete all devices
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_STATE, esp_lcd_del_i80_bus(i80_buses[0]));
for (int i = 0; i < 10; i++) {
TEST_ESP_OK(esp_lcd_panel_io_del(io_handles[i]));
}
for (int i = 0; i < SOC_LCD_I80_BUSES; i++) {
TEST_ESP_OK(esp_lcd_del_i80_bus(i80_buses[i]));
}
}
#if SOC_LCDCAM_SUPPORTED
TEST_CASE("lcd i80 device swap color bytes", "[lcd]")
{
esp_lcd_i80_bus_handle_t i80_bus = NULL;
@@ -91,7 +26,7 @@ TEST_CASE("lcd i80 device swap color bytes", "[lcd]")
TEST_LCD_DATA6_GPIO,
TEST_LCD_DATA7_GPIO,
},
.data_width = 8,
.bus_width = 8,
.max_transfer_bytes = 20,
};
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_bus));
@@ -107,6 +42,8 @@ TEST_CASE("lcd i80 device swap color bytes", "[lcd]")
.dc_dummy_level = 0,
.dc_data_level = 1,
},
.lcd_cmd_bits = 8,
.lcd_param_bits = 8,
};
io_config.flags.reverse_color_bits = 0;
@@ -123,10 +60,10 @@ TEST_CASE("lcd i80 device swap color bytes", "[lcd]")
TEST_ESP_OK(esp_lcd_new_panel_io_i80(i80_bus, &io_config, &io_handles[3]));
for (int i = 0; i < 4; i++) {
esp_lcd_panel_io_tx_param(io_handles[i], 0xA5, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io_handles[i], 0xA5, (uint8_t[]) {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06
}, 6);
esp_lcd_panel_io_tx_color(io_handles[i], 0x5A, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_color(io_handles[i], 0x5A, (uint8_t[]) {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06
}, 6);
TEST_ESP_OK(esp_lcd_panel_io_del(io_handles[i]));
@@ -151,7 +88,7 @@ TEST_CASE("lcd i80 device clock mode", "[lcd]")
TEST_LCD_DATA6_GPIO,
TEST_LCD_DATA7_GPIO,
},
.data_width = 8,
.bus_width = 8,
.max_transfer_bytes = 20,
};
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_bus));
@@ -167,6 +104,8 @@ TEST_CASE("lcd i80 device clock mode", "[lcd]")
.dc_dummy_level = 0,
.dc_data_level = 1,
},
.lcd_cmd_bits = 8,
.lcd_param_bits = 8,
};
io_config.flags.pclk_idle_low = 0;
@@ -183,15 +122,177 @@ TEST_CASE("lcd i80 device clock mode", "[lcd]")
TEST_ESP_OK(esp_lcd_new_panel_io_i80(i80_bus, &io_config, &io_handles[3]));
for (int i = 0; i < 4; i++) {
esp_lcd_panel_io_tx_param(io_handles[i], 0xA5, 8, (uint8_t[]) {
esp_lcd_panel_io_tx_param(io_handles[i], 0xA5, (uint8_t[]) {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06
}, 6);
TEST_ESP_OK(esp_lcd_panel_io_del(io_handles[i]));
}
TEST_ESP_OK(esp_lcd_del_i80_bus(i80_bus));
}
#endif // SOC_LCDCAM_SUPPORTED
TEST_CASE("lcd panel with i80 interface (st7789)", "[lcd]")
#if SOC_LCD_I80_SUPPORTED
TEST_CASE("lcd i80 bus and device allocation", "[lcd]")
{
esp_lcd_i80_bus_handle_t i80_buses[SOC_LCD_I80_BUSES] = {};
esp_lcd_i80_bus_config_t bus_config = {
.dc_gpio_num = TEST_LCD_DC_GPIO,
.wr_gpio_num = TEST_LCD_PCLK_GPIO,
.data_gpio_nums = {
TEST_LCD_DATA0_GPIO,
TEST_LCD_DATA1_GPIO,
TEST_LCD_DATA2_GPIO,
TEST_LCD_DATA3_GPIO,
TEST_LCD_DATA4_GPIO,
TEST_LCD_DATA5_GPIO,
TEST_LCD_DATA6_GPIO,
TEST_LCD_DATA7_GPIO,
},
.bus_width = 8,
.max_transfer_bytes = TEST_LCD_H_RES * 40 * sizeof(uint16_t)
};
for (int i = 0; i < SOC_LCD_I80_BUSES; i++) {
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_buses[i]));
}
TEST_ASSERT_EQUAL(ESP_ERR_NOT_FOUND, esp_lcd_new_i80_bus(&bus_config, &i80_buses[0]));
esp_lcd_panel_io_handle_t io_handles[10] = {};
esp_lcd_panel_io_i80_config_t io_config = {
.cs_gpio_num = TEST_LCD_CS_GPIO,
.pclk_hz = 5000000,
.trans_queue_depth = 4,
.lcd_cmd_bits = 8,
.lcd_param_bits = 8,
};
for (int i = 0; i < 10; i++) {
TEST_ESP_OK(esp_lcd_new_panel_io_i80(i80_buses[0], &io_config, &io_handles[i]));
}
// can't delete bus handle before we delete all devices
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_STATE, esp_lcd_del_i80_bus(i80_buses[0]));
for (int i = 0; i < 10; i++) {
TEST_ESP_OK(esp_lcd_panel_io_del(io_handles[i]));
}
for (int i = 0; i < SOC_LCD_I80_BUSES; i++) {
TEST_ESP_OK(esp_lcd_del_i80_bus(i80_buses[i]));
}
}
TEST_CASE("lcd panel i80 io test", "[lcd]")
{
esp_lcd_i80_bus_handle_t i80_bus = NULL;
esp_lcd_i80_bus_config_t bus_config = {
.dc_gpio_num = TEST_LCD_DC_GPIO,
.wr_gpio_num = TEST_LCD_PCLK_GPIO,
.data_gpio_nums = {
TEST_LCD_DATA0_GPIO,
TEST_LCD_DATA1_GPIO,
TEST_LCD_DATA2_GPIO,
TEST_LCD_DATA3_GPIO,
TEST_LCD_DATA4_GPIO,
TEST_LCD_DATA5_GPIO,
TEST_LCD_DATA6_GPIO,
TEST_LCD_DATA7_GPIO,
TEST_LCD_DATA8_GPIO,
TEST_LCD_DATA9_GPIO,
TEST_LCD_DATA10_GPIO,
TEST_LCD_DATA11_GPIO,
TEST_LCD_DATA12_GPIO,
TEST_LCD_DATA13_GPIO,
TEST_LCD_DATA14_GPIO,
TEST_LCD_DATA15_GPIO,
},
.bus_width = 16,
.max_transfer_bytes = 100,
};
esp_lcd_panel_io_handle_t io_handle = NULL;
esp_lcd_panel_io_i80_config_t io_config = {
.cs_gpio_num = TEST_LCD_CS_GPIO,
.pclk_hz = 8000000, // 8MHz
.trans_queue_depth = 10,
.dc_levels = {
.dc_idle_level = 0,
.dc_cmd_level = 0,
.dc_dummy_level = 0,
.dc_data_level = 1,
},
};
esp_lcd_panel_handle_t panel_handle = NULL;
esp_lcd_panel_dev_config_t panel_config = {
.reset_gpio_num = TEST_LCD_RST_GPIO,
.color_space = ESP_LCD_COLOR_SPACE_RGB,
.bits_per_pixel = 16,
};
// On esp32, GPIO16 and GPIO17 are connected to PSRAM, and we don't have other spare GPIOs can be used in the test
// so we skip the 16bit test on esp32 when PSRAM is enabled
#if !CONFIG_ESP32_SPIRAM_SUPPORT
printf("testing bus-width=16bit, cmd/param bit-width=8bit\r\n");
bus_config.bus_width = 16;
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_bus));
io_config.lcd_cmd_bits = 8;
io_config.lcd_param_bits = 8;
TEST_ESP_OK(esp_lcd_new_panel_io_i80(i80_bus, &io_config, &io_handle));
TEST_ESP_OK(esp_lcd_new_panel_st7789(io_handle, &panel_config, &panel_handle));
esp_lcd_panel_io_tx_param(io_handle, 0x1A, NULL, 0);
esp_lcd_panel_io_tx_param(io_handle, 0x1B, (uint8_t[]) {
0x11, 0x22, 0x33
}, 3);
esp_lcd_panel_io_tx_param(io_handle, 0x1C, NULL, 0);
TEST_ESP_OK(esp_lcd_panel_del(panel_handle));
TEST_ESP_OK(esp_lcd_panel_io_del(io_handle));
TEST_ESP_OK(esp_lcd_del_i80_bus(i80_bus));
printf("testing bus-width=16bit, cmd/param bit-width=16bit\r\n");
bus_config.bus_width = 16;
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_bus));
io_config.lcd_cmd_bits = 16;
io_config.lcd_param_bits = 16;
TEST_ESP_OK(esp_lcd_new_panel_io_i80(i80_bus, &io_config, &io_handle));
TEST_ESP_OK(esp_lcd_new_panel_nt35510(io_handle, &panel_config, &panel_handle));
esp_lcd_panel_io_tx_param(io_handle, 0x1A01, NULL, 0);
esp_lcd_panel_io_tx_param(io_handle, 0x1B02, (uint16_t[]) {
0x11, 0x22, 0x33
}, 6);
esp_lcd_panel_io_tx_param(io_handle, 0x1C03, NULL, 0);
TEST_ESP_OK(esp_lcd_panel_del(panel_handle));
TEST_ESP_OK(esp_lcd_panel_io_del(io_handle));
TEST_ESP_OK(esp_lcd_del_i80_bus(i80_bus));
#endif
printf("testing bus-width=8bit, cmd/param bit-width=8bit\r\n");
bus_config.bus_width = 8;
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_bus));
io_config.lcd_cmd_bits = 8;
io_config.lcd_param_bits = 8;
TEST_ESP_OK(esp_lcd_new_panel_io_i80(i80_bus, &io_config, &io_handle));
TEST_ESP_OK(esp_lcd_new_panel_st7789(io_handle, &panel_config, &panel_handle));
esp_lcd_panel_io_tx_param(io_handle, 0x1A, NULL, 0);
esp_lcd_panel_io_tx_param(io_handle, 0x1B, (uint8_t[]) {
0x11, 0x22, 0x33
}, 3);
esp_lcd_panel_io_tx_param(io_handle, 0x1C, NULL, 0);
TEST_ESP_OK(esp_lcd_panel_del(panel_handle));
TEST_ESP_OK(esp_lcd_panel_io_del(io_handle));
TEST_ESP_OK(esp_lcd_del_i80_bus(i80_bus));
printf("testing bus-width=8bit, cmd/param bit-width=16bit\r\n");
bus_config.bus_width = 8;
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_bus));
io_config.lcd_cmd_bits = 16;
io_config.lcd_param_bits = 16;
TEST_ESP_OK(esp_lcd_new_panel_io_i80(i80_bus, &io_config, &io_handle));
TEST_ESP_OK(esp_lcd_new_panel_nt35510(io_handle, &panel_config, &panel_handle));
esp_lcd_panel_io_tx_param(io_handle, 0x1A01, NULL, 0);
esp_lcd_panel_io_tx_param(io_handle, 0x1B02, (uint16_t[]) {
0x11, 0x22, 0x33
}, 6);
esp_lcd_panel_io_tx_param(io_handle, 0x1C03, NULL, 0);
TEST_ESP_OK(esp_lcd_panel_del(panel_handle));
TEST_ESP_OK(esp_lcd_panel_io_del(io_handle));
TEST_ESP_OK(esp_lcd_del_i80_bus(i80_bus));
}
TEST_CASE("lcd panel with i80 interface (st7789, 8bits)", "[lcd]")
{
#define TEST_IMG_SIZE (100 * 100 * sizeof(uint16_t))
uint8_t *img = heap_caps_malloc(TEST_IMG_SIZE, MALLOC_CAP_DMA);
@@ -217,14 +318,14 @@ TEST_CASE("lcd panel with i80 interface (st7789)", "[lcd]")
TEST_LCD_DATA6_GPIO,
TEST_LCD_DATA7_GPIO,
},
.data_width = 8,
.bus_width = 8,
.max_transfer_bytes = TEST_IMG_SIZE + 10,
};
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_bus));
esp_lcd_panel_io_handle_t io_handle = NULL;
esp_lcd_panel_io_i80_config_t io_config = {
.cs_gpio_num = TEST_LCD_CS_GPIO,
.pclk_hz = 5000000,
.pclk_hz = 8000000, // 8MHz
.trans_queue_depth = 10,
.dc_levels = {
.dc_idle_level = 0,
@@ -232,6 +333,8 @@ TEST_CASE("lcd panel with i80 interface (st7789)", "[lcd]")
.dc_dummy_level = 0,
.dc_data_level = 1,
},
.lcd_cmd_bits = 8,
.lcd_param_bits = 8,
};
TEST_ESP_OK(esp_lcd_new_panel_io_i80(i80_bus, &io_config, &io_handle));
@@ -282,7 +385,7 @@ static bool notify_lvgl_ready_to_flush(esp_lcd_panel_io_handle_t panel_io, void
return false;
}
TEST_CASE("lvgl gui with i80 interface (st7789)", "[lcd][lvgl][ignore]")
TEST_CASE("lvgl gui with i80 interface (st7789, 8bits)", "[lcd][lvgl][ignore]")
{
// initialize LVGL graphics library
lv_disp_t *disp = NULL;
@@ -308,14 +411,14 @@ TEST_CASE("lvgl gui with i80 interface (st7789)", "[lcd][lvgl][ignore]")
TEST_LCD_DATA6_GPIO,
TEST_LCD_DATA7_GPIO,
},
.data_width = 8,
.bus_width = 8,
.max_transfer_bytes = TEST_LCD_H_RES * 40 * sizeof(uint16_t)
};
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_bus));
esp_lcd_panel_io_handle_t io_handle = NULL;
esp_lcd_panel_io_i80_config_t io_config = {
.cs_gpio_num = TEST_LCD_CS_GPIO,
.pclk_hz = 8000000,
.pclk_hz = 10000000, // 10MHz
.trans_queue_depth = 10,
.dc_levels = {
.dc_idle_level = 0,
@@ -327,7 +430,9 @@ TEST_CASE("lvgl gui with i80 interface (st7789)", "[lcd][lvgl][ignore]")
.swap_color_bytes = 1,
},
.on_color_trans_done = notify_lvgl_ready_to_flush,
.user_data = &disp
.user_data = &disp,
.lcd_cmd_bits = 8,
.lcd_param_bits = 8,
};
TEST_ESP_OK(esp_lcd_new_panel_io_i80(i80_bus, &io_config, &io_handle));
@@ -351,5 +456,111 @@ TEST_CASE("lvgl gui with i80 interface (st7789)", "[lcd][lvgl][ignore]")
test_lvgl_task_loop(panel_handle, TEST_LCD_H_RES, TEST_LCD_V_RES, &disp);
}
#define TEST_NT35510_DATA_WIDTH (8) // change this to 16 when NT35510 is configured to 16bit in length
TEST_CASE("lvgl gui with i80 interface (nt35510, 8/16bits)", "[lcd][lvgl][ignore]")
{
// initialize LVGL graphics library
lv_disp_t *disp = NULL;
lv_init();
esp_lcd_i80_bus_handle_t i80_bus = NULL;
esp_lcd_i80_bus_config_t bus_config = {
.dc_gpio_num = TEST_LCD_DC_GPIO,
.wr_gpio_num = TEST_LCD_PCLK_GPIO,
.data_gpio_nums = {
TEST_LCD_DATA0_GPIO,
TEST_LCD_DATA1_GPIO,
TEST_LCD_DATA2_GPIO,
TEST_LCD_DATA3_GPIO,
TEST_LCD_DATA4_GPIO,
TEST_LCD_DATA5_GPIO,
TEST_LCD_DATA6_GPIO,
TEST_LCD_DATA7_GPIO,
TEST_LCD_DATA8_GPIO,
TEST_LCD_DATA9_GPIO,
TEST_LCD_DATA10_GPIO,
TEST_LCD_DATA11_GPIO,
TEST_LCD_DATA12_GPIO,
TEST_LCD_DATA13_GPIO,
TEST_LCD_DATA14_GPIO,
TEST_LCD_DATA15_GPIO,
},
.bus_width = TEST_NT35510_DATA_WIDTH,
.max_transfer_bytes = TEST_LCD_H_RES * 40 * sizeof(uint16_t)
};
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_bus));
esp_lcd_panel_io_handle_t io_handle = NULL;
esp_lcd_panel_io_i80_config_t io_config = {
.cs_gpio_num = TEST_LCD_CS_GPIO,
.pclk_hz = 10000000, // 10MHz
.trans_queue_depth = 4,
.dc_levels = {
.dc_idle_level = 0,
.dc_cmd_level = 0,
.dc_dummy_level = 0,
.dc_data_level = 1,
},
.on_color_trans_done = notify_lvgl_ready_to_flush,
.user_data = &disp,
.lcd_cmd_bits = 16,
.lcd_param_bits = 16,
};
TEST_ESP_OK(esp_lcd_new_panel_io_i80(i80_bus, &io_config, &io_handle));
esp_lcd_panel_handle_t panel_handle = NULL;
esp_lcd_panel_dev_config_t panel_config = {
.reset_gpio_num = -1,
.color_space = ESP_LCD_COLOR_SPACE_RGB,
.bits_per_pixel = 16,
};
TEST_ESP_OK(esp_lcd_new_panel_nt35510(io_handle, &panel_config, &panel_handle));
esp_lcd_panel_reset(panel_handle);
esp_lcd_panel_init(panel_handle);
esp_lcd_panel_swap_xy(panel_handle, true);
esp_lcd_panel_mirror(panel_handle, true, false);
test_lvgl_task_loop(panel_handle, TEST_LCD_H_RES, TEST_LCD_V_RES, &disp);
}
#endif // CONFIG_LV_USE_USER_DATA
#endif // SOC_LCD_I80_SUPPORTED
#if SOC_I2S_LCD_I80_VARIANT
#include "driver/i2s.h"
TEST_CASE("i80 and i2s driver coexistance", "[lcd][i2s]")
{
esp_lcd_i80_bus_handle_t i80_bus = NULL;
esp_lcd_i80_bus_config_t bus_config = {
.dc_gpio_num = TEST_LCD_DC_GPIO,
.wr_gpio_num = TEST_LCD_PCLK_GPIO,
.data_gpio_nums = {
TEST_LCD_DATA0_GPIO,
TEST_LCD_DATA1_GPIO,
TEST_LCD_DATA2_GPIO,
TEST_LCD_DATA3_GPIO,
TEST_LCD_DATA4_GPIO,
TEST_LCD_DATA5_GPIO,
TEST_LCD_DATA6_GPIO,
TEST_LCD_DATA7_GPIO,
},
.bus_width = 8,
.max_transfer_bytes = 20,
};
TEST_ESP_OK(esp_lcd_new_i80_bus(&bus_config, &i80_bus));
i2s_config_t i2s_config = {
.mode = I2S_MODE_MASTER | I2S_MODE_TX,
.sample_rate = 36000,
.bits_per_sample = 16,
.channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT,
.communication_format = I2S_COMM_FORMAT_STAND_I2S,
.dma_buf_count = 6,
.dma_buf_len = 60,
};
// I2S driver won't be installed as the same I2S port has been used by LCD
TEST_ASSERT_EQUAL(ESP_ERR_NOT_FOUND, i2s_driver_install(0, &i2s_config, 0, NULL));
TEST_ESP_OK(esp_lcd_del_i80_bus(i80_bus));
}
#endif // SOC_I2S_LCD_I80_VARIANT

View File

@@ -50,6 +50,8 @@ TEST_CASE("lcd panel with spi interface (st7789)", "[lcd]")
.pclk_hz = TEST_LCD_PIXEL_CLOCK_HZ,
.spi_mode = 0,
.trans_queue_depth = 10,
.lcd_cmd_bits = 8,
.lcd_param_bits = 8,
};
TEST_ESP_OK(esp_lcd_new_panel_io_spi((esp_lcd_spi_bus_handle_t)TEST_SPI_HOST_ID, &io_config, &io_handle));
@@ -119,7 +121,7 @@ TEST_CASE("lvgl gui with spi interface (st7789)", "[lcd][lvgl][ignore]")
.quadhd_io_num = -1,
.max_transfer_sz = TEST_LCD_H_RES * TEST_LCD_V_RES * 2
};
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST_ID, &buscfg, 1));
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST_ID, &buscfg, SPI_DMA_CH_AUTO));
esp_lcd_panel_io_handle_t io_handle = NULL;
esp_lcd_panel_io_spi_config_t io_config = {
@@ -129,7 +131,9 @@ TEST_CASE("lvgl gui with spi interface (st7789)", "[lcd][lvgl][ignore]")
.spi_mode = 0,
.trans_queue_depth = 10,
.on_color_trans_done = notify_lvgl_ready_to_flush,
.user_data = &disp // we must use "address of disp" here, since the disp object has not been allocated
.user_data = &disp, // we must use "address of disp" here, since the disp object has not been allocated
.lcd_cmd_bits = 8,
.lcd_param_bits = 8,
};
TEST_ESP_OK(esp_lcd_new_panel_io_spi((esp_lcd_spi_bus_handle_t)TEST_SPI_HOST_ID, &io_config, &io_handle));

View File

@@ -40,14 +40,49 @@ extern "C" {
#define I2S_LL_MCLK_DIVIDER_BIT_WIDTH (6)
#define I2S_LL_MCLK_DIVIDER_MAX ((1 << I2S_LL_MCLK_DIVIDER_BIT_WIDTH) - 1)
#define I2S_LL_EVENT_TX_EOF (1 << 12)
#define I2S_LL_BCK_MAX_PRESCALE (64)
/* I2S clock configuration structure */
typedef struct {
uint16_t mclk_div; // I2S module clock devider, Fmclk = Fsclk /(mclk_div+b/a)
uint16_t a;
uint16_t b; // The decimal part of module clock devider, the decimal is: b/a
uint16_t bck_div; // The BCK devider, Fbck = Fmclk / bck_div
} i2s_ll_clk_cal_t;
/**
* @brief Enable DMA descriptor owner check
*
* @param hw Peripheral I2S hardware instance address.
* @param en whether to enable owner check
*/
static inline void i2s_ll_dma_enable_owner_check(i2s_dev_t *hw, bool en)
{
hw->lc_conf.check_owner = en;
}
/**
* @brief Enable DMA descriptor write back
*
* @param hw Peripheral I2S hardware instance address.
* @param en whether to enable write back
*/
static inline void i2s_ll_dma_enable_auto_write_back(i2s_dev_t *hw, bool en)
{
hw->lc_conf.out_auto_wrback = en;
}
/**
* @brief I2S DMA generate EOF event on data in FIFO poped out
*
* @param hw Peripheral I2S hardware instance address.
* @param en True to enable, False to disable
*/
static inline void i2s_ll_dma_enable_eof_on_fifo_empty(i2s_dev_t *hw, bool en)
{
hw->lc_conf.out_eof_mode = en;
}
/**
* @brief I2S module general init, enable I2S clock.
*
@@ -218,6 +253,17 @@ static inline void i2s_ll_rx_clk_set_src(i2s_dev_t *hw, i2s_clock_src_t src)
hw->clkm_conf.clka_en = (src == I2S_CLK_APLL) ? 1 : 0;
}
/**
* @brief Set I2S tx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx bck div num
*/
static inline void i2s_ll_tx_set_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.tx_bck_div_num = val;
}
/**
* @brief Configure I2S TX clock devider
*
@@ -229,7 +275,17 @@ static inline void i2s_ll_tx_set_clk(i2s_dev_t *hw, i2s_ll_clk_cal_t *set)
hw->clkm_conf.clkm_div_num = set->mclk_div;
hw->clkm_conf.clkm_div_b = set->b;
hw->clkm_conf.clkm_div_a = set->a;
hw->sample_rate_conf.tx_bck_div_num = set->bck_div;
}
/**
* @brief Set I2S rx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx bck div num
*/
static inline void i2s_ll_rx_set_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.rx_bck_div_num = val;
}
/**
@@ -243,7 +299,22 @@ static inline void i2s_ll_rx_set_clk(i2s_dev_t *hw, i2s_ll_clk_cal_t *set)
hw->clkm_conf.clkm_div_num = set->mclk_div;
hw->clkm_conf.clkm_div_b = set->b;
hw->clkm_conf.clkm_div_a = set->a;
hw->sample_rate_conf.rx_bck_div_num = set->bck_div;
}
/**
* @brief Enable interrupt by mask
*
* @param hw Peripheral I2S hardware instance address.
* @param mask Interrupt event mask
* @param en true to enable, false to disable
*/
static inline void i2s_ll_enable_intr(i2s_dev_t *hw, uint32_t mask, bool en)
{
if (en) {
hw->int_ena.val |= mask;
} else {
hw->int_ena.val &= ~mask;
}
}
/**
@@ -290,6 +361,17 @@ static inline void i2s_ll_rx_disable_intr(i2s_dev_t *hw)
hw->int_ena.in_dscr_err = 0;
}
/**
* @brief Get interrupt status register address
*
* @param hw Peripheral I2S hardware instance address.
* @return interrupt status register address
*/
static inline volatile void *i2s_ll_get_intr_status_reg(i2s_dev_t *hw)
{
return &hw->int_st;
}
/**
* @brief Get I2S interrupt status
*
@@ -335,6 +417,27 @@ static inline void i2s_ll_rx_reset_dma(i2s_dev_t *hw)
hw->lc_conf.in_rst = 0;
}
/**
* @brief Start out link
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_start_out_link(i2s_dev_t *hw)
{
hw->out_link.start = 1;
}
/**
* @brief Set I2S out link address
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set out link address
*/
static inline void i2s_ll_set_out_link_addr(i2s_dev_t *hw, uint32_t val)
{
hw->out_link.addr = val;
}
/**
* @brief Start TX module
*
@@ -363,8 +466,8 @@ static inline void i2s_ll_rx_start(i2s_dev_t *hw)
*/
static inline void i2s_ll_tx_start_link(i2s_dev_t *hw, uint32_t link_addr)
{
hw->out_link.addr = link_addr;
hw->out_link.start = 1;
i2s_ll_set_out_link_addr(hw, link_addr);
i2s_ll_start_out_link(hw);
}
/**
@@ -453,6 +556,17 @@ static inline void i2s_ll_rx_set_eof_num(i2s_dev_t *hw, int eof_num)
hw->rx_eof_num = eof_num / 4;
}
/**
* @brief Set I2S tx bits mod
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx bits mod
*/
static inline void i2s_ll_tx_set_bits_mod(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.tx_bits_mod = val;
}
/**
* @brief Congfigure TX chan bit and audio data bit, on ESP32, sample_bit should equals to data_bit
*
@@ -479,6 +593,28 @@ static inline void i2s_ll_rx_set_sample_bit(i2s_dev_t *hw, uint8_t chan_bit, int
hw->sample_rate_conf.rx_bits_mod = data_bit;
}
/**
* @brief Set whether to continue I2S signal on bus when TX FIFO is empty
*
* @param hw Peripheral I2S hardware instance address.
* @param en whether to stop when tx fifo is empty
*/
static inline void i2s_ll_tx_stop_on_fifo_empty(i2s_dev_t *hw, bool en)
{
hw->conf1.tx_stop_en = en;
}
/**
* @brief Set whether to bypass the internal PCM module
*
* @param hw Peripheral I2S hardware instance address.
* @param bypass whether to bypass the PCM module
*/
static inline void i2s_ll_tx_bypass_pcm(i2s_dev_t *hw, bool bypass)
{
hw->conf1.tx_pcm_bypass = bypass;
}
/**
* @brief Enable I2S DMA
*
@@ -534,6 +670,17 @@ static inline void i2s_ll_rx_enable_msb_shift(i2s_dev_t *hw, bool msb_shift_enab
hw->conf.rx_msb_shift = msb_shift_enable;
}
/**
* @brief Set I2S tx chan mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx chan mode
*/
static inline void i2s_ll_tx_set_chan_mod(i2s_dev_t *hw, uint32_t val)
{
hw->conf_chan.tx_chan_mod = val;
}
/**
* @brief Enable TX mono mode
*

View File

@@ -42,7 +42,6 @@ typedef struct {
uint16_t mclk_div; // I2S module clock devider, Fmclk = Fsclk /(mclk_div+b/a)
uint16_t a;
uint16_t b; // The decimal part of module clock devider, the decimal is: b/a
uint16_t bck_div; // The BCK devider, Fbck = Fmclk / bck_div
} i2s_ll_clk_cal_t;
/**
@@ -183,6 +182,17 @@ static inline void i2s_ll_rx_clk_set_src(i2s_dev_t *hw, i2s_clock_src_t src)
hw->rx_clkm_conf.rx_clk_sel = 2;
}
/**
* @brief Set I2S tx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx bck div num
*/
static inline void i2s_ll_tx_set_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->tx_conf1.tx_bck_div_num = val - 1;
}
/**
* @brief Configure I2S TX clock devider
*
@@ -209,7 +219,17 @@ static inline void i2s_ll_tx_set_clk(i2s_dev_t *hw, i2s_ll_clk_cal_t *set)
}
}
hw->tx_clkm_conf.tx_clkm_div_num = set->mclk_div;
hw->tx_conf1.tx_bck_div_num = set->bck_div - 1;
}
/**
* @brief Set I2S rx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx bck div num
*/
static inline void i2s_ll_rx_set_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->rx_conf1.rx_bck_div_num = val - 1;
}
/**
@@ -238,7 +258,6 @@ static inline void i2s_ll_rx_set_clk(i2s_dev_t *hw, i2s_ll_clk_cal_t *set)
}
}
hw->rx_clkm_conf.rx_clkm_div_num = set->mclk_div;
hw->rx_conf1.rx_bck_div_num = set->bck_div - 1;
}
/**

View File

@@ -43,7 +43,6 @@ typedef struct {
uint16_t mclk_div; // I2S module clock devider, Fmclk = Fsclk /(mclk_div+b/a)
uint16_t a;
uint16_t b; // The decimal part of module clock devider, the decimal is: b/a
uint16_t bck_div; // The BCK devider, Fbck = Fmclk / bck_div
} i2s_ll_clk_cal_t;
/**
@@ -184,6 +183,17 @@ static inline void i2s_ll_rx_clk_set_src(i2s_dev_t *hw, i2s_clock_src_t src)
hw->rx_clkm_conf.rx_clk_sel = 2;
}
/**
* @brief Set I2S tx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx bck div num
*/
static inline void i2s_ll_tx_set_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->tx_conf1.tx_bck_div_num = val - 1;
}
/**
* @brief Configure I2S TX clock devider
*
@@ -210,7 +220,17 @@ static inline void i2s_ll_tx_set_clk(i2s_dev_t *hw, i2s_ll_clk_cal_t *set)
}
}
hw->tx_clkm_conf.tx_clkm_div_num = set->mclk_div;
hw->tx_conf1.tx_bck_div_num = set->bck_div - 1;
}
/**
* @brief Set I2S rx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx bck div num
*/
static inline void i2s_ll_rx_set_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->rx_conf1.rx_bck_div_num = val - 1;
}
/**
@@ -239,7 +259,6 @@ static inline void i2s_ll_rx_set_clk(i2s_dev_t *hw, i2s_ll_clk_cal_t *set)
}
}
hw->rx_clkm_conf.rx_clkm_div_num = set->mclk_div;
hw->rx_conf1.rx_bck_div_num = set->bck_div - 1;
}
/**

View File

@@ -43,8 +43,6 @@ static inline uint32_t periph_ll_get_clk_en_mask(periph_module_t periph)
return DPORT_I2C_EXT1_CLK_EN;
case PERIPH_I2S0_MODULE:
return DPORT_I2S0_CLK_EN;
case PERIPH_I2S1_MODULE:
return DPORT_I2S1_CLK_EN;
case PERIPH_TIMG0_MODULE:
return DPORT_TIMERGROUP_CLK_EN;
case PERIPH_TIMG1_MODULE:
@@ -115,8 +113,6 @@ static inline uint32_t periph_ll_get_rst_en_mask(periph_module_t periph, bool en
return DPORT_I2C_EXT1_RST;
case PERIPH_I2S0_MODULE:
return DPORT_I2S0_RST;
case PERIPH_I2S1_MODULE:
return DPORT_I2S1_RST;
case PERIPH_TIMG0_MODULE:
return DPORT_TIMERGROUP_RST;
case PERIPH_TIMG1_MODULE:

View File

@@ -43,9 +43,44 @@ typedef struct {
uint16_t mclk_div; // I2S module clock devider, Fmclk = Fsclk /(mclk_div+b/a)
uint16_t a;
uint16_t b; // The decimal part of module clock devider, the decimal is: b/a
uint16_t bck_div; // The BCK devider, Fbck = Fmclk / bck_div
} i2s_ll_clk_cal_t;
#define I2S_LL_EVENT_TX_EOF (1 << 12)
#define I2S_LL_BCK_MAX_PRESCALE (64)
/**
* @brief Enable DMA descriptor owner check
*
* @param hw Peripheral I2S hardware instance address.
* @param en whether to enable owner check
*/
static inline void i2s_ll_dma_enable_owner_check(i2s_dev_t *hw, bool en)
{
hw->lc_conf.check_owner = en;
}
/**
* @brief Enable DMA descriptor write back
*
* @param hw Peripheral I2S hardware instance address.
* @param en whether to enable write back
*/
static inline void i2s_ll_dma_enable_auto_write_back(i2s_dev_t *hw, bool en)
{
hw->lc_conf.out_auto_wrback = en;
}
/**
* @brief I2S DMA generate EOF event on data in FIFO poped out
*
* @param hw Peripheral I2S hardware instance address.
* @param en True to enable, False to disable
*/
static inline void i2s_ll_dma_enable_eof_on_fifo_empty(i2s_dev_t *hw, bool en)
{
hw->lc_conf.out_eof_mode = en;
}
/**
* @brief I2S module general init, enable I2S clock.
*
@@ -214,6 +249,17 @@ static inline void i2s_ll_rx_clk_set_src(i2s_dev_t *hw, i2s_clock_src_t src)
hw->clkm_conf.clk_sel = (src == I2S_CLK_APLL) ? 1 : 2;
}
/**
* @brief Set I2S tx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx bck div num
*/
static inline void i2s_ll_tx_set_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.tx_bck_div_num = val;
}
/**
* @brief Configure I2S TX clock devider
*
@@ -225,7 +271,17 @@ static inline void i2s_ll_tx_set_clk(i2s_dev_t *hw, i2s_ll_clk_cal_t *set)
hw->clkm_conf.clkm_div_num = set->mclk_div;
hw->clkm_conf.clkm_div_b = set->b;
hw->clkm_conf.clkm_div_a = set->a;
hw->sample_rate_conf.tx_bck_div_num = set->bck_div;
}
/**
* @brief Set I2S rx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx bck div num
*/
static inline void i2s_ll_rx_set_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.rx_bck_div_num = val;
}
/**
@@ -239,7 +295,22 @@ static inline void i2s_ll_rx_set_clk(i2s_dev_t *hw, i2s_ll_clk_cal_t *set)
hw->clkm_conf.clkm_div_num = set->mclk_div;
hw->clkm_conf.clkm_div_b = set->b;
hw->clkm_conf.clkm_div_a = set->a;
hw->sample_rate_conf.rx_bck_div_num = set->bck_div;
}
/**
* @brief Enable interrupt by mask
*
* @param hw Peripheral I2S hardware instance address.
* @param mask Interrupt event mask
* @param en true to enable, false to disable
*/
static inline void i2s_ll_enable_intr(i2s_dev_t *hw, uint32_t mask, bool en)
{
if (en) {
hw->int_ena.val |= mask;
} else {
hw->int_ena.val &= ~mask;
}
}
/**
@@ -286,6 +357,17 @@ static inline void i2s_ll_rx_disable_intr(i2s_dev_t *hw)
hw->int_ena.in_dscr_err = 0;
}
/**
* @brief Get interrupt status register address
*
* @param hw Peripheral I2S hardware instance address.
* @return interrupt status register address
*/
static inline volatile void *i2s_ll_get_intr_status_reg(i2s_dev_t *hw)
{
return &hw->int_st;
}
/**
* @brief Get I2S interrupt status
*
@@ -357,6 +439,27 @@ static inline void i2s_ll_rx_enable_pdm(i2s_dev_t *hw, bool pdm_enable)
// Remain empty
}
/**
* @brief Start out link
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_start_out_link(i2s_dev_t *hw)
{
hw->out_link.start = 1;
}
/**
* @brief Set I2S out link address
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set out link address
*/
static inline void i2s_ll_set_out_link_addr(i2s_dev_t *hw, uint32_t val)
{
hw->out_link.addr = val;
}
/**
* @brief Start TX module
*
@@ -385,8 +488,8 @@ static inline void i2s_ll_rx_start(i2s_dev_t *hw)
*/
static inline void i2s_ll_tx_start_link(i2s_dev_t *hw, uint32_t link_addr)
{
hw->out_link.addr = link_addr;
hw->out_link.start = 1;
i2s_ll_set_out_link_addr(hw, link_addr);
i2s_ll_start_out_link(hw);
}
/**
@@ -643,6 +746,39 @@ static inline void i2s_ll_rx_enable_msb_shift(i2s_dev_t *hw, bool msb_shift_enab
hw->conf.rx_msb_shift = msb_shift_enable;
}
/**
* @brief Set I2S tx chan mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx chan mode
*/
static inline void i2s_ll_tx_set_chan_mod(i2s_dev_t *hw, uint32_t val)
{
hw->conf_chan.tx_chan_mod = val;
}
/**
* @brief Set I2S tx bits mod
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx bits mod
*/
static inline void i2s_ll_tx_set_bits_mod(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.tx_bits_mod = val;
}
/**
* @brief Set I2S tx dma equal
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx dma equal
*/
static inline void i2s_ll_tx_enable_dma_equal(i2s_dev_t *hw, bool en)
{
hw->conf.tx_dma_equal = en;
}
/**
* @brief Enable TX mono mode
*
@@ -682,6 +818,39 @@ static inline void i2s_ll_enable_loop_back(i2s_dev_t *hw, bool loopback_en)
hw->conf.sig_loopback = loopback_en;
}
/**
* @brief Enable I2S LCD mode
*
* @param hw Peripheral I2S hardware instance address.
* @param enable Set true to enable LCD mode.
*/
static inline void i2s_ll_enable_lcd(i2s_dev_t *hw, bool enable)
{
hw->conf2.lcd_en = enable;
}
/**
* @brief Set whether to continue I2S signal on bus when TX FIFO is empty
*
* @param hw Peripheral I2S hardware instance address.
* @param en whether to stop when tx fifo is empty
*/
static inline void i2s_ll_tx_stop_on_fifo_empty(i2s_dev_t *hw, bool en)
{
hw->conf1.tx_stop_en = en;
}
/**
* @brief Set whether to bypass the internal PCM module
*
* @param hw Peripheral I2S hardware instance address.
* @param bypass whether to bypass the PCM module
*/
static inline void i2s_ll_tx_bypass_pcm(i2s_dev_t *hw, bool bypass)
{
hw->conf1.tx_pcm_bypass = bypass;
}
#ifdef __cplusplus
}
#endif

View File

@@ -43,7 +43,6 @@ typedef struct {
uint16_t mclk_div; // I2S module clock devider, Fmclk = Fsclk /(mclk_div+b/a)
uint16_t a;
uint16_t b; // The decimal part of module clock devider, the decimal is: b/a
uint16_t bck_div; // The BCK devider, Fbck = Fmclk / bck_div
} i2s_ll_clk_cal_t;
/**
@@ -186,6 +185,17 @@ static inline void i2s_ll_rx_clk_set_src(i2s_dev_t *hw, i2s_clock_src_t src)
hw->rx_clkm_conf.rx_clk_sel = 2;
}
/**
* @brief Set I2S tx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx bck div num
*/
static inline void i2s_ll_tx_set_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->tx_conf1.tx_bck_div_num = val - 1;
}
/**
* @brief Configure I2S TX clock devider
*
@@ -212,7 +222,17 @@ static inline void i2s_ll_tx_set_clk(i2s_dev_t *hw, i2s_ll_clk_cal_t *set)
}
}
hw->tx_clkm_conf.tx_clkm_div_num = set->mclk_div;
hw->tx_conf1.tx_bck_div_num = set->bck_div - 1;
}
/**
* @brief Set I2S rx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx bck div num
*/
static inline void i2s_ll_rx_set_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->rx_conf1.rx_bck_div_num = val - 1;
}
/**
@@ -241,7 +261,6 @@ static inline void i2s_ll_rx_set_clk(i2s_dev_t *hw, i2s_ll_clk_cal_t *set)
}
}
hw->rx_clkm_conf.rx_clkm_div_num = set->mclk_div;
hw->rx_conf1.rx_bck_div_num = set->bck_div - 1;
}
/**

View File

@@ -131,15 +131,14 @@ static inline void lcd_ll_reverse_data_bit_order(lcd_cam_dev_t *dev, bool en)
dev->lcd_user.lcd_bit_order = en;
}
static inline void lcd_ll_reverse_data_byte_order(lcd_cam_dev_t *dev, uint32_t data_width, bool en)
static inline void lcd_ll_reverse_data_byte_order(lcd_cam_dev_t *dev, bool en)
{
if (data_width == 8) {
dev->lcd_user.lcd_8bits_order = en; // valid in 8bit mode
dev->lcd_user.lcd_byte_order = 0;
} else if (data_width == 16) {
dev->lcd_user.lcd_byte_order = en; // valid in 16bit mode
dev->lcd_user.lcd_8bits_order = 0;
dev->lcd_user.lcd_byte_order = en;
}
static inline void lcd_ll_reverse_data_8bits_order(lcd_cam_dev_t *dev, bool en)
{
dev->lcd_user.lcd_8bits_order = en;
}
static inline void lcd_ll_fifo_reset(lcd_cam_dev_t *dev)

View File

@@ -37,7 +37,6 @@ static void i2s_hal_clk_cal(uint32_t fsclk, uint32_t fbck, int bck_div, i2s_ll_c
int mb = 0;
uint32_t mclk = fbck * bck_div;
cal->mclk_div = fsclk / mclk;
cal->bck_div = bck_div;
cal->a = 1;
cal->b = 0;
uint32_t freq_diff = fsclk - mclk * cal->mclk_div;
@@ -74,6 +73,7 @@ void i2s_hal_tx_clock_config(i2s_hal_context_t *hal, uint32_t sclk, uint32_t fbc
i2s_ll_clk_cal_t clk_set = {0};
i2s_hal_clk_cal(sclk, fbck, factor, &clk_set);
i2s_ll_tx_set_clk(hal->dev, &clk_set);
i2s_ll_tx_set_bck_div_num(hal->dev, factor);
}
void i2s_hal_rx_clock_config(i2s_hal_context_t *hal, uint32_t sclk, uint32_t fbck, int factor)
@@ -81,6 +81,7 @@ void i2s_hal_rx_clock_config(i2s_hal_context_t *hal, uint32_t sclk, uint32_t fbc
i2s_ll_clk_cal_t clk_set = {0};
i2s_hal_clk_cal(sclk, fbck, factor, &clk_set);
i2s_ll_rx_set_clk(hal->dev, &clk_set);
i2s_ll_rx_set_bck_div_num(hal->dev, factor);
}
void i2s_hal_enable_master_fd_mode(i2s_hal_context_t *hal)

View File

@@ -5,6 +5,7 @@ set(srcs
"i2c_periph.c"
"i2s_periph.c"
"interrupts.c"
"lcd_periph.c"
"ledc_periph.c"
"mcpwm_periph.c"
"pcnt_periph.c"

View File

@@ -68,7 +68,6 @@
#define SOC_SDIO_SLAVE_SUPPORTED 1
#define SOC_TWAI_SUPPORTED 1
#define SOC_EMAC_SUPPORTED 1
#define SOC_RISCV_COPROC_SUPPORTED 0 //TODO: correct the caller and remove this line
#define SOC_CPU_CORES_NUM 2
#define SOC_ULP_SUPPORTED 1
#define SOC_RTC_SLOW_MEM_SUPPORTED 1
@@ -144,6 +143,14 @@
#define SOC_I2S_APLL_MIN_FREQ (250000000)
#define SOC_I2S_APLL_MAX_FREQ (500000000)
#define SOC_I2S_APLL_MIN_RATE (10675) //in Hz, I2S Clock rate limited by hardware
#define SOC_I2S_TRANS_SIZE_ALIGN_WORD (1) // I2S DMA transfer size must be aligned to word
#define SOC_I2S_LCD_I80_VARIANT (1) // I2S has a special LCD mode that can generate Intel 8080 TX timing
/*-------------------------- LCD CAPS ----------------------------------------*/
/* Notes: On esp32, LCD intel 8080 timing is generated by I2S peripheral */
#define SOC_LCD_I80_SUPPORTED (1) /*!< Intel 8080 LCD is supported */
#define SOC_LCD_I80_BUSES (1) /*!< Only I2S0 has LCD mode */
#define SOC_LCD_I80_BUS_WIDTH (24) /*!< Intel 8080 bus width */
/*-------------------------- LEDC CAPS ---------------------------------------*/
#define SOC_LEDC_SUPPORT_HS_MODE (1)

View File

@@ -0,0 +1,53 @@
// Copyright 2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "soc/soc.h"
#include "soc/lcd_periph.h"
#include "soc/gpio_sig_map.h"
const lcd_signal_conn_t lcd_periph_signals = {
.buses = {
[0] = {
.module = PERIPH_I2S0_MODULE,
.irq_id = ETS_I2S0_INTR_SOURCE,
.data_sigs = {
I2S0O_DATA_OUT0_IDX,
I2S0O_DATA_OUT1_IDX,
I2S0O_DATA_OUT2_IDX,
I2S0O_DATA_OUT3_IDX,
I2S0O_DATA_OUT4_IDX,
I2S0O_DATA_OUT5_IDX,
I2S0O_DATA_OUT6_IDX,
I2S0O_DATA_OUT7_IDX,
I2S0O_DATA_OUT8_IDX,
I2S0O_DATA_OUT9_IDX,
I2S0O_DATA_OUT10_IDX,
I2S0O_DATA_OUT11_IDX,
I2S0O_DATA_OUT12_IDX,
I2S0O_DATA_OUT13_IDX,
I2S0O_DATA_OUT14_IDX,
I2S0O_DATA_OUT15_IDX,
I2S0O_DATA_OUT16_IDX,
I2S0O_DATA_OUT17_IDX,
I2S0O_DATA_OUT18_IDX,
I2S0O_DATA_OUT19_IDX,
I2S0O_DATA_OUT20_IDX,
I2S0O_DATA_OUT21_IDX,
I2S0O_DATA_OUT22_IDX,
I2S0O_DATA_OUT23_IDX,
},
.wr_sig = I2S0O_WS_OUT_IDX,
}
}
};

View File

@@ -1,22 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#define SOC_I2S_APLL_MIN_FREQ (250000000)
#define SOC_I2S_APLL_MAX_FREQ (500000000)
#define SOC_I2S_APLL_MIN_RATE (10675) //in Hz, I2S Clock rate limited by hardware
#define SOC_I2S_MAX_BUFFER_SIZE (4 * 1024 * 1024) //the maximum RAM can be allocated
#define SOC_I2S_NUM (1)

View File

@@ -6,6 +6,7 @@ set(srcs
"i2c_periph.c"
"i2s_periph.c"
"interrupts.c"
"lcd_periph.c"
"ledc_periph.c"
"pcnt_periph.c"
"rmt_periph.c"

View File

@@ -27,7 +27,6 @@ typedef enum {
PERIPH_I2C0_MODULE,
PERIPH_I2C1_MODULE,
PERIPH_I2S0_MODULE,
PERIPH_I2S1_MODULE,
PERIPH_TIMG0_MODULE,
PERIPH_TIMG1_MODULE,
PERIPH_UHCI0_MODULE,
@@ -93,8 +92,7 @@ typedef enum {
ETS_SPI2_INTR_SOURCE, /**< interrupt of SPI2, level*/
ETS_SPI3_INTR_SOURCE, /**< interrupt of SPI3, level*/
ETS_I2S0_INTR_SOURCE, /**< interrupt of I2S0, level*/
ETS_I2S1_INTR_SOURCE, /**< interrupt of I2S1, level*/
ETS_UART0_INTR_SOURCE, /**< interrupt of UART0, level*/
ETS_UART0_INTR_SOURCE = 37, /**< interrupt of UART0, level*/
ETS_UART1_INTR_SOURCE, /**< interrupt of UART1, level*/
ETS_UART2_INTR_SOURCE, /**< interrupt of UART2, level*/
ETS_SDIO_HOST_INTR_SOURCE, /**< interrupt of SD/SDIO/MMC HOST, level*/

View File

@@ -138,9 +138,17 @@
// ESP32-S2 have 1 I2S
#define SOC_I2S_NUM (1)
#define SOC_I2S_SUPPORTS_APLL (1)// ESP32-S2 support APLL
#define SOC_I2S_SUPPORTS_DMA_EQUAL (1)
#define SOC_I2S_APLL_MIN_FREQ (250000000)
#define SOC_I2S_APLL_MAX_FREQ (500000000)
#define SOC_I2S_APLL_MIN_RATE (10675) //in Hz, I2S Clock rate limited by hardware
#define SOC_I2S_LCD_I80_VARIANT (1)
/*-------------------------- LCD CAPS ----------------------------------------*/
/* Notes: On esp32-s2, LCD intel 8080 timing is generated by I2S peripheral */
#define SOC_LCD_I80_SUPPORTED (1) /*!< Intel 8080 LCD is supported */
#define SOC_LCD_I80_BUSES (1) /*!< Only I2S0 has LCD mode */
#define SOC_LCD_I80_BUS_WIDTH (24) /*!< Intel 8080 bus width */
/*-------------------------- LEDC CAPS ---------------------------------------*/
#define SOC_LEDC_SUPPORT_XTAL_CLOCK (1)

View File

@@ -0,0 +1,52 @@
// Copyright 2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "soc/lcd_periph.h"
#include "soc/gpio_sig_map.h"
const lcd_signal_conn_t lcd_periph_signals = {
.buses = {
[0] = {
.module = PERIPH_I2S0_MODULE,
.irq_id = ETS_I2S0_INTR_SOURCE,
.data_sigs = {
I2S0O_DATA_OUT0_IDX,
I2S0O_DATA_OUT1_IDX,
I2S0O_DATA_OUT2_IDX,
I2S0O_DATA_OUT3_IDX,
I2S0O_DATA_OUT4_IDX,
I2S0O_DATA_OUT5_IDX,
I2S0O_DATA_OUT6_IDX,
I2S0O_DATA_OUT7_IDX,
I2S0O_DATA_OUT8_IDX,
I2S0O_DATA_OUT9_IDX,
I2S0O_DATA_OUT10_IDX,
I2S0O_DATA_OUT11_IDX,
I2S0O_DATA_OUT12_IDX,
I2S0O_DATA_OUT13_IDX,
I2S0O_DATA_OUT14_IDX,
I2S0O_DATA_OUT15_IDX,
I2S0O_DATA_OUT16_IDX,
I2S0O_DATA_OUT17_IDX,
I2S0O_DATA_OUT18_IDX,
I2S0O_DATA_OUT19_IDX,
I2S0O_DATA_OUT20_IDX,
I2S0O_DATA_OUT21_IDX,
I2S0O_DATA_OUT22_IDX,
I2S0O_DATA_OUT23_IDX,
},
.wr_sig = I2S0O_WS_OUT_IDX,
}
}
};

View File

@@ -21,6 +21,7 @@
extern "C" {
#endif
#if SOC_LCDCAM_SUPPORTED
typedef struct {
struct {
const periph_module_t module;
@@ -41,6 +42,19 @@ typedef struct {
} panels[SOC_LCD_RGB_PANELS];
} lcd_signal_conn_t;
#endif // SOC_LCDCAM_SUPPORTED
#if SOC_I2S_LCD_I80_VARIANT
typedef struct {
struct {
const periph_module_t module;
const int irq_id;
const int data_sigs[SOC_LCD_I80_BUS_WIDTH];
const int wr_sig;
} buses[SOC_LCD_I80_BUSES];
} lcd_signal_conn_t;
#endif // SOC_I2S_LCD_I80_VARIANT
extern const lcd_signal_conn_t lcd_periph_signals;
#ifdef __cplusplus